Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Oxymatrine-induced Apoptosis in Fibroblasts like Synoviocytes via Regulation of miR-146a/ TRAF6/JNK1 Axis in Rheumatoid Arthritis

Author(s): Jing Li and Hua Hong*

Volume 20, Issue 2, 2023

Published on: 13 December, 1901

Page: [232 - 237] Pages: 6

DOI: 10.2174/1570180819666220530143250

Price: $65

Abstract

Objective: Rheumatoid Arthritis (RA) is made when the synovial tissues and joints are destroyed by the inflammation refection, especially the chronic inflammation. The RA-FLS was treated with Oxymatrine, and the influence of miR-146a and TRAF6 /JNK pathway was explored.

Methods: Oxymatrine -treated RA-FLS were harvested to detect cell viability by CCK-8. The expression of miR-146a was detected by qRT-PCR. The expression of IRAK1, TRAF6, JNK1, and p-JNK1 was obtained by Western blot.

Results: The optimum oxymatrine concentration inhibiting RA-FLS was 4mg/ml at 48h. The expression of miR-146a at 48h and 72h was higher than 0 and 24h in RA-FLS treated with 4mg/ml oxymatrine. IRAK1, TRAF6, and p-JNK at 48h and 72h were lower than 0 and 24h in RA-FLS treated with 4mg/ml oxymatrine. When the miR-146a was inhibited, the expression of miR-146a was very low in the miR- 146a inhibitor group. No matter whether oxymatrine existed, the expression of IRAK1, TRAF6, and p- JNK in the miR-146a inhibitor group with or without oxymatrine was higher than the mock group, blank group, and only oxymatrine added group. The cell viability in the miR-146a inhibitor group and oxymatrine + miR-146a inhibitor group was higher than in the other groups. When IRAK1 was over expressed, the expression of miR-146a in the oxymatrine + IRAK1 overexpression group was higher than in the IRAK1 overexpression group. However, The expression of IRAK1, TRAF6, and p-JNK1 in the IRAK1 overexpression group with or without oxymatrine was higher than the pcDNA3.1 group, blank group, and only oxymatrine added group. The cell viability in the IRAK1 overexpression group and oxymatrine + IRAK1 overexpression group was higher than in the other groups.

Conclusion: Oxymatrine can inhibit RA-FLS proliferation via miR146a and IRAK1/TRAF6/JNK1 axis. Hence, oxymatrine may be a drug or adjuvant drug to treat RA in the future.

Keywords: Rheumatoid arthritis, oxymatrine, microRNA-146a, IRAK1/TRAF6/JNK1 axis, apoptosis, fibroblast

Graphical Abstract

[1]
Correction to: Immune Function and Mechanism of Costimulating Molecules PD-1 and OX40 in Rheumatoid Arthritis by Yanyan Huang et al. J Interferon Cytokine Res, 2020, 40, 530-539. J Interferon Cytokine Res, 2020, 41(5), 195.
[http://dx.doi.org/10.1089/jir.2020.0010]
[2]
Abdel-Maged, A.E.; Gad, A.M.; Wahdan, S.A.; Azab, S.S. Efficacy and safety of Ramucirumab and methotrexate co-therapy in rheumatoid arthritis experimental model: Involvement of angiogenic and immunomodulatory signaling. Toxicol. Appl. Pharmacol., 2019, 380, 114702.
[http://dx.doi.org/10.1016/j.taap.2019.114702] [PMID: 31398424]
[3]
Abuhelwa, A.Y. Concomitant beta-blocker use is associated with a reduced rate of remission in patients with rheumatoid arthritis treated with disease-modifying anti-rheumatic drugs: A post hoc multicohort analysis. Ther. Adv. Musculoskelet. Dis., 2021, 13.
[http://dx.doi.org/10.1177/1759720X211009020]
[4]
Acewicz, A.; Wierzba-Bobrowicz, T.; Michałowski, Ł.; Pęcak, M.; Tarka, S.; Chutorański, D.; Stępień, T.; Felczak, P.; Sklinda, K.; Nasierowska-Guttmejer, A.; Dorobek, M. Encephalomyelitis associated with rheumatoid arthritis: A case report. Folia Neuropathol., 2021, 59(1), 91-97.
[http://dx.doi.org/10.5114/fn.2021.103805] [PMID: 33969680]
[5]
Adas, M.A. A systematic review and network meta-analysis on the safety of early interventional treatments in rheumatoid arthritis. Rheumatology (Oxford), 2021.
[http://dx.doi.org/10.1093/rheumatology/keab429]
[6]
Agnihotri, P.; Monu; Ramani, S.; Chakraborty, D.; Saquib, M.; Biswas, S. Differential metabolome in rheumatoid arthritis: A Brief perspective. Curr. Rheumatol. Rep., 2021, 23(6), 42.
[http://dx.doi.org/10.1007/s11926-021-00989-w] [PMID: 33913028]
[7]
Al-Ani, N.; Gorial, F.; Yasiry, D.; Al Derwibee, F.; Abbas Humadi, Y.; Sunna, N.; AlJabban, A. Clinical outcomes in iraqi patients with rheumatoid arthritis following earlier or later treatment with etanercept. Open Access Rheumatol., 2021, 13, 57-62.
[http://dx.doi.org/10.2147/OARRR.S300838] [PMID: 33907478]
[8]
Cossiga, V.; Lembo, V.; Nigro, C.; Mirra, P.; Miele, C.; D’Argenio, V.; Leone, A.; Mazzone, G.; Veneruso, I.; Guido, M.; Beguinot, F.; Caporaso, N.; Morisco, F. The combination of berberine, tocotrienols and coffee extracts improves metabolic profile and liver steatosis by the modulation of gut microbiota and hepatic miR-122 and miR-34a expression in mice. Nutrients, 2021, 13(4), 1281.
[http://dx.doi.org/10.3390/nu13041281] [PMID: 33924725]
[9]
Geraldo, M.V.; Fuziwara, C.S.; Friguglieti, C.U.; Costa, R.B.; Kulcsar, M.A.; Yamashita, A.S.; Kimura, E.T. MicroRNAs miR-146-5p and let-7f as prognostic tools for aggressive papillary thyroid carcinoma: A case report. Arq. Bras. Endocrinol. Metabol, 2012, 56(8), 552-557.
[http://dx.doi.org/10.1590/S0004-27302012000800015] [PMID: 23295297]
[10]
Huntington, J.; Pachauri, M.; Ali, H.; Giacca, M. RNA interference therapeutics for cardiac regeneration. Curr. Opin. Genet. Dev., 2021, 70, 48-53.
[http://dx.doi.org/10.1016/j.gde.2021.05.007] [PMID: 34098251]
[11]
Mellis, D.; Caporali, A. MicroRNA-based therapeutics in cardiovascular disease: Screening and delivery to the target. Biochem. Soc. Trans., 2018, 46(1), 11-21.
[http://dx.doi.org/10.1042/BST20170037] [PMID: 29196609]
[12]
Huang, Y.; Wang, H.; Wang, Y.; Peng, X.; Li, J.; Gu, W.; He, T.; Chen, M. Regulation and mechanism of miR-146 on renal ischemia reperfusion injury. Pharmazie, 2018, 73(1), 29-34.
[PMID: 29441948]
[13]
Hurst, D.R.; Edmonds, M.D.; Scott, G.K.; Benz, C.C.; Vaidya, K.S.; Welch, D.R. Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Res., 2009, 69(4), 1279-1283.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3559] [PMID: 19190326]
[14]
Papaconstantinou, I.; Kapizioni, C.; Legaki, E.; Xourgia, E.; Karamanolis, G.; Gklavas, A.; Gazouli, M. Association of miR-146 rs2910164, miR-196a rs11614913, miR-221 rs113054794 and miR-224 rs188519172 polymorphisms with anti-TNF treatment response in a Greek population with Crohn’s disease. World J. Gastrointest. Pharmacol. Ther., 2017, 8(4), 193-200.
[http://dx.doi.org/10.4292/wjgpt.v8.i4.193] [PMID: 29152405]
[15]
Testa, U.; Pelosi, E.; Castelli, G.; Labbaye, C. miR-146 and miR-155: Two Key Modulators of Immune Response and Tumor Development. Noncoding RNA, 2017, 3(3), E22.
[http://dx.doi.org/10.3390/ncrna3030022] [PMID: 29657293]
[16]
Wang, N.; Zhang, S. Up-regulating MiR-146 inhibits osteoarthritis in rats through suppressing TGF-β/smad signaling pathway. Panminerva Med., 2020.
[http://dx.doi.org/10.23736/S0031-0808.19.03822-9] [PMID: 31992036]
[17]
Dong, P.L.; Li, Z.; Teng, C.L.; Yin, X.; Cao, X.K.; Han, H. Synthesis and evolution of neuroprotective effects of oxymatrine derivatives as anti-Alzheimer’s disease agents. Chem. Biol. Drug Des., 2021, 98(1), 175-181.
[http://dx.doi.org/10.1111/cbdd.13862] [PMID: 33963669]
[18]
Fu, Y.; Wu, H.Q.; Cui, H.L.; Li, Y.Y.; Li, C.Z. Gastroprotective and anti-ulcer effects of oxymatrine against several gastric ulcer models in rats: Possible roles of antioxidant, antiinflammatory, and prosurvival mechanisms. Phytother. Res., 2018, 32(10), 2047-2058.
[http://dx.doi.org/10.1002/ptr.6148] [PMID: 30024074]
[19]
Gan, P.; Ding, L.; Hang, G.; Xia, Q.; Huang, Z.; Ye, X.; Qian, X. Oxymatrine attenuates dopaminergic neuronal damage and microglia-mediated neuroinflammation through cathepsin D-dependent HMGB1/TLR4/NF-κB pathway in parkinson’s disease. Front. Pharmacol., 2020, 11, 776.
[http://dx.doi.org/10.3389/fphar.2020.00776] [PMID: 32528295]
[20]
Andreakos, E.; Smith, C.; Kiriakidis, S.; Monaco, C.; de Martin, R.; Brennan, F.M.; Paleolog, E.; Feldmann, M.; Foxwell, B.M. Heterogeneous requirement of IkappaB kinase 2 for inflammatory cytokine and matrix metalloproteinase production in rheumatoid arthritis: Implications for therapy. Arthritis Rheum., 2003, 48(7), 1901-1912.
[http://dx.doi.org/10.1002/art.11044] [PMID: 12847684]
[21]
Avci, A.B.; Feist, E.; Burmester, G.R. Early phase studies of JAK1 selective inhibitors in rheumatoid arthritis. Rheumatology (Oxford), 2021, 60(Suppl. 2), ii11-ii16.
[http://dx.doi.org/10.1093/rheumatology/keaa893] [PMID: 33950228]
[22]
Azizi, G.; Boghozian, R.; Mirshafiey, A. The potential role of angiogenic factors in rheumatoid arthritis. Int. J. Rheum. Dis., 2014, 17(4), 369-383.
[http://dx.doi.org/10.1111/1756-185X.12280] [PMID: 24467605]
[23]
Ally, M.M.; Hodkinson, B.; Meyer, P.W.; Musenge, E.; Tikly, M.; Anderson, R. Serum matrix metalloproteinase-3 in comparison with acute phase proteins as a marker of disease activity and radiographic damage in early rheumatoid arthritis. Mediators Inflamm., 2013, 2013, 183653.
[http://dx.doi.org/10.1155/2013/183653] [PMID: 23690656]
[24]
Behl, T.; Mehta, K.; Sehgal, A.; Singh, S.; Sharma, N.; Ahmadi, A.; Arora, S.; Bungau, S. Exploring the role of polyphenols in rheumatoid arthritis. Crit. Rev. Food Sci. Nutr., 2022, 62(19), 5372-5393.
[http://dx.doi.org/10.1080/10408398.2021.1924613] [PMID: 33998910]
[25]
Bindra, J.; Chopra, I.; Niewoehner, J.; Panaccio, M.; Wan, G.J. Cost-effectiveness of repository corticotropin injection versus standard of care for the treatment of active rheumatoid arthritis. Clinicoecon. Outcomes Res., 2021, 13, 349-358.
[http://dx.doi.org/10.2147/CEOR.S304600] [PMID: 33986603]
[26]
Azevedo, S. Differences and determinants of physician’s and patient’s perception in global assessment of rheumatoid arthritis. Reumatología Clínica, 2021.
[http://dx.doi.org/10.1016/j.reuma.2021.04.001]
[27]
Behrens, F. Characterisation of depressive symptoms in rheumatoid arthritis patients treated with tocilizumab during routine daily care. Clin. Exp. Rheumatol., 2022, 40(3), 551-559.
[PMID: 34001304]
[28]
Chen, C.Y.; Su, C.M.; Hsu, C.J.; Huang, C.C.; Wang, S.W.; Liu, S.C.; Chen, W.C.; Fuh, L.J.; Tang, C.H. CCN1 Promotes VEGF Production in Osteoblasts and Induces Endothelial Progenitor Cell Angiogenesis by Inhibiting miR-126 Expression in Rheumatoid Arthritis. J. Bone Miner. Res., 2017, 32(1), 34-45.
[http://dx.doi.org/10.1002/jbmr.2926] [PMID: 27465842]
[29]
Chen, J.; Norling, L.V.; Cooper, D. Cardiac dysfunction in rheumatoid arthritis: The role of inflammation. Cells, 2021, 10(4), 881.
[http://dx.doi.org/10.3390/cells10040881] [PMID: 33924323]
[30]
Liao, B.; Liu, S.; Liu, J.; Reddy, P.A.K.; Ying, Y.; Xie, Y.; Wang, J.; Zeng, X. Long noncoding RNA CTC inhibits proliferation and invasion by targeting miR-146 to regulate KIT in papillary thyroid carcinoma. Sci. Rep., 2020, 10(1), 4616.
[http://dx.doi.org/10.1038/s41598-020-61577-z] [PMID: 32165673]
[31]
Pereira-da-Silva, T.; Napoleão, P.; Costa, M.C.; Gabriel, A.F.; Selas, M.; Silva, F.; Enguita, F.J.; Ferreira, R.C.; Carmo, M.M. Circulating miRNAs are associated with the systemic extent of atherosclerosis: Novel observations for miR-27b and miR-146. Diagnostics (Basel), 2021, 11(2), 318.
[http://dx.doi.org/10.3390/diagnostics11020318] [PMID: 33669374]
[32]
Wang, Y.; Li, Y. miR-146 promotes HBV replication and expression by targeting ZEB2. Biomed. Pharmacother., 2018, 99, 576-582.
[http://dx.doi.org/10.1016/j.biopha.2018.01.097] [PMID: 29902868]
[33]
Yang, M.; Ye, L.; Wang, B.; Gao, J.; Liu, R.; Hong, J.; Wang, W.; Gu, W.; Ning, G. Decreased miR-146 expression in peripheral blood mononuclear cells is correlated with ongoing islet autoimmunity in type 1 diabetes patients 1miR-146. J. Diabetes, 2015, 7(2), 158-165.
[http://dx.doi.org/10.1111/1753-0407.12163] [PMID: 24796653]
[34]
Yang, R.S.; Wang, Y.H.; Ding, C.; Su, X.H.; Gong, X.B. MiR-146 regulates the repair and regeneration of intervertebral nucleus pulposus cells via Notch1 pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(11), 4591-4598.
[PMID: 31210285]
[35]
Zhuang, P.; Muraleedharan, C.K.; Xu, S. Intraocular delivery of miR-146 inhibits diabetes-induced retinal functional defects in diabetic rat model. Invest. Ophthalmol. Vis. Sci., 2017, 58(3), 1646-1655.
[http://dx.doi.org/10.1167/iovs.16-21223] [PMID: 28297724]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy