Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

Investigation of the Tissue Degenerative Impact of Increased BMI in Achilles Tendon via Strain Elastography and Finite Element Analysis

Author(s): Rimsha Siddiqui, Eraj H. Mriza, Ravish Javed* and Mahdi Al-Qahtani

Volume 19, Issue 6, 2023

Published on: 19 September, 2022

Article ID: e050822207303 Pages: 9

DOI: 10.2174/1573405618666220805101527

Price: $65

Abstract

Background: This study is focused on establishing a relationship between poor muscle activity faced by obese individuals due to the change in stiffness of the intramuscular mass of the lower limb. This issue is also common among athletes and physically active teenagers.

Objective: The study is aimed at a subject assessment diagnosis technique named as Strain Elastography (SE) to measure muscle strain. Further, Finite Element Modelling (FEM) technique is used to investigate the strain and/or deformations generated in the Achilles Tendon (AT) models, which were categorized according to their Body Mass Index (BMI) through computationally applied loadings.

Methods: Total 54 volunteers with an average age of 21.85 ± 1.28 years were categorized into three groups according to their BMI (kg/m2); under BMI < 18.5 (n=14), normal BMI = 18.5-24.9 (n=20) and over BMI/obese > 25.0 (n=20). Additionally, multiple correlational analyses were performed between full range of BMI values and SE outcome.

Results: The presence of significant difference (p<0.05) was measured between different categories for BMI, BFMI, FFMI, DLFC, tendon length, tendon thickness and SR. Moreover, multiple correlational analyses and scatter plot strengthen the results. For FEM simulations, the maximum deformation was observed at the proximal end of the tendon in all three groups.

Conclusion: It can be concluded that change in tendon stiffness and the resulting change in tendon structure was visualized with increased BMI. Moreover, obese individuals are more prone to tendon injury due to the increment in tendon thickness which causes bulging of the AT due to higher loads.

Keywords: Body mass index, strain ratio, tissue stiffness, tendon degeneration, finite element simulations.

Graphical Abstract

[1]
O’Brien M. The anatomy of the Achilles tendon. Foot Ankle Clin 2005; 10(2): 225-38.
[http://dx.doi.org/10.1016/j.fcl.2005.01.011] [PMID: 15922915]
[2]
Arya S, Kulig K. Tendinopathy alters mechanical and material properties of the Achilles tendon. J Appl Physiol 2010; 108(3): 670-5.
[http://dx.doi.org/10.1152/japplphysiol.00259.2009] [PMID: 19892931]
[3]
Salini V, Vanni D, Pantalone A, Abate M. Platelet rich plasma therapy in non-insertional Achilles tendinopathy: The efficacy is reduced in 60-years old people compared to young and middle-age individuals. Front Aging Neurosci 2015; 7: 228.
[http://dx.doi.org/10.3389/fnagi.2015.00228] [PMID: 26696880]
[4]
Mahieu NN, Witvrouw E, Stevens V, Van Tiggelen D, Roget P. Intrinsic risk factors for the development of achilles tendon overuse injury: A prospective study. Am J Sports Med 2006; 34(2): 226-35.
[http://dx.doi.org/10.1177/0363546505279918] [PMID: 16260469]
[5]
Järvinen M. Epidemiology of tendon injuries in sports. Clin Sports Med 1992; 11(3): 493-504.
[http://dx.doi.org/10.1016/S0278-5919(20)30504-4] [PMID: 1638636]
[6]
van Wilgen CP, Verhagen EALM. A qualitative study on overuse injuries: The beliefs of athletes and coaches. J Sci Med Sport 2012; 15(2): 116-21.
[http://dx.doi.org/10.1016/j.jsams.2011.11.253] [PMID: 22188849]
[7]
a) Janssen I, van der Worp H, Hensing S, Zwerver J. Investigating achilles and patellar tendinopathy prevalence in elite athletics. Res Sports Med 2018; 26(1): 1-12.
[http://dx.doi.org/10.1080/15438627.2017.1393748] [PMID: 29064298];
b) Al-Qahtani M, Mirza EH, Siddiqui R, Almijalli M, Javed R. Depth dependent variations in human achilles tendon as a result of active smoking: An elastographic study. J Med Imag Health Informat 2021; 11(5): 1495-500.
[8]
Kim J, Yoon JH. Does obesity affect the severity of exercise-induced muscle injury? J Obes Metab Syndr 2021; 30(2): 132-40.
[http://dx.doi.org/10.7570/jomes20100]
[9]
Mirza EH, Al-Qahtani M, Al-Zahrani A, Al-Mujalli A. Influence of BMI on elastographic strain ratios of achilles tendon. Journal of Biomedical Engineering and Medical Imaging 2016; 3(2): 14-4.
[10]
Klein EE, Weil L Jr, Weil LS Sr, Fleischer AE. Body mass index and achilles tendonitis: A 10-year retrospective analysis. Foot Ankle Spec 2013; 6(4): 276-82.
[http://dx.doi.org/10.1177/1938640013489343] [PMID: 23687343]
[11]
Al-Qahtani M. Shear-wave and strain elastography: A comparative review on principles, basic techniques and applications. Curr Med Imaging Rev 2016; 12(4): 269-78.
[http://dx.doi.org/10.2174/1573405612666160402002105]
[12]
Whittaker JL, Stokes M. Ultrasound imaging and muscle function. J Orthop Sports Phys Ther 2011; 41(8): 572-80.
[http://dx.doi.org/10.2519/jospt.2011.3682] [PMID: 21654098]
[13]
Bojanic K, Katavic N, Smolic M, et al. Implementation of elastography score and strain ratio in combination with B-mode ultrasound avoids unnecessary biopsies of breast lesions. Ultrasound Med Biol 2017; 43(4): 804-16.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2016.11.019] [PMID: 28094066]
[14]
Handsfield GG, Inouye JM, Slane LC, Thelen DG, Miller GW, Blemker SS. A 3D model of the Achilles tendon to determine the mechanisms underlying nonuniform tendon displacements. J Biomech 2017; 51: 17-25.
[http://dx.doi.org/10.1016/j.jbiomech.2016.11.062] [PMID: 27919416]
[15]
Zhao H, Ren Y, Wu YN, Liu SQ, Zhang LQ. Ultrasonic evaluations of Achilles tendon mechanical properties poststroke. J Appl Physiol 2009; 106(3): 843-9.
[http://dx.doi.org/10.1152/japplphysiol.91212.2008] [PMID: 19118156]
[16]
Prado-Costa R, Rebelo J, Monteiro-Barroso J, Preto AS. Ultrasound elastography: Compression elastography and shear-wave elastography in the assessment of tendon injury. Insights Imaging 2018; 9(5): 791-814.
[http://dx.doi.org/10.1007/s13244-018-0642-1] [PMID: 30120723]
[17]
Hall S, Sciences H. Basic biomechanics. United States: McGraw Hill Higher Education 2014.
[18]
Kim HJ, Lee KY, Lee S, et al. The effect of obesity on physical strength. Korean J Obes 2006; 15(1): 32-6.
[http://dx.doi.org/10.7570/kjo.2014.23.1.32]
[19]
Kissebah AH, Krakower GR. Regional adiposity and morbidity. Physiol Rev 1994; 74(4): 761-811.
[http://dx.doi.org/10.1152/physrev.1994.74.4.761] [PMID: 7938225]
[20]
Cefalu WT, Wang ZQ, Werbel S, et al. Contribution of visceral fat mass to the insulin resistance of aging. Metabolism 1995; 44(7): 954-9.
[http://dx.doi.org/10.1016/0026-0495(95)90251-1] [PMID: 7616857]
[21]
Kuk JL, Katzmarzyk PT, Nichaman MZ, Church TS, Blair SN, Ross R. Visceral fat is an independent predictor of all-cause mortality in men. Obesity (Silver Spring) 2006; 14(2): 336-41.
[http://dx.doi.org/10.1038/oby.2006.43] [PMID: 16571861]
[22]
Carey VJ, Walters EE, Colditz GA, et al. Body fat distribution and risk of non-insulin-dependent diabetes mellitus in women. The Nurses’ Health Study. Am J Epidemiol 1997; 145(7): 614-9.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a009158] [PMID: 9098178]
[23]
Kissebah AH, Alfarsi S, Adams PW, Wynn V. Role of insulin resistance in adipose tissue and liver in the pathogenesis of endogenous hypertriglyceridaemia in man. Diabetologia 1976; 12(6): 563-71.
[http://dx.doi.org/10.1007/BF01220632] [PMID: 187517]
[24]
Scha¨fer H, Pauleit D, Sudhop T, Gouni-Berthold I, Ewig S, Berthold HK. Body fat distribution, serum leptin, and cardiovascular risk factors in men with obstructive sleep apnea. Chest 2002; 122(3): 829-39.
[http://dx.doi.org/10.1378/chest.122.3.829] [PMID: 12226021]
[25]
Seidell JC, Cigolini M, Deslypere JP, Charzewska J, Ellsinger BM, Cruz A. Body fat distribution in relation to serum lipids and blood pressure in 38-year-old European men: The European fat distribution study. Atherosclerosis 1991; 86(2-3): 251-60.
[http://dx.doi.org/10.1016/0021-9150(91)90221-N] [PMID: 1872918]
[26]
Snijder MB, Dekker JM, Visser M, et al. Trunk fat and leg fat have independent and opposite associations with fasting and postload glucose levels: The Hoorn study. Diabetes Care 2004; 27(2): 372-7.
[http://dx.doi.org/10.2337/diacare.27.2.372] [PMID: 14747216]
[27]
Rahemi H, Nigam N, Wakeling JM. The effect of intramuscular fat on skeletal muscle mechanics: Implications for the elderly and obese. J R Soc Interface 2015; 12(109)20150365
[http://dx.doi.org/10.1098/rsif.2015.0365] [PMID: 26156300]
[28]
Doral MN, Alam M, Bozkurt M, et al. Functional anatomy of the Achilles tendon. Knee Surg Sports Traumatol Arthrosc 2010; 18(5): 638-43.
[http://dx.doi.org/10.1007/s00167-010-1083-7] [PMID: 20182867]
[29]
Scott RT, Hyer CF, Granata A. The correlation of Achilles tendinopathy and body mass index. Foot Ankle Spec 2013; 6(4): 283-5.
[http://dx.doi.org/10.1177/1938640013490019] [PMID: 23687344]
[30]
Rogge RD, Adams BD, Goel VK. An analysis of bone stresses and fixation stability using a finite element model of simulated distal radius fractures. J Hand Surg Am 2002; 27(1): 86-92.
[http://dx.doi.org/10.1053/jhsu.2002.29485] [PMID: 11810619]
[31]
Abdul-Kadir MR, Hansen U, Klabunde R, Lucas D, Amis A. Finite element modelling of primary hip stem stability: The effect of interference fit. J Biomech 2008; 41(3): 587-94.
[http://dx.doi.org/10.1016/j.jbiomech.2007.10.009] [PMID: 18036531]
[32]
Taş S, Yılmaz S, Onur MR, Soylu AR, Altuntaş O, Korkusuz F. Patellar tendon mechanical properties change with gender, body mass index and quadriceps femoris muscle strength. Acta Orthop Traumatol Turc 2017; 51(1): 54-9.
[http://dx.doi.org/10.1016/j.aott.2016.12.003] [PMID: 28010997]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy