Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Short Communication

Novel Anti-amoebic Properties of Agarophytes Gracilaria changii and Gracilaria salicornia Extracts

Author(s): Tiong-Keat Goh, Yoon-Yen Yow*, Ayaz Anwar, Naveed Ahmed Khan and Seng-Kai Ong*

Volume 13, Issue 6, 2023

Published on: 14 October, 2022

Article ID: e030822207259 Pages: 12

DOI: 10.2174/2210315512666220803164452

Price: $65

Abstract

Introduction: Acanthamoeba is a ubiquitous and parasitic protozoan capable of causing serious human infections, resulting in blindness and even death. Seaweeds are abundant and widely known for their antimicrobial properties. This study aims to unveil the anti-amoebic potential of two Malaysian red seaweeds, Gracilaria changii and Gracilaria salicornia on Acanthamoeba castellanii.

Methods: Water, methanol and ethyl acetate extracts of G. changii and G. salicornia were tested against A. castellanii. Liquid chromatography-mass spectrometry (LC-MS) analysis was carried out to identify the compounds responsible for the anti-amoebic effect.

Results: Methanol extract of G. salicornia showed significant growth inhibition of 22% in A. castellanii trophozoites. Cytotoxicity of these extracts was shown to be minimal in human keratinocyte cells through cell viability assay.

Conclusion: Data from LC-MS revealed 14 compounds with reported biological activities. These findings suggest the use of G. changii and G. salicornia as potential sources of anti-amoebic compounds.

Keywords: Rhodophyta, Seaweeds, Anti-amoebic, Acanthamoeba, LC-MS, Gracilaria spp.

[1]
Siddiqui, R.; Khan, N.A. Biology and pathogenesis of Acanthamoeba. Parasit. Vectors, 2012, 5(1), 6.
[http://dx.doi.org/10.1186/1756-3305-5-6] [PMID: 22229971]
[2]
Lorenzo-Morales, J.; Khan, N.A.; Walochnik, J. An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. Parasite, 2015, 22, 10.
[http://dx.doi.org/10.1051/parasite/2015010] [PMID: 25687209]
[3]
Lorenzo-Morales, J.; Martín-Navarro, C.M.; López-Arencibia, A.; Arnalich-Montiel, F.; Piñero, J.E.; Valladares, B. Acanthamoeba keratitis: An emerging disease gathering importance worldwide? Trends Parasitol., 2013, 29(4), 181-187.
[http://dx.doi.org/10.1016/j.pt.2013.01.006] [PMID: 23433689]
[4]
Niyyati, M.; Dodangeh, S.; Lorenzo-Morales, J. A review of the current research trends in the application of medicinal plants as a source for novel therapeutic agents against Acanthamoeba infections. Iran. J. Pharm. Res., 2016, 15(4), 893-900.
[PMID: 28243287]
[5]
Wei, C.E.; Yeng, C.Y.; Mahboob, T.; Ling, L.C.; Raju, C.S.; Barusrux, S.; Nissapatorn, V. Natural products: Alternative therapeutic compounds against Acanthamoeba spp. Asian J. Pharm., 2019, 3(2), 29-38.
[http://dx.doi.org/10.13140/RG.2.2.15011.40482]
[6]
Martins, R.M.; Nedel, F.; Guimarães, V.B.S.; da Silva, A.F.; Colepicolo, P.; de Pereira, C.M.P.; Lund, R.G. Macroalgae extracts from antarctica have antimicrobial and anticancer potential. Front. Microbiol., 2018, 9, 412.
[http://dx.doi.org/10.3389/fmicb.2018.00412] [PMID: 29568291]
[7]
Santelices, B. Cultured aquatic species information programme: Gracilaria spp. FAO Fisheries Division, 2014. Retrieved from: http://www.fao.org/fishery/culturedspecies/Gracilaria_spp/en
[8]
Torres, P.; Santos, J.P.; Chow, F.; dos Santos, D.Y.A.C. A comprehensive review of traditional uses, bioactivity potential, and chemical diversity of the genus Gracilaria (Gracilariales, Rhodophyta). Algal Res., 2019, 37, 288-306.
[http://dx.doi.org/10.1016/j.algal.2018.12.009]
[9]
Phang, S.M.; Yeong, H.Y.; Lim, P.E. The seaweed resources of Malaysia. Bot. Mar., 2019, 62(3), 265-273.
[http://dx.doi.org/10.1515/bot-2018-0067]
[10]
Saeidnia, S.; Gohari, A.R.; Shahverdi, A.R.; Permeh, P.; Nasiri, M.; Mollazadeh, K.; Farahani, F. Biological activity of two red algae, Gracilaria salicornia and Hypnea flagelliformis from Persian Gulf. Pharmacognosy Res., 2009, 1(6), 428-430.
[http://dx.doi.org/10.4103/0974-8490.58036]
[11]
Sasidharan, S.; Darah, I.; Noordin, M.K.M.J. Screening antimicrobial activity of various extracts of Gracilaria changii. Pharm. Biol., 2009, 47(1), 72-76.
[http://dx.doi.org/10.1080/13880200802434161]
[12]
Sasidharan, S.; Darah, I.; Jain, K. In vitro and in situ antiyeast activity of Gracilaria changii methanol extract against Candida albicans. Eur. Rev. Med. Pharmacol. Sci., 2011, 15(9), 1020-1026.
[PMID: 22013724]
[13]
Rasooli, S.; Sattari, M.; Ramezanpour, Z.; Namin, J.I. Antibacterial activities of bioactive compounds extracted from Marine algae Gracilaria salicornia against Aeromonas hydrophila. Int. J. Aquat. Biol., 2015, 3(3), 155-160.
[http://dx.doi.org/10.22034/ijab.v3i3.92]
[14]
Zandi, K.; Salimi, M.; Sartavi, K. In vitro antiviral activity of the red marine alga from persian gulf, Gracilaria salicornia, against herpes simplex virus type 2. J. Biol. Sci. (Faisalabad, Pak.), 2007, 7(7), 1274-1277.
[http://dx.doi.org/10.3923/jbs.2007.1274.1277]
[15]
Chiboub, O.; Ktari, L.; Sifaoui, I.; López-Arencibia, A.; Reyes-Batlle, M.; Mejri, M.; Valladares, B.; Abderrabba, M.; Piñero, J.E.; Lorenzo-Morales, J. In vitro amoebicidal and antioxidant activities of some Tunisian seaweeds. Exp. Parasitol., 2017, 183, 76-80.
[http://dx.doi.org/10.1016/j.exppara.2017.10.012] [PMID: 29102681]
[16]
García-Davis, S.; Sifaoui, I.; Reyes-Batlle, M.; Viveros-Valdez, E.; Piñero, J.E.; Lorenzo-Morales, J.; Fernández, J.J.; Díaz-Marrero, A.R. Anti-Acanthamoeba activity of brominated sesquiterpenes from Laurencia johnstonii. Mar. Drugs, 2018, 16(11), 443.
[http://dx.doi.org/10.3390/md16110443] [PMID: 30423882]
[17]
Walvekar, S.; Anwar, A.; Anwar, A.; Lai, N.J.Y.; Yow, Y.Y.; Khalid, M.; Siddiqui, R.; Khan, N.A. Conjugation with Silver nanoparticles enhances anti-acanthamoebic activity of Kappaphycus alvarezii. J. Parasitol., 2021, 107(4), 537-546.
[http://dx.doi.org/10.1645/21-41] [PMID: 34265050]
[18]
Anwar, A.; Abdalla, S.A.O.; Aslam, Z.; Shah, M.R.; Siddiqui, R.; Khan, N.A. Oleic acid-conjugated silver nanoparticles as efficient antiamoebic agent against Acanthamoeba castellanii. Parasitol. Res., 2019, 118(7), 2295-2304.
[http://dx.doi.org/10.1007/s00436-019-06329-3] [PMID: 31093751]
[19]
Anwar, A.; Mungroo, M.R.; Anwar, A.; Sullivan, W.J., Jr; Khan, N.A.; Siddiqui, R. Repositioning of guanabenz in conjugation with gold and silver nanoparticles against pathogenic amoebae Acanthamoeba castellanii and Naegleria fowleri. ACS Infect. Dis., 2019, 5(12), 2039-2046.
[http://dx.doi.org/10.1021/acsinfecdis.9b00263] [PMID: 31612700]
[20]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[21]
Clark, B.R.; Engene, N.; Teasdale, M.E.; Rowley, D.C.; Matainaho, T.; Valeriote, F.A.; Gerwick, W.H. Natural products chemistry and taxonomy of the marine cyanobacterium Blennothrix cantharidosmum. J. Nat. Prod., 2008, 71(9), 1530-1537.
[http://dx.doi.org/10.1021/np800088a] [PMID: 18698821]
[22]
Engene, N.; Choi, H.; Esquenazi, E.; Byrum, T.; Villa, F.A.; Cao, Z.; Murray, T.F.; Dorrestein, P.C.; Gerwick, L.; Gerwick, W.H. Phylogeny-guided isolation of ethyl tumonoate A from the marine cyanobacterium cf. Oscillatoria margaritifera. J. Nat. Prod., 2011, 74(8), 1737-1743.
[http://dx.doi.org/10.1021/np200236c] [PMID: 21751786]
[23]
LiverTox. Clinical and research information on drug-induced liver injury Bethesda (MD) National institute of diabetes and digestive kidney diseases, Available from:., 2012.https://www.ncbi.nlm.nih.gov/books/NBK548498/
[24]
National center for biotechnology information.. Leucyl-phenylalanine. 2020. Retrieved from: https://pubchem.ncbi.nlm.nih.gov/compound/Leucyl-phenylalanine
[25]
Cazzola, M.; Testi, R.; Matera, M.G. Clinical pharmacokinetics of salmeterol. Clin. Pharmacokinet., 2002, 41(1), 19-30.
[http://dx.doi.org/10.2165/00003088-200241010-00003] [PMID: 11825095]
[26]
Liu, W.; Shi, X.; Yang, Y.; Cheng, X.; Liu, Q.; Han, H.; Yang, B.; He, C.; Wang, Y.; Jiang, B.; Wang, Z.; Wang, C. In vitro and in vivo metabolism and inhibitory activities of vasicine, a potent acetylcholinesterase and butyrylcholinesterase inhibitor. PLoS One, 2015, 10(4), e0122366.
[http://dx.doi.org/10.1371/journal.pone.0122366] [PMID: 25849329]
[27]
Gao, H.; Huang, Y.N.; Gao, B.; Li, P.; Inagaki, C.; Kawabata, J. Inhibitory effect on α-glucosidase by Adhatoda vasica Nees. Food Chem., 2008, 108(3), 965-972.
[http://dx.doi.org/10.1016/j.foodchem.2007.12.002] [PMID: 26065759]
[28]
Saxena, B.P.; Tikku, K.; Atal, C.K.; Koul, O. Insect antifertility and antifeedant allelochemics in Adhatoda vasica. Int. J. Trop. Insect Sci., 1986, 7(4), 489-493.
[http://dx.doi.org/10.1017/S174275840000970X]
[29]
Pegu, R.; Sarma, B.P.; Sinha, S.; Johari, S. Discovery of potent drug candidates of Adhatoda vasica against target proteins IL-4 and IL-13 of Asthma – An in silico. J. Pharm. Drug Dev., 2019, 6(1), 102.
[30]
Joseph, B.; Ajisha, A.U.; Kumari, S.; Sujatha, S. Effect of bioactive compounds and its pharmaceutical activities of Sida cordifolia (Linn.). Int. J. Biol. Med. Res., 2011, 2(4), 1038-1042.
[31]
Prakash, A.; Varma, R.K.; Ghosal, S. Alkaloid constituents of Sida acuta, S. humilis, S. rhombifolia and S. spinosa. Planta Med., 1981, 43(4), 384-388.
[http://dx.doi.org/10.1055/s-2007-971529] [PMID: 17402065]
[32]
Elia, J.; Ungal, G.; Kao, C.; Ambrosini, A.; De Jesus-Rosario, N.; Larsen, L.; Chiavacci, R.; Wang, T.; Kurian, C.; Titchen, K.; Sykes, B.; Hwang, S.; Kumar, B.; Potts, J.; Davis, J.; Malatack, J.; Slattery, E.; Moorthy, G.; Zuppa, A.; Weller, A.; Byrne, E.; Li, Y.R.; Kraft, W.K.; Hakonarson, H. Fasoracetam in adolescents with ADHD and glutamatergic gene network variants disrupting mGluR neurotransmitter signaling. Nat. Commun., 2018, 9(1), 4.
[http://dx.doi.org/10.1038/s41467-017-02244-2] [PMID: 29339723]
[33]
Ogasawara, T.; Itoh, Y.; Tamura, M.; Mushiroi, T.; Ukai, Y.; Kise, M.; Kimura, K. Involvement of cholinergic and GABAergic systems in the reversal of memory disruption by NS-105, a cognition enhancer. Pharmacol. Biochem. Behav., 1999, 64(1), 41-52.
[http://dx.doi.org/10.1016/S0091-3057(99)00108-2] [PMID: 10494996]
[34]
Oka, M.; Itoh, Y.; Shimidzu, T.; Ukai, Y.; Yoshikuni, Y.; Kimura, K. Involvement of metabotropic glutamate receptors in Gi- and Gs-dependent modulation of adenylate cyclase activity induced by a novel cognition enhancer NS-105 in rat brain. Brain Res., 1997, 754(1-2), 121-130.
[http://dx.doi.org/10.1016/S0006-8993(97)00064-4] [PMID: 9134967]
[35]
Shimidzu, T.; Itoh, Y.; Oka, M.; Ishima, T.; Ukai, Y.; Yoshikuni, Y.; Kimura, K. Effect of a novel cognition enhancer NS-105 on learned helplessness in rats: Possible involvement of GABA(B) receptor up-regulation after repeated treatment. Eur. J. Pharmacol., 1997, 338(3), 225-232.
[http://dx.doi.org/10.1016/S0014-2999(97)81925-5] [PMID: 9424016]
[36]
National Center for Biotechnology Information [NCBI]. Azobenzene Available from: 2020.https://pubchem.ncbi.nlm.nih.gov/compound/Azobenzene
[37]
Samper, K.G.; Marker, S.C.; Bayón, P.; MacMillan, S.N.; Keresztes, I.; Palacios, Ò.; Wilson, J.J. Anticancer activity of hydroxy- and sulfonamide-azobenzene platinum(II) complexes in cisplatin-resistant ovarian cancer cells. J. Inorg. Biochem., 2017, 174, 102-110.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.06.003] [PMID: 28651169]
[38]
Concilio, S.; Sessa, L.; Petrone, A.M.; Porta, A.; Diana, R.; Iannelli, P.; Piotto, S. Structure modification of an active Azo-compound as a route to new antimicrobial compounds. Molecules, 2017, 22(6), 875.
[http://dx.doi.org/10.3390/molecules22060875] [PMID: 28587076]
[39]
Merino, E.; Ribagorda, M. Control over molecular motion using the cis-trans photoisomerization of the azo group. Beilstein J. Org. Chem., 2012, 8, 1071-1090.
[http://dx.doi.org/10.3762/bjoc.8.119] [PMID: 23019434]
[40]
Dill, W.A.; Glazko, A.J.; Kazenko, A.; Wolf, L.M. Studies on the metabolism of reserpine. J. Pharmacol. Exp. Ther., 1956, 118(4), 377-387.
[PMID: 13385798]
[41]
Dhanarani, S.; Congeevaram, S.; Piruthiviraj, P.; Park, J.; Kaliannan, T. Inhibitory effects of reserpine against efflux pump activity of antibiotic resistance bacteria. Chem. Biol. Lett., 2017, 4(2), 69-72.
[42]
Abdelfatah, S.A.A.; Efferth, T. Cytotoxicity of the indole alkaloid reserpine from Rauwolfia serpentina against drug-resistant tumor cells. Phytomedicine, 2015, 22(2), 308-318.
[http://dx.doi.org/10.1016/j.phymed.2015.01.002] [PMID: 25765838]
[43]
Shamon, S.D.; Perez, M.I. Blood pressure-lowering efficacy of reserpine for primary hypertension. Cochrane Database Syst. Rev., 2016, 12(12), CD007655.
[http://dx.doi.org/10.1002/14651858.CD007655.pub3] [PMID: 27997978]
[44]
Parti, R.; Ozkan, E.D.; Harnadek, G.J.; Njus, D. Inhibition of norepinephrine transport and reserpine binding by reserpine derivatives. J. Neurochem., 1987, 48(3), 949-953.
[http://dx.doi.org/10.1111/j.1471-4159.1987.tb05609.x] [PMID: 3806108]
[45]
Phillips, D.D.; Chadha, M.S. The alkaloids of Rauwolfia serpentina Benth. J. Am. Pharm. Assoc., 1955, 44(9), 553-567.
[http://dx.doi.org/10.1002/jps.3030440912] [PMID: 13251932]
[46]
Lin, S.; Deiana, L.; Tseggai, A.; Córdova, A. Concise total synthesis of dihydrocorynanthenol, protoemetinol, protoemetine, 3-epi-Protoemetinol and emetine. Eur. J. Org. Chem., 2012, 2012(2), 398-408.
[http://dx.doi.org/10.1002/ejoc.201101296]
[47]
Akinboye, E.S.; Bakare, O. Biological activities of emetine. Open Nat. Prod. J., 2011, 4, 8-15.
[http://dx.doi.org/10.2174/1874848101104010008]
[48]
The Human Metabolome Database HMDB. Showing Metabocard for Cer(d18:1/22:1(13Z)) (HMDB0011775) Available from: 2020.https://hmdb.ca/metabolites/HMDB0011775
[49]
Rimmerman, N.; Bradshaw, H.B.; Hughes, H.V.; Chen, J.S.; Hu, S.S.; McHugh, D.; Vefring, E.; Jahnsen, J.A.; Thompson, E.L.; Masuda, K.; Cravatt, B.F.; Burstein, S.; Vasko, M.R.; Prieto, A.L.; O’Dell, D.K.; Walker, J.M. N-palmitoyl glycine, a novel endogenous lipid that acts as a modulator of calcium influx and nitric oxide production in sensory neurons. Mol. Pharmacol., 2008, 74(1), 213-224.
[http://dx.doi.org/10.1124/mol.108.045997] [PMID: 18424551]
[50]
Bartke, N.; Hannun, Y.A. Bioactive sphingolipids: Metabolism and function. J. Lipid Res., 2009, 50(Suppl.), S91-S96.
[http://dx.doi.org/10.1194/jlr.R800080-JLR200] [PMID: 19017611]
[51]
To, K.K.W.; Lee, K.C.; Wong, S.S.Y.; Lo, K.C.; Lui, Y.M.; Jahan, A.S.; Wu, A.L.; Ke, Y.H.; Law, C.Y.; Sze, K.H.; Lau, S.K.; Woo, P.C.; Lam, C.W.; Yuen, K.Y. Lipid mediators of inflammation as novel plasma biomarkers to identify patients with bacteremia. J. Infect., 2015, 70(5), 433-444.
[http://dx.doi.org/10.1016/j.jinf.2015.02.011] [PMID: 25727996]
[52]
Lizewska, B.; Teul, J.; Kuc, P.; Lemancewicz, A.; Charkiewicz, K.; Goscik, J.; Kacerovsky, M.; Menon, R.; Miltyk, W.; Laudanski, P. Maternal plasma metabolomic profiles in spontaneous preterm birth: Preliminary results. Mediators Inflamm., 2018, 2018, 9362820.
[http://dx.doi.org/10.1155/2018/9362820] [PMID: 29670470]
[53]
National Center for Biotechnology Information [NCBI].. 11-beta- Hydroxyandrosterone-3-glucuronide. 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/11-beta- Hydroxyandrosterone-3-glucuronide
[54]
Wang, X.; Wang, X.; Xie, G.; Zhou, M.; Yu, H.; Lin, Y.; Du, G.; Luo, G.; Jia, W.; Liu, P. Urinary metabolite variation is associated with pathological progression of the post-hepatitis B cirrhosis patients. J. Proteome Res., 2012, 11(7), 3838-3847.
[http://dx.doi.org/10.1021/pr300337s] [PMID: 22624806]
[55]
Decuypere, S.; Maltha, J.; Deborggraeve, S.; Rattray, N.J.W.; Issa, G.; Bérenger, K.; Lompo, P.; Tahita, M.C.; Ruspasinghe, T.; McConville, M.; Goodacre, R.; Tinto, H.; Jacobs, J.; Carapetis, J.R. Towards improving point-of-care diagnosis of non-malaria febrile illness: A metabolomics approach. PLoS Negl. Trop. Dis., 2016, 10(3), e0004480.
[http://dx.doi.org/10.1371/journal.pntd.0004480] [PMID: 26943791]
[56]
Alsaleh, M.; Sithithaworn, P.; Khuntikeo, N.; Loilome, W.; Yongvanit, P.; Chamadol, N.; Hughes, T.; O’Connor, T.; Andrews, R.H.; Holmes, E.; Taylor-Robinson, S.D. Characterisation of the urinary metabolic profile of liver fluke-associated cholangiocarcinoma. J. Clin. Exp. Hepatol., 2019, 9(6), 657-675.
[http://dx.doi.org/10.1016/j.jceh.2019.06.005] [PMID: 31889746]
[57]
Beier, U.H.; Hartung, E.A.; Concors, S.; Hernandez, P.T.; Wang, Z.; Perry, C.; Baur, J.A.; Denburg, M.R.; Hancock, W.W.; Gade, T.P.; Levine, M.H. Tissue metabolic profiling shows that saccharopine accumulates during renal ischemic-reperfusion injury, while kynurenine and itaconate accumulate in renal allograft rejection. Metabolomics, 2020, 16(5), 65.
[http://dx.doi.org/10.1007/s11306-020-01682-2] [PMID: 32367163]
[58]
Zhou, J.; Wang, X.; Wang, M.; Chang, Y.; Zhang, F.; Ban, Z.; Tang, R.; Gan, Q.; Wu, S.; Guo, Y.; Zhang, Q.; Wang, F.; Zhao, L.; Jing, Y.; Qian, W.; Wang, G.; Guo, W.; Yang, C. The lysine catabolite saccharopine impairs development by disrupting mitochondrial homeostasis. J. Cell Biol., 2019, 218(2), 580-597.
[http://dx.doi.org/10.1083/jcb.201807204] [PMID: 30573525]
[59]
Sato, T.; Ito, Y.; Nagasawa, T. Attenuation of autophagic-proteolysis in C2C12 cells by saccharopine. Mol. Cell. Biochem., 2015, 410(1-2), 93-100.
[http://dx.doi.org/10.1007/s11010-015-2541-9] [PMID: 26307368]
[60]
The Human Metabolome Database [HMDB]. Metabocard for Saccharopine (HMDB0000279). 2020. Available from: https://hmdb.ca/metabolites/HMDB0000279
[61]
Darling, S.; Larsen, P.O.; Prange, I.; Dam, H.; Sjöberg, B.; Toft, J. Saccharopine, a new amino acid in baker’s and brewer’s yeast. Acta Chem. Scand., 1961, 15, 743-749.
[http://dx.doi.org/10.3891/acta.chem.scand.15-0743]
[62]
de Almeida, C.L.F.; Falcão, H. de S.; Lima, G.R. de M.; Montenegro, C. de A.; Lira, N.S.; de Athayde-Filho, P.F.; Rodrigues, L.C.; de Souza, M.F.; Barbosa-Filho, J.M.; Batista, L.M. Bioactivities from marine algae of the genus Gracilaria. Int. J. Mol. Sci., 2011, 12(7), 4550-4573.
[http://dx.doi.org/10.3390/ijms12074550] [PMID: 21845096]
[63]
Ghannadi, A.; Shabani, L.; Yegdaneh, A. Cytotoxic, antioxidant and phytochemical analysis of Gracilaria species from Persian Gulf. Adv. Biomed. Res., 2016, 5(1), 139.
[http://dx.doi.org/10.4103/2277-9175.187373] [PMID: 27656608]
[64]
Vijayavel, K.; Martinez, J.A. In vitro antioxidant and antimicrobial activities of two Hawaiian marine Limu: Ulva fasciata (Chlorophyta) and Gracilaria salicornia (Rhodophyta). J. Med. Food, 2010, 13(6), 1494-1499.
[http://dx.doi.org/10.1089/jmf.2009.0287] [PMID: 21091257]
[65]
Andriani, Y.; Syamsumir, D. F.; Yee, T. C.; Harisson, F. S.; Herng, G. M.; Abdullah, S. A.; Mohamad, H. Biological activities of isolated compounds from three edible Malaysian red seaweeds, Gracilaria changii, G. manilaensis and Gracilaria sp. Nat. Prod. Commun. 2016, 11(8) 1934578X1601100822

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy