Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

A Review of Phytoconstituents as Antibacterial Agents

Author(s): Gunjan Bisht, Ankit Kumar Singh, Adarsh Kumar and Pradeep Kumar*

Volume 13, Issue 5, 2023

Published on: 10 October, 2022

Article ID: e040822207273 Pages: 18

DOI: 10.2174/2210315512666220804111049

Price: $65

conference banner
Abstract

Background bacteria cause various infectious diseases and cause millions of deaths each year. Bacteria are broadly classified based on the phenotypic and genotypic systems. Bacteria cause resistance mainly by Plasmids, Inactivation of antibiotics, Target site modification, Preventing drug uptake, Efflux pumps, and Biofilm. Plants have been used for thousands of years for their medicinal properties to treat various diseases. Secondary metabolites like terpenes, alkaloids, phenolic compounds, tannins, quinones, steroids, polyketides, aromatics, and peptides are plant-derived compounds that possess antibacterial activity and decrease resistance by inhibition of biofilm formation, Efflux pump [EP] inhibitors, attenuating bacterial virulence, and Immunomodulation activity. Phytoconstituents synergism, combination therapy (Bio-enhancers), and herbal preparation benefit antibacterial potential and decrease resistance.

Keywords: Bacteria, Antibacterial, Secondary metabolites, Peptides, Alkaloids, Tannins

Graphical Abstract

[1]
Cui, F.; Ye, Y.; Ping, J.; Sun, X. Carbon dots: Current advances in pathogenic bacteria monitoring and prospect applications. Biosens. Bioelectron., 2020, 156, 112085.
[http://dx.doi.org/10.1016/j.bios.2020.112085] [PMID: 32275580]
[2]
Schauder, S.; Bassler, B.L. The languages of bacteria. Genes Dev., 2001, 15(12), 1468-1480.
[http://dx.doi.org/10.1101/gad.899601] [PMID: 11410527]
[3]
Adekunle, O.O. Mechanisms of antimicrobial resistance in bacteria, general approach. Int. J. Pharm. Med. Biol. Sci., 2012, 1(2), 166-187.
[4]
Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites, 2012, 2(2), 303-336.
[http://dx.doi.org/10.3390/metabo2020303] [PMID: 24957513]
[5]
Lowy, F. Bacterial classification, structure and function; Columbia University: New York, USA, 2009, pp. 1-6.
[6]
Tiwari, R.; Tiwari, G. Use of antibiotics: From preceding to contemporary. Sch. Res. J., 2011, 1(2), 59-68.
[http://dx.doi.org/10.4103/2249-5975.99659]
[7]
Nikaido, H. Multidrug resistance in bacteria. Annu. Rev. Biochem., 2009, 78(1), 119-146.
[http://dx.doi.org/10.1146/annurev.biochem.78.082907.145923] [PMID: 19231985]
[8]
Beceiro, A.; Tomás, M.; Bou, G. Antimicrobial resistance and virulence: A successful or deleterious association in the bacterial world? Clin. Microbiol. Rev., 2013, 26(2), 185-230.
[http://dx.doi.org/10.1128/CMR.00059-12] [PMID: 23554414]
[9]
Kumar, S.; Varela, M.F. Molecular mechanisms of bacterial resistance to antimicrobial agents. Chemotherapy, 2013, 14(18), 522-534.
[10]
Kapil, A. The challenge of antibiotic resistance: Need to contemplate. Indian J. Med. Res., 2005, 121(2), 83-91.
[PMID: 15756040]
[11]
Kourtesi, C.; Ball, A.R.; Huang, Y.Y.; Jachak, S.M.; Vera, D.M.A.; Khondkar, P.; Gibbons, S.; Hamblin, M.R.; Tegos, G.P. Microbial efflux systems and inhibitors: Approaches to drug discovery and the challenge of clinical implementation. Open Microbiol. J., 2013, 7(1), 34-52.
[http://dx.doi.org/10.2174/1874285801307010034] [PMID: 23569468]
[12]
Kostakioti, M.; Hadjifrangiskou, M.; Hultgren, S.J. Bacterial biofilms: Development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb. Perspect. Med., 2013, 3(4), a010306.
[http://dx.doi.org/10.1101/cshperspect.a010306] [PMID: 23545571]
[13]
Boakye, Y.D.; Osafo, N.; Danquah, C.A.; Adu, F.; Agyare, C. Antimicrobial agents: Antibacterial agents, anti-biofilm agents, antibacterial natural compounds, and antibacterial chemicals. Antimicrob. Antibiot. Resist. Antibiofilm. Strategies. Act. Methods, 2019, 13, 75.
[14]
Taylor, P.W. Alternative natural sources for a new generation of antibacterial agents. Int. J. Antimicrob. Agents, 2013, 42(3), 195-201.
[http://dx.doi.org/10.1016/j.ijantimicag.2013.05.004] [PMID: 23796893]
[15]
Saleem, M.; Nazir, M.; Ali, M.S.; Hussain, H.; Lee, Y.S.; Riaz, N.; Jabbar, A. Antimicrobial natural products: An update on future antibiotic drug candidates. Nat. Prod. Rep., 2010, 27(2), 238-254.
[http://dx.doi.org/10.1039/B916096E] [PMID: 20111803]
[16]
Tongnuanchan, P.; Benjakul, S. Essential oils: Extraction, bioactivities, and their uses for food preservation. J. Food Sci., 2014, 79(7), R1231-R1249.
[http://dx.doi.org/10.1111/1750-3841.12492] [PMID: 24888440]
[17]
Kuorwel, K.K.; Cran, M.J.; Sonneveld, K.; Miltz, J.; Bigger, S.W. Essential oils and their principal constituents as antimicrobial agents for synthetic packaging films. J. Food Sci., 2011, 76(9), R164-R177.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02384.x] [PMID: 22416718]
[18]
Davidson, P.M.; Critzer, F.J.; Taylor, T.M. Naturally occurring antimicrobials for minimally processed foods. Annu. Rev. Food Sci. Technol., 2013, 4(1), 163-190.
[http://dx.doi.org/10.1146/annurev-food-030212-182535] [PMID: 23244398]
[19]
Gutiérrez-Del-Río, I.; Fernández, J.; Lombó, F. Plant nutraceuticals as antimicrobial agents in food preservation: Terpenoids, polyphenols and thiols. Int. J. Antimicrob. Agents, 2018, 52(3), 309-315.
[http://dx.doi.org/10.1016/j.ijantimicag.2018.04.024] [PMID: 29777759]
[20]
Rattanachaikunsopon, P.; Phumkhachorn, P. Assessment of factors influencing antimicrobial activity of carvacrol and cymene against Vibrio cholerae in food. J. Biosci. Bioeng., 2010, 110(5), 614-619.
[http://dx.doi.org/10.1016/j.jbiosc.2010.06.010] [PMID: 20638331]
[21]
Shan, B.; Cai, Y.Z.; Brooks, J.D.; Corke, H. Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): Activity against foodborne pathogenic bacteria. J. Agric. Food Chem., 2007, 55(14), 5484-5490.
[http://dx.doi.org/10.1021/jf070424d] [PMID: 17567030]
[22]
Soni, M.G.; Burdock, G.A.; Christian, M.S.; Bitler, C.M.; Crea, R. Safety assessment of aqueous olive pulp extract as an antioxidant or antimicrobial agent in foods. Food Chem. Toxicol., 2006, 44(7), 903-915.
[http://dx.doi.org/10.1016/j.fct.2006.01.008] [PMID: 16530907]
[23]
Kim, T.J.; Weng, W.L.; Silva, J.L.; Jung, Y.S.; Marshall, D. Identification of natural antimicrobial substances in red muscadine juice against Cronobacter sakazakii. J. Food Sci., 2010, 75(3), M150-M154.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01531.x] [PMID: 20492304]
[24]
Rodríguez Vaquero, M.J.; Manca de Nadra, M.C. Growth parameter and viability modifications of Escherichia coli by phenolic compounds and Argentine wine extracts. Appl. Biochem. Biotechnol., 2008, 151(2-3), 342-352.
[http://dx.doi.org/10.1007/s12010-008-8197-0] [PMID: 18594776]
[25]
Bode, A.M.; Dong, Z. Toxic phytochemicals and their potential risks for human cancer. Cancer Prev. Res,, 2015, 8(1), 1-8.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0160]
[26]
Hammami, R.; Ben Hamida, J.; Vergoten, G.; Fliss, I. PhytAMP: A database dedicated to antimicrobial plant peptides. Nucleic Acids Res., 2009, 37(Database issue), D963-D968.
[http://dx.doi.org/10.1093/nar/gkn655] [PMID: 18836196]
[27]
Pelegrini, P.B.; DelSarto, R.P.; Silva, O.N.; Franco, O.L.; Grossi-de-Sa, M.F. Antibacterial peptides from plants: What they are and how they probably work. Biochem. Res. Int., 2011, 25034, 1-9.
[http://dx.doi.org/10.1155/2011/250349]
[28]
Pelegrini, P.B.; Murad, A.M.; Silva, L.P.; Dos Santos, R.C.; Costa, F.T.; Tagliari, P.D.; Bloch, C., Jr; Noronha, E.F.; Miller, R.N.; Franco, O.L. Identification of a novel storage glycine-rich peptide from guava (Psidium guajava) seeds with activity against Gram-negative bacteria. Peptides, 2008, 29(8), 1271-1279.
[http://dx.doi.org/10.1016/j.peptides.2008.03.013] [PMID: 18448201]
[29]
Broekaert, W.F.; Mariën, W.; Terras, F.R.; De Bolle, M.F.; Proost, P.; Van Damme, J.; Dillen, L.; Claeys, M.; Rees, S.B.; Vanderleyden, J. Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Biochemistry, 1992, 31(17), 4308-4314.
[http://dx.doi.org/10.1021/bi00132a023] [PMID: 1567877]
[30]
Gibbons, S. Anti-staphylococcal plant natural products. Nat. Prod. Rep., 2004, 21(2), 263-277.
[http://dx.doi.org/10.1039/b212695h] [PMID: 15042149]
[31]
Heinrich, M.; Williamson, E.M.; Gibbons, S.; Barnes, J.; Prieto-Garcia, J. Fundamentals of pharmacognosy and phytotherapy E-BOOK; Elsevier Sci, 2017.
[32]
Casciaro, B.; Mangiardi, L.; Cappiello, F.; Romeo, I.; Loffredo, M.R.; Iazzetti, A.; Calcaterra, A.; Goggiamani, A.; Ghirga, F.; Mangoni, M.L.; Botta, B.; Quaglio, D. Naturally-occurring alkaloids of plant origin as potential antimicrobials against antibiotic-resistant infections. Molecules, 2020, 25(16), 3619.
[http://dx.doi.org/10.3390/molecules25163619] [PMID: 32784887]
[33]
Chakraborty, P.; Dastidar, D.G.; Paul, P.; Dutta, S.; Basu, D.; Sharma, S.R.; Basu, S.; Sarker, R.K.; Sen, A.; Sarkar, A.; Tribedi, P. Inhibition of biofilm formation of Pseudomonas aeruginosa by caffeine: A potential approach for sustainable management of biofilm. Arch. Microbiol., 2020, 202(3), 623-635.
[http://dx.doi.org/10.1007/s00203-019-01775-0] [PMID: 31773197]
[34]
Sun, D.; Courtney, H.S.; Beachey, E.H. Berberine sulfate blocks adherence of Streptococcus pyogenes to epithelial cells, fibronectin, and hexadecane. Antimicrob. Agents Chemother., 1988, 32(9), 1370-1374.
[http://dx.doi.org/10.1128/AAC.32.9.1370] [PMID: 3058020]
[35]
Huang, X.; Wang, P.; Li, T.; Tian, X.; Guo, W.; Xu, B.; Huang, G.; Cai, D.; Zhou, F.; Zhang, H.; Lei, H. Self-assemblies based on traditional medicine berberine and cinnamic acid for adhesion-induced inhibition multidrug-resistant Staphylococcus aureus. ACS Appl. Mater. Interfaces, 2020, 12(1), 227-237.
[http://dx.doi.org/10.1021/acsami.9b17722] [PMID: 31829617]
[36]
Kalia, N.P.; Mahajan, P.; Mehra, R.; Nargotra, A.; Sharma, J.P.; Koul, S.; Khan, I.A. Capsaicin, a novel inhibitor of the NorA efflux pump, reduces the intracellular invasion of Staphylococcus aureus. J. Antimicrob. Chemother., 2012, 67(10), 2401-2408.
[http://dx.doi.org/10.1093/jac/dks232] [PMID: 22807321]
[37]
Ullah, N.; Khan, F.A. An introduction to natural products and phytochemicals with special reference to its antimicrobial activity. Life Sci., 2016, 13(10), 103-119.
[38]
Aldulaimi, O.A. General overview of phenolics from plant to laboratory, good antibacterials or not. Pharmacogn. Rev., 2017, 11(22), 123-127.
[http://dx.doi.org/10.4103/phrev.phrev_43_16] [PMID: 28989246]
[39]
Marchese, A.; Barbieri, R.; Coppo, E.; Orhan, I.E.; Daglia, M.; Nabavi, S.F.; Izadi, M.; Abdollahi, M.; Nabavi, S.M.; Ajami, M. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol., 2017, 43(6), 668-689.
[http://dx.doi.org/10.1080/1040841X.2017.1295225] [PMID: 28346030]
[40]
Vestergaard, M.; Ingmer, H. Antibacterial and antifungal properties of resveratrol. Int. J. Antimicrob. Agents, 2019, 53(6), 716-723.
[http://dx.doi.org/10.1016/j.ijantimicag.2019.02.015] [PMID: 30825504]
[41]
Fabbrocini, G.; Staibano, S.; De Rosa, G.; Battimiello, V.; Fardella, N.; Ilardi, G.; La Rotonda, M.I.; Longobardi, A.; Mazzella, M.; Siano, M.; Pastore, F.; De Vita, V.; Vecchione, M.L.; Ayala, F. Resveratrol-containing gel for the treatment of acne vulgaris: A single-blind, vehicle-controlled, pilot study. Am. J. Clin. Dermatol., 2011, 12(2), 133-141.
[http://dx.doi.org/10.2165/11530630-000000000-00000] [PMID: 21348544]
[42]
Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. (Amst.), 2019, 24, e00370.
[http://dx.doi.org/10.1016/j.btre.2019.e00370] [PMID: 31516850]
[43]
Kępa, M.; Miklasińska-Majdanik, M.; Wojtyczka, R.D.; Idzik, D.; Korzeniowski, K.; Smoleń-Dzirba, J.; Wąsik, T.J. Antimicrobial potential of caffeic acid against Staphylococcus aureus clinical strains. BioMed Res. Int., 2018, 2018, 7413504.
[http://dx.doi.org/10.1155/2018/7413504] [PMID: 30105241]
[44]
Rattanata, N.; Klaynongsruang, S.; Daduang, S.; Tavichakorntrakool, R.; Limpaiboon, T.; Lekphrom, R.; Boonsiri, P.; Daduang, J. Inhibitory effects of gallic acid isolated from Caesalpinia mimosoides lamk on cholangiocarcinoma cell lines and foodborne pathogenic bacteria. Asian Pac. J. Cancer Prev., 2016, 17(3), 1341-1345.
[http://dx.doi.org/10.7314/APJCP.2016.17.3.1341] [PMID: 27039769]
[45]
Nowacka, N.; Nowak, R.; Drozd, M.; Olech, M.; Los, R.; Malm, A. Antibacterial, antiradical potential and phenolic compounds of thirty-one polish mushrooms. PLoS One, 2015, 10(10), e0140355.
[http://dx.doi.org/10.1371/journal.pone.0140355] [PMID: 26468946]
[46]
Grecka, K. Kuś, P.M.; Okińczyc, P.; Worobo, R.W.; Walkusz, J.; Szweda, P. The anti staphylococcal potential of ethanolic polish propolis extracts. Molecules, 2019, 24(9), 1732.
[http://dx.doi.org/10.3390/molecules24091732] [PMID: 31058881]
[47]
Duman, A.D.; Ozgen, M.; Dayisoylu, K.S.; Erbil, N.; Durgac, C. Antimicrobial activity of six pomegranate (Punica granatum L.) varieties and their relation to some of their pomological and phytonutrient characteristics. Molecules, 2009, 14(5), 1808-1817.
[http://dx.doi.org/10.3390/molecules14051808] [PMID: 19471201]
[48]
Mechesso, A.F.; Yixian, Q.; Park, S.C. Methyl gallate and tylosin synergistically reduce the membrane integrity and intracellular survival of Salmonella Typhimurium. PLoS One, 2019, 14(9), e0221386.
[http://dx.doi.org/10.1371/journal.pone.0221386] [PMID: 31490973]
[49]
Choi, J.G.; Mun, S.H.; Chahar, H.S.; Bharaj, P.; Kang, O.H.; Kim, S.G.; Shin, D.W.; Kwon, D.Y. Methyl gallate from Galla rhois successfully controls clinical isolates of Salmonella infection in both in vitro and in vivo systems. PLoS One, 2014, 9(7), e102697.
[http://dx.doi.org/10.1371/journal.pone.0102697] [PMID: 25048362]
[50]
Wang, S.S.; Wang, D.M.; Pu, W.J.; Li, D.W. Phytochemical profiles, antioxidant and antimicrobial activities of three Potentilla species. BMC Complement. Altern. Med., 2013, 13(1), 321.
[http://dx.doi.org/10.1186/1472-6882-13-321] [PMID: 24252124]
[51]
Jiamboonsri, P.; Pithayanukul, P.; Bavovada, R.; Chomnawang, M.T. The inhibitory potential of Thai mango seed kernel extract against methicillin-resistant Staphylococcus aureus. Molecules, 2011, 16(8), 6255-6270.
[http://dx.doi.org/10.3390/molecules16086255] [PMID: 21788933]
[52]
Jayaraman, P.; Sakharkar, M.K.; Lim, C.S.; Tang, T.H.; Sakharkar, K.R. Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro. Int. J. Biol. Sci., 2010, 6(6), 556-568.
[http://dx.doi.org/10.7150/ijbs.6.556] [PMID: 20941374]
[53]
Cushnie, T.P.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, 26(5), 343-356.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.09.002] [PMID: 16323269]
[54]
Guz, N.R. Flavonolignan and flavone inhibitors of a Staphylococcus aureus multidrug resistance (MDR) efflux pump: Synthesis and structure activity relationships; Colorado State University: Colorado, 2001.
[55]
Adamczak, A. Ożarowski, M.; Karpiński, T.M. Antibacterial activity of some flavonoids and organic acids widely distributed in plants. J. Clin. Med., 2019, 9(1), 109.
[http://dx.doi.org/10.3390/jcm9010109] [PMID: 31906141]
[56]
Gomes, R.A.; Ramirez, R.R.; Maciel, J.K.D.S.; Agra, M.D.F.; Souza, M.D.F.V.D.; Falcão-Silva, V.S.; Siqueira-Junior, J.P. Phenolic compounds from Sidastrum micranthum (A. St.-Hil.) fryxell and evaluation of acacetin and 7, 4′-Di-O-methylisoscutellarein as motulator of bacterial drug resistence. Quim. Nova, 2011, 34(8), 1385-1388.
[http://dx.doi.org/10.1590/S0100-40422011000800016]
[57]
Cha, J.D.; Choi, S.M.; Park, J.H. Combination of acacetin with antibiotics against methicillin resistant Staphylococcus aureus isolated from clinical specimens. Adv. Biosci. Biotechnol., 2014, 5(4), 398-5408.
[http://dx.doi.org/10.4236/abb.2014.54048]
[58]
Taylor, P.W. Interactions of tea-derived catechin gallates with bacterial pathogens. Molecules, 2020, 25(8), 1986.
[http://dx.doi.org/10.3390/molecules25081986] [PMID: 32340372]
[59]
Renzetti, A.; Betts, J.W.; Fukumoto, K.; Rutherford, R.N. Antibacterial green tea catechins from a molecular perspective: Mechanisms of action and structure-activity relationships. Food Funct., 2020, 11(11), 9370-9396.
[http://dx.doi.org/10.1039/D0FO02054K] [PMID: 33094767]
[60]
Hengge, R. Targeting bacterial biofilms by the green tea polyphenol EGCG. Molecules, 2019, 24(13), 2403.
[http://dx.doi.org/10.3390/molecules24132403] [PMID: 31261858]
[61]
El-Najjar, N.; Gali-Muhtasib, H.; Ketola, R.A.; Vuorela, P.; Urtti, A.; Vuorela, H. The chemical and biological activities of quinones: Overview and implications in analytical detection. Phytochem. Rev., 2011, 10(3), 353-370.
[http://dx.doi.org/10.1007/s11101-011-9209-1]
[62]
Ravichandiran, P.; Sheet, S.; Premnath, D.; Kim, A.R.; Yoo, D.J. 1, 4-Naphthoquinone analogues: Potent antibacterial agents and mode of action evaluation. Molecules, 2019, 24(7), 1437.
[http://dx.doi.org/10.3390/molecules24071437] [PMID: 30979056]
[63]
Eyong, K.O.; Kuete, V.; Efferth, T. Quinones and benzophenones from the medicinal plants of Africa. J. Med. Plants Res., 2013, 351-391.
[64]
Dong, X.; Fu, J.; Yin, X.; Cao, S.; Li, X.; Lin, L.; Ni, J. Emodin: A review of its pharmacology, toxicity and pharmacokinetics. Phytother. Res., 2016, 30(8), 1207-1218.
[http://dx.doi.org/10.1002/ptr.5631] [PMID: 27188216]
[65]
Chaieb, K.; Kouidhi, B.; Jrah, H.; Mahdouani, K.; Bakhrouf, A. Antibacterial activity of thymoquinone, an active principle of nigella sativa and its potency to prevent bacterial biofilm formation. BMC Complement. Altern. Med., 2011, 11(1), 29.
[http://dx.doi.org/10.1186/1472-6882-11-29] [PMID: 21489272]
[66]
Habbal, O.; Hasson, S.S.; El-Hag, A.H.; Al-Mahrooqi, Z.; Al-Hashmi, N.; Al-Bimani, Z.; Al-Balushi, M.S.; Al-Jabri, A.A. Antibacterial activity of Lawsonia inermis Linn (Henna) against Pseudomonas aeruginosa. Asian Pac. J. Trop. Biomed., 2011, 1(3), 173-176.
[http://dx.doi.org/10.1016/S2221-1691(11)60021-X] [PMID: 23569753]
[67]
Pasandi Pour, A.; Farahbakhsh, H. Lawsonia inermis L. leaves aqueous extract as a natural antioxidant and antibacterial product. Nat. Prod. Res., 2020, 34(23), 3399-3403.
[http://dx.doi.org/10.1080/14786419.2019.1569006] [PMID: 30721090]
[68]
Sudhir, S.; Deshmukh, P.; Verma, H. Comparative study of antimicrobial effect of Nigella sativa seed extracts from different geographies. Int. J. Pharmacogn., 2016, 3, 257-264.
[69]
Kusmardiyani, S.; Suharli, Y.A.; Insanu, M.; Fidrianny, I. Phytochemistry and pharmacological activities of Annona genus: A review. Curr. Res. Bios. Biotechnol., 2020, 2(1), 77-88.
[http://dx.doi.org/10.5614/crbb.2020.2.1/KNIA7708]
[70]
Choubey, S.; Goyal, S.; Varughese, L.R.; Kumar, V.; Sharma, A.K.; Beniwal, V. Probing gallic acid for its broad spectrum applications. Mini Rev. Med. Chem., 2018, 18(15), 1283-1293.
[http://dx.doi.org/10.2174/1389557518666180330114010] [PMID: 29600764]
[71]
Ekambaram, S.P.; Perumal, S.S.; Balakrishnan, A. Scope of hydrolysable tannins as possible antimicrobial agent. Phytother. Res., 2016, 30(7), 1035-1045.
[http://dx.doi.org/10.1002/ptr.5616] [PMID: 27062587]
[72]
Rauf, A.; Imran, M.; Abu-Izneid, T. Iahtisham-Ul-Haq; Patel, S.; Pan, X.; Naz, S.; Sanches Silva, A.; Saeed, F.; Rasul Suleria, H.A. Proanthocyanidins: A comprehensive review. Biomed. Pharmacother., 2019, 116, 108999.
[http://dx.doi.org/10.1016/j.biopha.2019.108999] [PMID: 31146109]
[73]
Krenn, L.; Steitz, M.; Schlicht, C.; Kurth, H.; Gaedcke, F. Anthocyanin- and proanthocyanidin-rich extracts of berries in food supplements-analysis with problems. Pharmazie, 2007, 62(11), 803-812.
[PMID: 18065095]
[74]
Zang, X.; Shang, M.; Xu, F.; Liang, J.; Wang, X.; Mikage, M.; Cai, S. A-type proanthocyanidins from the stems of Ephedra sinica (Ephedraceae) and their antimicrobial activities. Molecules, 2013, 18(5), 5172-5189.
[http://dx.doi.org/10.3390/molecules18055172] [PMID: 23648595]
[75]
Maisuria, V.B.; Los Santos, Y.L.; Tufenkji, N.; Déziel, E. Cranberry-derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa. Sci. Rep., 2016, 6(1), 30169.
[http://dx.doi.org/10.1038/srep30169] [PMID: 27503003]
[76]
Verdeguer, M.; Sánchez-Moreiras, A.M.; Araniti, F. Phytotoxic effects and mechanism of action of essential oils and terpenoids. Plants, 2020, 9(11), 1571.
[http://dx.doi.org/10.3390/plants9111571] [PMID: 33202993]
[77]
Zengin, H.; Baysal, A.H. Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Molecules, 2014, 19(11), 17773-17798.
[http://dx.doi.org/10.3390/molecules191117773] [PMID: 25372394]
[78]
Andrade-Ochoa, S.; Nevárez-Moorillón, G.V.; Sánchez-Torres, L.E.; Villanueva-García, M.; Sánchez-Ramírez, B.E.; Rodríguez-Valdez, L.M.; Rivera-Chavira, B.E. Quantitative structure-activity relationship of molecules constituent of different essential oils with antimycobacterial activity against Mycobacterium tuberculosis and Mycobacterium bovis. BMC Complement. Altern. Med., 2015, 15(1), 332.
[http://dx.doi.org/10.1186/s12906-015-0858-2] [PMID: 26400221]
[79]
Sharifi-Rad, M.; Varoni, E.M.; Iriti, M.; Martorell, M.; Setzer, W.N.; Del Mar Contreras, M.; Salehi, B.; Soltani-Nejad, A.; Rajabi, S.; Tajbakhsh, M.; Sharifi-Rad, J. Carvacrol and human health: A comprehensive review. Phytother. Res., 2018, 32(9), 1675-1687.
[http://dx.doi.org/10.1002/ptr.6103] [PMID: 29744941]
[80]
Marchese, A.; Arciola, C.R.; Coppo, E.; Barbieri, R.; Barreca, D.; Chebaibi, S.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M.; Daglia, M. The natural plant compound carvacrol as an antimicrobial and anti-biofilm agent: Mechanisms, synergies and bio-inspired anti-infective materials. Biofouling, 2018, 34(6), 630-656.
[http://dx.doi.org/10.1080/08927014.2018.1480756] [PMID: 30067078]
[81]
Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem., 2016, 210, 402-414.
[http://dx.doi.org/10.1016/j.foodchem.2016.04.111] [PMID: 27211664]
[82]
Mogosanu, G.D.; Grumezescu, A.M.; Huang, K.S.; Bejenaru, L.E.; Bejenaru, C. Prevention of microbial communities: Novel approaches based natural products. Curr. Pharm. Biotechnol., 2015, 16(2), 94-111.
[http://dx.doi.org/10.2174/138920101602150112145916] [PMID: 25594287]
[83]
Chin, L.W.; Cheng, Y.W.; Lin, S.S.; Lai, Y.Y.; Lin, L.Y.; Chou, M.Y.; Chou, M.C.; Yang, C.C. Anti-herpes simplex virus effects of berberine from Coptidis rhizoma, a major component of a Chinese herbal medicine, Ching-Wei-San. Arch. Virol., 2010, 155(12), 1933-1941.
[http://dx.doi.org/10.1007/s00705-010-0779-9] [PMID: 20686799]
[84]
Wang, X.; Yao, X.; Zhu, Z.; Tang, T.; Dai, K.; Sadovskaya, I.; Flahaut, S.; Jabbouri, S. Effect of berberine on Staphylococcus epidermidis biofilm formation. Int. J. Antimicrob. Agents, 2009, 34(1), 60-66.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.10.033] [PMID: 19157797]
[85]
Birdi, T.; Daswani, P.; Brijesh, S.; Tetali, P.; Natu, A.; Antia, N. Newer insights into the mechanism of action of Psidium guajava L. leaves in infectious diarrhoea. BMC Complement. Altern. Med., 2010, 10(1), 33.
[http://dx.doi.org/10.1186/1472-6882-10-33] [PMID: 20584265]
[86]
Gupta, P.; Bhatter, P.; D’souza, D.; Tolani, M.; Daswani, P.; Tetali, P.; Birdi, T. Evaluating the anti Mycobacterium tuberculosis activity of Alpinia galanga (L.) Willd. axenically under reducing oxygen conditions and in intracellular assays. BMC Complement. Altern. Med., 2014, 14(1), 84.
[http://dx.doi.org/10.1186/1472-6882-14-84] [PMID: 24592852]
[87]
Davey, M.E.; O’toole, G.A. Microbial biofilms: From ecology to molecular genetics. Microbiol. Mol. Biol. Rev., 2000, 64(4), 847-867.
[http://dx.doi.org/10.1128/MMBR.64.4.847-867.2000] [PMID: 11104821]
[88]
Dalleau, S.; Cateau, E.; Bergès, T.; Berjeaud, J.M.; Imbert, C. in vitro activity of terpenes against candida biofilms. Int. J. Antimicrob. Agents, 2008, 31(6), 572-576.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.01.028] [PMID: 18440786]
[89]
Amalaradjou, M.A.R.; Venkitanarayanan, K. Effect of trans-cinnamaldehyde on inhibition and inactivation of Cronobacter sakazakii biofilm on abiotic surfaces. J. Food Prot., 2011, 74(2), 200-208.
[http://dx.doi.org/10.4315/0362-028X.JFP-10-296] [PMID: 21333138]
[90]
Khan, M.S.A.; Ahmad, I. Biofilm inhibition by Cymbopogon citratus and Syzygium aromaticum essential oils in the strains of Candida albicans. J. Ethnopharmacol., 2012, 140(2), 416-423.
[http://dx.doi.org/10.1016/j.jep.2012.01.045] [PMID: 22326355]
[91]
Wang, Y.; Li, L.; Ye, T.; Zhao, S.; Liu, Z.; Feng, Y.Q.; Wu, Y. Cytokinin antagonizes ABA suppression to seed germination of Arabidopsis by downregulating ABI5 expression. Plant J., 2011, 68(2), 249-261.
[http://dx.doi.org/10.1111/j.1365-313X.2011.04683.x] [PMID: 21699589]
[92]
Stavri, M.; Piddock, L.J.; Gibbons, S. Bacterial efflux pump inhibitors from natural sources. J. Antimicrob. Chemother., 2007, 59(6), 1247-1260.
[http://dx.doi.org/10.1093/jac/dkl460] [PMID: 17145734]
[93]
Holler, J.G.; Christensen, S.B.; Slotved, H.C.; Rasmussen, H.B.; Gúzman, A.; Olsen, C.E.; Petersen, B.; Mølgaard, P. Novel inhibitory activity of the Staphylococcus aureus NorA efflux pump by a kaempferol rhamnoside isolated from Persea lingue Nees. J. Antimicrob. Chemother., 2012, 67(5), 1138-1144.
[http://dx.doi.org/10.1093/jac/dks005] [PMID: 22311936]
[94]
Jin, J.; Zhang, J.Y.; Guo, N.; Sheng, H.; Li, L.; Liang, J.C.; Wang, X.L.; Li, Y.; Liu, M.Y.; Wu, X.P.; Yu, L. Farnesol, a potential efflux pump inhibitor in Mycobacterium smegmatis. Molecules, 2010, 15(11), 7750-7762.
[http://dx.doi.org/10.3390/molecules15117750] [PMID: 21042264]
[95]
Koh, C.L.; Sam, C.K.; Yin, W.F.; Tan, L.Y.; Krishnan, T.; Chong, Y.M.; Chan, K.G. Plant-derived natural products as sources of anti-quorum sensing compounds. Sensors (Basel), 2013, 13(5), 6217-6228.
[http://dx.doi.org/10.3390/s130506217] [PMID: 23669710]
[96]
Sharma, S.; Kumar, M.; Sharma, S.; Nargotra, A.; Koul, S.; Khan, I.A. Piperine as an inhibitor of Rv1258c, a putative multidrug efflux pump of Mycobacterium tuberculosis. J. Antimicrob. Chemother., 2010, 65(8), 1694-1701.
[http://dx.doi.org/10.1093/jac/dkq186] [PMID: 20525733]
[97]
Gladstone, R.A.; Jefferies, J.M.; Faust, S.N.; Clarke, S.C. Continued control of pneumococcal disease in the UK - the impact of vaccination. J. Med. Microbiol., 2011, 60(Pt 1), 1-8.
[http://dx.doi.org/10.1099/jmm.0.020016-0] [PMID: 20965923]
[98]
Thakur, P.; Chawla, R.; Narula, A.; Goel, R.; Arora, R.; Sharma, R.K. Anti-hemolytic, hemagglutination inhibition and bacterial membrane disruptive properties of selected herbal extracts attenuate virulence of Carbapenem Resistant Escherichia coli. Microb. Pathog., 2016, 95, 133-141.
[http://dx.doi.org/10.1016/j.micpath.2016.04.005] [PMID: 27057673]
[99]
Brijesh, S.; Daswani, P.; Tetali, P.; Antia, N.; Birdi, T. Studies on the antidiarrhoeal activity of Aegle marmelos unripe fruit: Validating its traditional usage. BMC Complement. Altern. Med., 2009, 9(1), 47.
[http://dx.doi.org/10.1186/1472-6882-9-47] [PMID: 19930633]
[100]
Othman, A.S. Bactericidal efficacy of omega-3 fatty acids and esters present in Moringa oleifera and portulaca oleracea fixed oils against oral and gastro enteric bacteria. Int. J. Pharmacol., 2017, 13(1), 44-53.
[101]
Goh, E.B.; Yim, G.; Tsui, W.; McClure, J.; Surette, M.G.; Davies, J. Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc. Natl. Acad. Sci. USA, 2002, 99(26), 17025-17030.
[http://dx.doi.org/10.1073/pnas.252607699] [PMID: 12482953]
[102]
Kayser, O.; Masihi, K.N.; Kiderlen, A.F. Natural products and synthetic compounds as immunomodulators. Expert Rev. Anti Infect. Ther., 2003, 1(2), 319-335.
[http://dx.doi.org/10.1586/14787210.1.2.319] [PMID: 15482127]
[103]
Nascimento, F.R.; Barroqueiro, E.S.; Azevedo, A.P.S.; Lopes, A.S.; Ferreira, S.C.; Silva, L.A.; Maciel, M.C.; Rodriguez, D.; Guerra, R.N. Macrophage activation induced by Orbignya phalerata Mart. J. Ethnopharmacol., 2006, 103(1), 53-58.
[http://dx.doi.org/10.1016/j.jep.2005.06.045] [PMID: 16154304]
[104]
Serafino, A.; Sinibaldi Vallebona, P.; Andreola, F.; Zonfrillo, M.; Mercuri, L.; Federici, M.; Rasi, G.; Garaci, E.; Pierimarchi, P. Stimulatory effect of Eucalyptus essential oil on innate cell-mediated immune response. BMC Immunol., 2008, 9(1), 17.
[http://dx.doi.org/10.1186/1471-2172-9-17] [PMID: 18423004]
[105]
Cruz, G.V.; Pereira, P.V.S.; Patrício, F.J.; Costa, G.C.; Sousa, S.M.; Frazão, J.B.; Aragão-Filho, W.C.; Maciel, M.C.; Silva, L.A.; Amaral, F.M.; Barroqueiro, E.S.; Guerra, R.N.; Nascimento, F.R. Increase of cellular recruitment, phagocytosis ability and nitric oxide production induced by hydroalcoholic extract from Chenopodium ambrosioides leaves. J. Ethnopharmacol., 2007, 111(1), 148-154.
[http://dx.doi.org/10.1016/j.jep.2006.11.006] [PMID: 17156956]
[106]
Yousofi, A.; Daneshmandi, S.; Soleimani, N.; Bagheri, K.; Karimi, M.H. Immunomodulatory effect of Parsley (Petroselinum crispum) essential oil on immune cells: Mitogen-activated splenocytes and peritoneal macrophages. Immunopharmacol. Immunotoxicol., 2012, 34(2), 303-308.
[http://dx.doi.org/10.3109/08923973.2011.603338] [PMID: 21854170]
[107]
Ryu, J.H.; Ahn, H.; Kim, J.Y.; Kim, Y.K. Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophages. Phytother. Res., 2003, 17(5), 485-489.
[http://dx.doi.org/10.1002/ptr.1180] [PMID: 12748984]
[108]
Mistry, N.F.; Birdi, T.J.; Antia, N.H.M. leprae phagocytosis and its association with membrane changes in macrophages from leprosy patients. Parasite Immunol., 1986, 8(2), 129-138.
[http://dx.doi.org/10.1111/j.1365-3024.1986.tb00839.x] [PMID: 3517765]
[109]
Pugh, N.; Ross, S.A.; ElSohly, M.A.; Pasco, D.S. Characterization of Aloeride, a new high-molecular-weight polysaccharide from Aloe vera with potent immunostimulatory activity. J. Agric. Food Chem., 2001, 49(2), 1030-1034.
[http://dx.doi.org/10.1021/jf001036d] [PMID: 11262067]
[110]
Song, Q.; Kobayashi, T.; Xiu, L.M.; Hong, T.; Cyong, J.C. Effects of astragali root and hedysari root on the murine B and T cell differentiation. J. Ethnopharmacol., 2000, 73(1-2), 111-119.
[http://dx.doi.org/10.1016/S0378-8741(00)00273-7] [PMID: 11025146]
[111]
Wang, Y.Y.; Khoo, K.H.; Chen, S.T.; Lin, C.C.; Wong, C.H.; Lin, C.H. Studies on the immuno-modulating and antitumor activities of Ganoderma lucidum (Reishi) polysaccharides: Functional and proteomic analyses of a fucose-containing glycoprotein fraction responsible for the activities. Bioorg. Med. Chem., 2002, 10(4), 1057-1062.
[http://dx.doi.org/10.1016/S0968-0896(01)00377-7] [PMID: 11836115]
[112]
López-García, S.; Castañeda-Sanchez, J.I.; Jiménez-Arellanes, A.; Domínguez-López, L.; Castro-Mussot, M.E.; Hernández-Sanchéz, J.; Luna-Herrera, J. Macrophage activation by ursolic and oleanolic acids during mycobacterial infection. Molecules, 2015, 20(8), 14348-14364.
[http://dx.doi.org/10.3390/molecules200814348] [PMID: 26287131]
[113]
Chen, J.; Du, C.Y.; Lam, K.Y.; Zhang, W.L.; Lam, C.T.; Yan, A.L.; Yao, P.; Lau, D.T.; Dong, T.T.; Tsim, K.W. The standardized extract of Ziziphus jujuba fruit (jujube) regulates pro-inflammatory cytokine expression in cultured murine macrophages: Suppression of lipopolysaccharide-stimulated NF-κB activity. Phytother. Res., 2014, 28(10), 1527-1532.
[http://dx.doi.org/10.1002/ptr.5160] [PMID: 24806434]
[114]
Birdi, T.J.; Brijesh, S.; Daswani, P.G. Bactericidal effect of selected antidiarrhoeal medicinal plants on intracellular heat-stable enterotoxin-producing Escherichia coli. Indian J. Pharm. Sci., 2014, 76(3), 229-235.
[PMID: 25035535]
[115]
Naik, S.K.; Mohanty, S.; Padhi, A.; Pati, R.; Sonawane, A. Evaluation of antibacterial and cytotoxic activity of Artemisia nilagirica and Murraya koenigii leaf extracts against mycobacteria and macrophages. BMC Complement. Altern. Med., 2014, 14(1), 87.
[http://dx.doi.org/10.1186/1472-6882-14-87] [PMID: 24597853]
[116]
Larsen, M.W.; Moser, C.; Høiby, N.; Song, Z.; Kharazmi, A. Ginseng modulates the immune response by induction of interleukin-12 production. Acta Pathol. Microbiol. Scand. Suppl., 2004, 112(6), 369-373.
[http://dx.doi.org/10.1111/j.1600-0463.2004.apm1120607.x] [PMID: 15511274]
[117]
Cho, J.Y.; Kim, A.R.; Yoo, E.S.; Baik, K.U.; Park, M.H. Ginsenosides from Panax ginseng differentially regulate lymphocyte proliferation. Planta Med., 2002, 68(6), 497-500.
[http://dx.doi.org/10.1055/s-2002-32556] [PMID: 12094290]
[118]
Suja, R.; Nair, A.; Sujith, S.; Preethy, J.; Deepa, A. Evaluation of immunomodulatory potential of Emblica officinalis fruit pulp extract in mice. Indian J. Anim. Res., 2009, 43(2), 103-106.
[119]
Han, S.B.; Kim, Y.H.; Lee, C.W.; Park, S.M.; Lee, H.Y.; Ahn, K.S.; Kim, I.H.; Kim, H.M. Characteristic immunostimulation by angelan isolated from Angelica gigas Nakai. Immunopharmacology, 1998, 40(1), 39-48.
[http://dx.doi.org/10.1016/S0162-3109(98)00026-5] [PMID: 9776477]
[120]
Shivaprasad, H.; Kharya, M.; Rana, A.; Mohan, S. Preliminary immunomodulatory activities of the aqueous extract of Terminalia chebula. Pharm. Biol., 2006, 44(1), 32-34.
[http://dx.doi.org/10.1080/13880200500530542]
[121]
Hori, Y.; Miura, T.; Hirai, Y.; Fukumura, M.; Nemoto, Y.; Toriizuka, K.; Ida, Y. Pharmacognostic studies on ginger and related drugs-part 1: Five sulfonated compounds from Zingiberis rhizome (Shokyo). Phytochemistry, 2003, 62(4), 613-617.
[http://dx.doi.org/10.1016/S0031-9422(02)00618-0] [PMID: 12560035]
[122]
Shin, K.S.; Kiyohara, H.; Matsumoto, T.; Yamada, H. Rhamnogalacturonan II dimers cross-linked by borate diesters from the leaves of Panax ginseng CA Meyer are responsible for expression of their IL-6 production enhancing activities. Carbohydr. Res., 1998, 307(1-2), 97-106.
[http://dx.doi.org/10.1016/S0008-6215(98)00016-0] [PMID: 9836454]
[123]
Hussain, M.S.; Fareed, S.; Ansari, S.; Rahman, M.A.; Ahmad, I.Z.; Saeed, M. Current approaches toward production of secondary plant metabolites. J. Pharm. Bioallied Sci., 2012, 4(1), 10-20.
[http://dx.doi.org/10.4103/0975-7406.92725] [PMID: 22368394]
[124]
Wagner, H.; Ulrich-Merzenich, G. Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomedicine, 2009, 16(2-3), 97-110.
[http://dx.doi.org/10.1016/j.phymed.2008.12.018] [PMID: 19211237]
[125]
Chanda, S.; Rakholiya, K. Combination therapy: Synergism between natural plant extracts and antibiotics against infectious diseases. Microbiol. Book Series., 2011, 1, 520-529.
[126]
Dudhatra, G.B.; Mody, S.K.; Awale, M.M.; Patel, H.B.; Modi, C.M.; Kumar, A.; Kamani, D.R.; Chauhan, B.N. A comprehensive review on pharmacotherapeutics of herbal bioenhancers. ScientificWorldJournal, 2012, 2012, 637953.
[http://dx.doi.org/10.1100/2012/637953] [PMID: 23028251]
[127]
Shiota, S.; Shimizu, M.; Mizusima, T.; Ito, H.; Hatano, T.; Yoshida, T.; Tsuchiya, T. Restoration of effectiveness of β-lactams on methicillin-resistant Staphylococcus aureus by tellimagrandin I from rose red. FEMS Microbiol. Lett., 2000, 185(2), 135-138.
[http://dx.doi.org/10.1016/S0378-1097(00)00086-0] [PMID: 10754237]
[128]
Shimizu, M.; Shiota, S.; Mizushima, T.; Ito, H.; Hatano, T.; Yoshida, T.; Tsuchiya, T. Marked potentiation of activity of β-lactams against methicillin-resistant Staphylococcus aureus by corilagin. Antimicrob. Agents Chemother., 2001, 45(11), 3198-3201.
[http://dx.doi.org/10.1128/AAC.45.11.3198-3201.2001] [PMID: 11600378]
[129]
Oliveira, S.M.S.; Falcão-Silva, V.S.; Siqueira-Junior, J.P.; Costa, M.J.C.; Diniz, M.F.F. Modulation of drug resistance in Staphylococcus aureus by extract of mango (Mangifera indica L., Anacardiaceae) peel. Rev. Bras. Farmacogn., 2011, 21(1), 190-193.
[http://dx.doi.org/10.1590/S0102-695X2011005000014]
[130]
Stermitz, F.R.; Lorenz, P.; Tawara, J.N.; Zenewicz, L.A.; Lewis, K. Synergy in a medicinal plant: Antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proc. Natl. Acad. Sci. USA, 2000, 97(4), 1433-1437.
[http://dx.doi.org/10.1073/pnas.030540597] [PMID: 10677479]
[131]
Samosorn, S.; Tanwirat, B.; Muhamad, N.; Casadei, G.; Tomkiewicz, D.; Lewis, K.; Suksamrarn, A.; Prammananan, T.; Gornall, K.C.; Beck, J.L.; Bremner, J.B. Antibacterial activity of berberine-NorA pump inhibitor hybrids with a methylene ether linking group. Bioorg. Med. Chem., 2009, 17(11), 3866-3872.
[http://dx.doi.org/10.1016/j.bmc.2009.04.028] [PMID: 19419877]
[132]
Ughachukwu, P.; Ezenyeaku, C.; Ezeagwuna, D.; Anahalu, I. Evaluation of antibacterial properties of ethanol extract of Ficus exasperata leaf. Afr. J. Biotechnol., 2012, 11(16), 3874-3876.
[http://dx.doi.org/10.5897/AJB11.651]
[133]
Tambekar, D.H.; Dahikar, S.B. Antibacterial activity of some Indian Ayurvedic preparations against enteric bacterial pathogens. J. Adv. Pharm. Technol. Res., 2011, 2(1), 24-29.
[http://dx.doi.org/10.4103/2231-4040.79801] [PMID: 22171288]
[134]
Tambekar, D.; Dahikar, S. Screening of some herbal preparations used in Indian Ayurvedic medicine for its antibacterial potentials. Int. J. Pharma Sci., 2011, 2(2), 311.
[135]
Alav, I.; Sutton, J.M.; Rahman, K.M. Role of bacterial efflux pumps in biofilm formation. J. Antimicrob. Chemother., 2018, 73(8), 2003-2020.
[http://dx.doi.org/10.1093/jac/dky042] [PMID: 29506149]
[136]
Sharma, A.; Flores-Vallejo, R.D.C.; Cardoso-Taketa, A.; Villarreal, M.L. Antibacterial activities of medicinal plants used in Mexican traditional medicine. J. Ethnopharmacol., 2017, 208(208), 264-329.
[http://dx.doi.org/10.1016/j.jep.2016.04.045] [PMID: 27155134]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy