Abstract
Objective: Hepatocellular carcinoma (HCC) is a widely occurring cancer ranking second in humans, with an incidence rate of approximately 1.6% per year in India. Experimental analysis of the Boeravinones or the Rotenoids classification of compounds present in the roots of the Boerhaavia diffusa Linn plant has shown a wide range of anti-cancer activity against liver hepatoblastoma.
Methods: Boeravinone B (BB) was screened from widely available Boeravinone A-E compounds based on a maximum drug-likeness score using Lipinski’s rule Five. BB was checked for anti-HCC activity by binding with the five receptors of VEGF, EGF, BCl2, Caspase-3 and Caspase-9 when compared with Sorafenib through molecular docking. GROMACS was used for simulating molecular dynamics.
Results: BB has shown a negative maximum internal energy score of -8.04, -8.42, -6.66, -8.33 and -7.74 Kcal/mol when compared to Sorafenib’s internal energy score of -6.55, -7.12, -4.05, -5.48 and -6.12 Kcal/mol for VEGFR, EGFR, BCl2, Caspase-3 and Caspase-9 respectively. Simulation using GROMACS has revealed that RMSD results BB forms a more stable complex with the Caspase-3 and EGFR after 19s and 15s of simulation time. RMSF analysis has characterized local changes on 170-190 residues and 860- 900 residues in C-alpha atoms of BB-Caspase-3 and BB-EGFR complexes revealed protein flexibility.
Conclusion: MMPBSA score of BB docked Caspase-3 and EGFR complexes were found to be -62.178 and -42.84 KJ/mol.
Keywords: Boeravinone B, Boerhaavia diffusa Linn, hepatocellular carcinoma, sorafenib, EGFR, Caspase-3.
Graphical Abstract
[http://dx.doi.org/10.5114/wo.2018.78941] [PMID: 30455585]
[http://dx.doi.org/10.1016/j.jceh.2019.01.004] [PMID: 31024205]
[http://dx.doi.org/10.1016/j.bcab.2019.101076]
[PMID: 30662661]
[http://dx.doi.org/10.3109/13880209.2014.971382] [PMID: 25864706]
[http://dx.doi.org/10.1038/s41598-019-45537-w] [PMID: 31235729]
[http://dx.doi.org/10.1016/j.bbrc.2015.10.031] [PMID: 26482853]
[PMID: 27393453]
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]
[http://dx.doi.org/10.1080/07391102.2019.1667265] [PMID: 31514687]
[http://dx.doi.org/10.3923/ajaps.2011.663.684]
[http://dx.doi.org/10.1517/17460441.2015.1032936] [PMID: 25835573]
[http://dx.doi.org/10.3389/fmolb.2017.00087] [PMID: 29367919]
[http://dx.doi.org/10.2217/hep-2018-0005] [PMID: 30302198]
[http://dx.doi.org/10.1038/s41598-017-11848-z] [PMID: 28900199]
[http://dx.doi.org/10.1080/15257770.2018.1450508] [PMID: 29608403]
[http://dx.doi.org/10.1038/s41598-018-29199-8] [PMID: 30026540]
[http://dx.doi.org/10.1097/PAS.0b013e318243555b] [PMID: 22314185]
[http://dx.doi.org/10.1016/j.bioorg.2018.12.039] [PMID: 30654221]
[http://dx.doi.org/10.1038/s41419-018-0617-7] [PMID: 29752472]
[http://dx.doi.org/10.1177/0300060517752022] [PMID: 29392963]
[http://dx.doi.org/10.6026/97320630016458] [PMID: 32884209]
[http://dx.doi.org/10.1016/j.bioorg.2017.10.016] [PMID: 29153588]