Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Review Article

Hydrophobically Modified Abelmoschus esculentus Polysaccharide Based Nanoparticles and Applications: A Review

Author(s): Prashant Upadhyay*, Shivani Agarwal and Sukirti Upadhyay

Volume 19, Issue 6, 2022

Published on: 29 August, 2022

Article ID: e010822207168 Pages: 18

DOI: 10.2174/1570163819666220801121857

Price: $65

conference banner
Abstract

Nanomaterials are indeed a nanoscale technology that deals with the creation, evaluation, fabrication, and utilization of systems at the nanometre scale by manipulating their size and shape. We consider natural polysaccharides such as promising polysaccharides, which are biodegradable, nontoxic, abundant, and inexpensive bio-polymeric precursors for preparing the materials of choice in various industries. The aim is to review different methods to produce hydrophobically modified Abelmoschus esculentus nanoparticles and study the evaluation processes of these nanoparticles as given in the literature. It proved the benefits of derivatives of gum by introducing different chemical groups. The chemical functionalization of gum mainly includes the esterification, etherification, and crosslinking reactions of the hydroxyl groups and contains a special fibre which takes sugar levels in the blood under control, providing a sugar quantity suitable for the bowels. Okra contains mucilage that helps remove poisonous chemicals and bad cholesterol, often overloads the liver. Recovering from psychological conditions, like depression, general weakness, and joint healthiness can be done with Okra. Someone additionally applied it for pulmonary inflammation, bowel irritation, and sore throat. Purgative properties okra possesses are beneficial for bowel purification. It is used to counteract the acids. Fibre okra contains a valuable nutrient for intestinal microorganisms and ensures proper intestine functionality. It also protects the mucosa of the digestive tract by covering them with an extra layer because of its alkaline nature. Nanotechnology has emerged as a critical component of pharmaceutics, with many applications in drug carriers of interest aimed at improving drug clinical outcomes such as cancer, diabetes mellitus, wound care management, atopic dermatitis, cosmeceutical, etc. Beneficial outcomes of this review are discussed briefly.

Keywords: Abelmoschus esculentus, nanogel, nanoparticles, polysaccharides, hydrophobically modification, crosslinking.

Graphical Abstract

[1]
Chowdhury A, Kunjiappan S, Panneerselvam T, Somasundaram B, Bhattacharjee C. Nanotechnology and nanocarrier-based approaches on treatment of degenerative diseases. Int Nano Lett 2017; 7(2): 91-122.
[http://dx.doi.org/10.1007/s40089-017-0208-0]
[2]
Tiruwa R. A review on nanoparticles - preparation and evaluation parameters. Indian J Pharm Biol Res 2016; 4(2): 27-31.
[http://dx.doi.org/10.30750/ijpbr.4.2.4]
[3]
Khare S, Alexander A, Amit N. Biomedical applications of nanobiotechnology for drug design, delivery and diagnostics. Res J Pharm Technol 2014; 7: 915-25.
[4]
Singh V, Malviya T Shehala, et al. Polysaccharide-Based Nanoparticles: Nanocarriers for Sustained Delivery of Drugs. Advanced Biopolymeric Systems for Drug Delivery 151-81.
[5]
Mali KK, Dhawale SC, Dias RJ, Ghorpade V. Delivery of drugs using tamarind gum and modified tamarind gum: A review. Bull Fac Pharm Cairo Univ 2019; 57(1): 1-24.
[http://dx.doi.org/10.21608/BFPC.2019.47260]
[6]
Hasnain MS, Nayak AK, Kurakula M, et al. Alginate nanoparticles in drug delivery. Alginates Drug Deliv 2020; 2020: 129-52.
[http://dx.doi.org/10.1016/B978-0-12-817640-5.00006-6]
[7]
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010; 75(1): 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[8]
Jiang L. Phytoinhibition and Formulation of Allelopathic Extract of Mikania micrantha Kunth ex HBK as pre-emergent weed suppressant against Echinochloa colona (L) Link. 2018. Available from: http://psasir.upm.edu.my/id/eprint/76897/1/FS%202018%2079%20IR.pdf
[9]
Roy A, Shrivastava SL, Mandal SM. Functional properties of okra Abelmoschus esculentus L. (Moench): Traditional claims and scientific evidences. Plant Sci Today 2014; 1(3): 121-30.
[http://dx.doi.org/10.14719/pst.2014.1.3.63]
[10]
Onakpa MM. Ethnomedicinal, phytochemical and pharmacological profile of genus abelmoschus. Phytopharmacology 2013; 4: 648-63.
[11]
Chowdhury NS, Jamaly S, Farjana F, Begum N, Zenat EA. A review on ethnomedicinal, pharmacological, phytochemical and pharmaceutical profile of lady’s finger (Abelmoschus esculentus L.) plant. Pharmacol Pharm 2019; 10(2): 94-108.
[http://dx.doi.org/10.4236/pp.2019.102008]
[12]
Farooq U, Malviya R, Sharma PK. Extraction and characterization of okra mucilage as pharmaceutical excipient. Acad J Plant Sci 2013; 6: 168-72.
[13]
Dantas TL, Alonso Buriti FC, Florentino ER. Okra (Abelmoschus esculentus L.) as a potential functional food source of mucilage and bioactive compounds with technological applications and health benefits. Plants 2021; 10(8): 1683.
[http://dx.doi.org/10.3390/plants10081683] [PMID: 34451728]
[14]
Okoye EI, Onyekweli AO, Kunle OO. Okra gum-an economic choice for the amelioration of capping and lamination in tablets. Ann Biol Res 2011; 2: 30-42.
[15]
Tavakoli N, Ghassemi Dehkordi N, Teimouri R, et al. Characterization and evaluation of okra gum as a tablet binder. Jundishapur J Nat Pharm Prod 2008; 3: 33-8.
[16]
Deogade UM, Deshmukh VN, Sakarkar DM. Natural gums and mucilage’s in NDDS: Applications and recent approaches. Int J Pharm Tech Res 2012; 4: 799-814.
[17]
Bhattacharya A, Rawlins JW, Ray P, Eds. Polymer Grafting and CrosslinkingInc Epub ahead of print. Hoboken, NJ, USA: John Wiley & Sons 2008.
[http://dx.doi.org/10.1002/9780470414811]
[18]
Singh V, Kumar P, Sanghi R. Use of microwave irradiation in the grafting modification of the polysaccharides - A review. Prog Polym Sci 2012; 37(2): 340-64.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.07.005]
[19]
Bhattacharya A. Grafting: A versatile means to modify polymersTechniques, factors and applications. Prog Polym Sci 2004; 29(8): 767-814.
[http://dx.doi.org/10.1016/j.progpolymsci.2004.05.002]
[20]
Brahim S, Narinesingh D, Guiseppi-Elie A. Amperometric determination of cholesterol in serum using a biosensor of cholesterol oxidase contained within a polypyrrole-hydrogel membrane. Anal Chim Acta 2001; 448(1-2): 27-36.
[http://dx.doi.org/10.1016/S0003-2670(01)01321-6]
[21]
Solak EK. Preparation and characterization of IPN microspheres for controlled delivery of naproxen. J Biomater Nanobiotechnol 2011; 02(4): 445-53.
[http://dx.doi.org/10.4236/jbnb.2011.24054]
[22]
Kausar A. Interpenetrating polymer network and nanocomposite IPN of polyurethane/epoxy: A review on fundamentals and advancements. Polym-Plast Technol Mater 2019; 58(7): 691-706.
[http://dx.doi.org/10.1080/25740881.2018.1563114]
[23]
Nesalin JAJ, Smith AA. Preparation and evaluation of chitosan nanoparticles containing zidovudine. Asian J Pharm Sci 2012; 7: 80-4.
[24]
Namazi H, Fathi F, Dadkhah A. Hydrophobically modified starch using long-chain fatty acids for preparation of nanosized starch particles. Sci Iran 2011; 18: 439-45.
[http://dx.doi.org/10.1016/j.scient.2011.05.006]
[25]
Chodavarapu NP, Yendluri RB, Haritha S, et al. Formulation and evaluation of Abelmoschus esculentus mucilage based metformin hydrochloride floating matrix tablets. Int J Pharm Technol 2011; 3: 2725-45.
[26]
Ameena K, Dilip C, Saraswathi R, Krishnan PN, Sankar C, Simi SP. Isolation of the mucilages from Hibiscus rosasinensis linn. and Okra (Abelmoschus esculentus linn.) and studies of the binding effects of the mucilages. Asian Pac J Trop Med 2010; 3(7): 539-43.
[http://dx.doi.org/10.1016/S1995-7645(10)60130-7]
[27]
Nagavarma BVN, Yadav HK, Ayaz A, et al. Different techniques for preparation of polymeric nanoparticles-a review. Asian J Pharm Clin Res 2012; 5: 16-23.
[28]
Quintanar-Guerrero D, Allémann E, Doelker E, Fessi H. Preparation and characterization of nanocapsules from preformed polymers by a new process based on emulsification-diffusion technique. Pharm Res 1998; 15(7): 1056-62.
[http://dx.doi.org/10.1023/A:1011934328471] [PMID: 9688060]
[29]
Sharma D. Polymeric nanoparticles preparation techniques and applications for drug delivery system- a brief review. World J Pharm Res 2017; 6: 256-82.
[http://dx.doi.org/10.20959/wjpr20176-8474]
[30]
Anil L, Kannan K. Microemulsion as drug delivery system for peptides and proteins. J Pharm Sci 2018; 10: 10.
[31]
Chime SA, Kenechukwu FC, Attama AA. Nanoemulsions - Advances in Formulation, Characterization and Applications in Drug DeliveryApplication of Nanotechnology in Drug Delivery InTech 2014. Epub ahead of print.
[http://dx.doi.org/10.5772/58673]
[32]
Lemoine D, Préat V. Polymeric nanoparticles as delivery system for influenza virus glycoproteins. J Control Release 1998; 54(1): 15-27.
[http://dx.doi.org/10.1016/S0168-3659(97)00241-1] [PMID: 9741900]
[33]
Song P, Wu Y, Zhang X, Yan Z, Wang M, Xu F. Preparation of covalently crosslinked sodium alginate/hydroxypropyl methylcellulose pH-sensitive microspheres for controlled drug release. Bio-Resources 2018; 13(4): 8614-28.
[http://dx.doi.org/10.15376/biores.13.4.8614-8628]
[34]
Fessi H, Puisieux F, Devissaguet JPh, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 1989; 55(1): R1-4.
[http://dx.doi.org/10.1016/0378-5173(89)90281-0]
[35]
Vauthier C, Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 2009; 26(5): 1025-58.
[http://dx.doi.org/10.1007/s11095-008-9800-3] [PMID: 19107579]
[36]
Kostag M, Köhler S, Liebert T, Heinze T. Pure cellulose nanoparticles from trimethylsilyl cellulose. Macromol Symp 2010; 294(2): 96-106.
[http://dx.doi.org/10.1002/masy.200900095]
[37]
Lambert G, Fattal E, Couvreur P. Nanoparticulate systems for the delivery of antisense oligonucleotides. Adv Drug Deliv Rev 2001; 47(1): 99-112.
[http://dx.doi.org/10.1016/S0169-409X(00)00116-2] [PMID: 11251248]
[38]
Rao JP, Geckeler KE. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog Polym Sci 2011; 36(7): 887-913.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.01.001]
[39]
Jeong Y-I, Cho C-S, Kim S-H, et al. Preparation of poly(DL-lactide-co-glycolide) nanoparticles without surfactant. J Appl Polym Sci 2001; 80(12): 2228-36.
[http://dx.doi.org/10.1002/app.1326]
[40]
Namazi H, Fathi F, Heydari A. Nanoparticles based on modified polysaccharides. Deliv Nanoparticles 2012; 149-84.
[41]
Kim J-H, Kim Y-S, Kim S, et al. Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel. J Control Release 2006; 111(1-2): 228-34.
[http://dx.doi.org/10.1016/j.jconrel.2005.12.013] [PMID: 16458988]
[42]
Chanchal DK, Alok S, Kumar M, et al. A brief review on Abelmoschus esculentus linn. okra. Int J Pharm Sci Res 2018; 9: 58-66.
[43]
Pamfil D, Vasile C. Nanogels of Natural Polymers. In: Thakur V, Thakur M, Voicu S, Eds. Polymer Gels Gels Horizons: From Science to Smart Materials. Springer, Singapore 2018; pp. 71-110.
[44]
Mohamed S, Parayath NN, Taurin S, Greish K. Polymeric nanomicelles: Versatile platform for targeted delivery in cancer. Ther Deliv 2014; 5(10): 1101-21.
[http://dx.doi.org/10.4155/tde.14.69] [PMID: 25418269]
[45]
Thakur RS, Agrawal R. Application of nanotechnology in pharmaceutical formulation design and development. Curr Drug Ther 2015; 10: 20-34.
[http://dx.doi.org/10.2174/157488551001150825095729]
[46]
Sharma N, Kulkarni G, Sharma A. Development of Abelmoschus esculentus (okra)-based mucoadhesive gel for nasal delivery of rizatriptan benzoate. Trop J Pharm Res 2013; 12(2): 149-53.
[http://dx.doi.org/10.4314/tjpr.v12i2.3]
[47]
Sharma N, Kulkarni GT, Sharma A, Bhatnagar A, Kumar N. Natural mucoadhesive microspheres of Abelmoschus esculentus polysaccharide as a new carrier for nasal drug delivery. J Microencapsul 2013; 30(6): 589-98.
[http://dx.doi.org/10.3109/02652048.2013.764941] [PMID: 23379506]
[48]
Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 2015; 6(2): 105-21.
[http://dx.doi.org/10.1016/j.jare.2013.07.006] [PMID: 25750745]
[49]
Argenta DF, dos Santos TC, Campos AM, et al. Hydrogel nanocomposite systems: physico-chemical characterization and application for drug-delivery systems. In Nanocarriers for Drug Delivery Elsevier. 2019; pp. 81-131.
[50]
Kumar R. Lipid-based nanoparticles for drug-delivery systems. In Nanocarriers for drug delivery Elsevier. 2019; pp. 249-84.
[51]
Giri TK. Solid lipid nanoparticles for the delivery of drug molecules. Mater Biomed Eng 2019; 551-76.
[52]
Utreja S, Jain NK. Solid lipid nanoparticle.Advances in controlled and novel drug delivery. CBS Publishers & Distributors 2001; pp. 408-25.
[53]
Fan T, Chen C, Guo H, et al. Design and evaluation of solid lipid nanoparticles modified with peptide ligand for oral delivery of protein drugs. Eur J Pharm Biopharm 2014; 88(2): 518-28.
[http://dx.doi.org/10.1016/j.ejpb.2014.06.011] [PMID: 24968819]
[54]
Pople PV, Singh KK. Development and evaluation of topical formulation containing solid lipid nanoparticles of vitamin A. AAPS PharmSciTech 2006; 7(4): 91.
[http://dx.doi.org/10.1208/pt070491] [PMID: 17285742]
[55]
Khurana S, Bedi PMS, Jain NK. Preparation and evaluation of solid lipid nanoparticles based nanogel for dermal delivery of meloxicam. Chem Phys Lipids 2013; 175-176: 65-72.
[http://dx.doi.org/10.1016/j.chemphyslip.2013.07.010] [PMID: 23994283]
[56]
Hashem FM, Nasr M, Khairy A. in vitro cytotoxicity and bioavailability of solid lipid nanoparticles containing tamoxifen citrate. Pharm Dev Technol 2014; 19(7): 824-32.
[http://dx.doi.org/10.3109/10837450.2013.836218] [PMID: 24032414]
[57]
Sahu PK, Mishra DK, Jain N, Rajoriya V, Jain AK. Mannosylated solid lipid nanoparticles for lung-targeted delivery of Paclitaxel. Drug Dev Ind Pharm 2015; 41(4): 640-9.
[http://dx.doi.org/10.3109/03639045.2014.891130] [PMID: 24564799]
[58]
Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 2000; 50(1): 161-77.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[59]
Mahmoud RA, Hussein AK, Nasef GA, Mansour HF. Oxiconazole nitrate solid lipid nanoparticles: Formulation, in-vitro characterization and clinical assessment of an analogous loaded carbopol gel. Drug Dev Ind Pharm 2020; 46(5): 706-16.
[http://dx.doi.org/10.1080/03639045.2020.1752707] [PMID: 32266837]
[60]
Youssef NAHA, Kassem AA, Farid RM, Ismail FA, El-Massik MAE, Boraie NA. A novel nasal almotriptan loaded solid lipid nanoparticles in mucoadhesive in situ gel formulation for brain targeting: Preparation, characterization and in vivo evaluation. Int J Pharm 2018; 548(1): 609-24.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.014] [PMID: 30033394]
[61]
Yarraguntla SR, Kumari PV. Biodegradable nanospheres-current status. Indian Drugs 2020; 57: 7-18.
[http://dx.doi.org/10.53879/id.57.05.11657]
[62]
Raja MM, Lim PQ, Wong YS, et al. Polymeric nanomaterials: methods of preparation and characterization. Nanocarriers Drug Delivery 2019; 557-653.
[63]
Pathak Y, Thassu D. Drug delivery nanoparticles formulation and characterization. Boca Raton: CRC Press 2016; p. 416.
[http://dx.doi.org/10.3109/9781420078053]
[64]
Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F, Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2006; 2(1): 8-21.
[http://dx.doi.org/10.1016/j.nano.2005.12.003] [PMID: 17292111]
[65]
Couvreur P. Nanoparticles in drug delivery: Past, present and future. Adv Drug Deliv Rev 2013; 65(1): 21-3.
[http://dx.doi.org/10.1016/j.addr.2012.04.010] [PMID: 22580334]
[66]
Wu X, Mansour HM. Nanopharmaceuticals Ii: Application of nanoparticles and nanocarrier systems in pharmaceutics and nanomedicine. Int J Nanotechnol 2010; 8(1/2): 115-45.
[http://dx.doi.org/10.1504/IJNT.2011.037173]
[67]
Tiwari G, Tiwari R, Sriwastawa B, et al. Drug delivery systems: An updated review. Int J Pharm Investig 2012; 2(1): 2-11.
[http://dx.doi.org/10.4103/2230-973X.96920] [PMID: 23071954]
[68]
Sanghi DK, Tiwle R. Herbal drugs an emerging tool for novel drug delivery systems. Res J Pharm Technol 2013; 6: 962-6.
[69]
Weng J, Tong HHY, Chow SF. in vitro release study of the polymeric drug nanoparticles: Development and validation of a novel method. Pharmaceutics 2020; 12(8): 732.
[http://dx.doi.org/10.3390/pharmaceutics12080732] [PMID: 32759786]
[70]
Webster DM, Sundaram P, Byrne ME. Injectable nanomaterials for drug delivery: Carriers, targeting moieties, and therapeutics. Eur J Pharm Biopharm 2013; 84(1): 1-20.
[http://dx.doi.org/10.1016/j.ejpb.2012.12.009] [PMID: 23313176]
[71]
Ghosh PK. Hydrophilic polymeric nanoparticles as drug carriers. Indian J Biochem Biophys 2000; 37: 273-82.
[72]
Sperling RA, Casals E, Comenge J, Bastús NG, Puntes VF. Inorganic engineered nanoparticles and their impact on the immune response. Curr Drug Metab 2009; 10(8): 895-904.
[http://dx.doi.org/10.2174/138920009790274577] [PMID: 20214584]
[73]
Mohammadi H, Kamkar A, Misaghi A. Nanocomposite films based on CMC, okra mucilage and ZnO nanoparticles: Physico mechanical and antibacterial properties. Carbohydr Polym 2018; 181: 351-7.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.045] [PMID: 29253983]
[74]
Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P. Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crops Prod 2013; 45: 423-9.
[http://dx.doi.org/10.1016/j.indcrop.2012.12.019]
[75]
Schiavo S, Duroudier N, Bilbao E, et al. Effects of PVP/PEI coated and uncoated silver NPs and PVP/PEI coating agent on three species of marine microalgae. Sci Total Environ 2017; 577: 45-53.
[http://dx.doi.org/10.1016/j.scitotenv.2016.10.051] [PMID: 27751687]
[76]
Mollick MMR, Rana D, Dash SK, et al. Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Arab J Chem 2019; 12(8): 2572-84.
[http://dx.doi.org/10.1016/j.arabjc.2015.04.033]
[77]
Singh MR, Nag MK, Patel S, et al. Novel approaches for dermal and transdermal delivery of herbal drugs. Res J Pharmacogn Phytochem 2013; 5: 271-9.
[78]
Shinde NC, Keskar NJ, Argade PD. Nanoparticles: Advances in drug delivery systems. Int J Adv Pharm Biol Chem 2012; 1: 132-7.
[79]
Grabnar PA, Kristl J. The manufacturing techniques of drug-loaded polymeric nanoparticles from preformed polymers. J Microencapsul 2011; 28(4): 323-35.
[http://dx.doi.org/10.3109/02652048.2011.569763] [PMID: 21545323]
[80]
Agarwal A, Majumder S, Agrawal H, et al. Cationized albumin conjugated solid lipid nanoparticles as vectors for brain delivery of an anti-cancer drug. Curr Nanosci 2011; 7: 71-80.
[http://dx.doi.org/10.2174/157341311794480291]
[81]
Kamboj S, Saini V, Maggon N, et al. Vesicular drug delivery systems: A novel approach for drug targeting. Int J Drug Deliv 2013; 5: 121-30.
[82]
Ashara KC, Paun JS, Soniwala MM, et al. Vesicular drug delivery system: A novel approach. Mintage J Pharm Med Sci 2014; 3: 1-14.
[83]
Chaudhari SP, Gaikwad SU. Sphingosomes: A novel lipoidal vesicular drug delivery system. J Sci Technol 2020; 5: 261-7.
[84]
Jain S, Jain V, Mahajan SC. Lipid based vesicular drug delivery systems. Adv Pharm 2014; 2014: 1-12.
[85]
Elhissi A. Liposomes for pulmonary drug delivery: The role of formulation and inhalation device design. Curr Pharm Des 2017; 23(3): 362-72.
[http://dx.doi.org/10.2174/1381612823666161116114732] [PMID: 27848886]
[86]
Allen TM, Cullis PR. Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Deliv Rev 2013; 65(1): 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[87]
Nogueira E, Gomes AC, Preto A, Cavaco-Paulo A. Design of liposomal formulations for cell targeting. Colloids Surf B Biointerfaces 2015; 136: 514-26.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.034] [PMID: 26454541]
[88]
Kommana N, Babu MK. Formulation and evaluation of soyalecithin based emulsomes for topical administration of lornoxicam. Indian J Res Pharm Biotechnol 2016; 4: 28-38.
[89]
Kalra N, Dhanya V, Saini V, et al. Virosomes: As a drug delivery carrier. Am J Adv Drug Deliv 2013; 1: 29-35.
[90]
Shaikh SN, Raza S, Ansari Mohd A, et al. Overview on virosomes as a novel carrier for drug delivery. J Drug Deliv Ther 2019; 8(6-s): 429-34.
[http://dx.doi.org/10.22270/jddt.v8i6-s.2163]
[91]
Malik MA, Wani MY, Hashim MA. Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials. Arab J Chem 2012; 5(4): 397-417.
[http://dx.doi.org/10.1016/j.arabjc.2010.09.027]
[92]
Thakare P, Mogal V, Borase P, et al. A review on self-emulsified drug delivery system. J Pharm Biol Eval 2016; 3: 140-53.
[93]
Gupta S, Kesarla R, Omri A. Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. ISRN Pharm 2013; 2013: 848043.
[http://dx.doi.org/10.1155/2013/848043] [PMID: 24459591]
[94]
Bhattacharya S. Self-emulsifying drug delivery system (SEDDS) and its pharmaceutical applications. Appl Clin Res Clin Trials Regul Aff 2020; 7(3): 206-24.
[http://dx.doi.org/10.2174/2213476X07666200827102951]
[95]
Kalantari A, Kósa D, Nemes D, et al. Self-nanoemulsifying drug delivery systems containing plantago lanceolata-an assessment of their antioxidant and antiinflammatory effects. Molecules 2017; 22(10): 1773.
[http://dx.doi.org/10.3390/molecules22101773] [PMID: 29053620]
[96]
de Alvarenga Pinto MC, Mottin AC, Ayres E. Preparation and characterization of okra mucilage (Abelmoschus esculentus) edible films. Macromolecular Symposia 2016; 367: 90-100.
[97]
Yang M, Gu Y, Tang X, Wang T, Liu J. Advancement of lipid-based nanocarriers and combination application with physical penetration technique. Curr Drug Deliv 2019; 16(4): 312-24.
[http://dx.doi.org/10.2174/1567201816666190118125427] [PMID: 30657039]
[98]
Escobar-Chavez J, Diaz-Torres R, Rodriguez-Cruz IM, et al. Nanocarriers for transdermal drug delivery. Res Rep Transdermal Drug Deliv 2012; 1: 3-17.
[99]
Yadav HKS, Almokdad AA, shaluf SIM, et al. Polymer-based nanomaterials for drug-delivery carriers. Nanocarriers Drug Deliv 2019; 2019: 531-56.
[100]
Azzaoui K, Mejdoubi E, Lamhamdi A, et al. Structure and properties of hydroxyapatite/hydroxyethyl cellulose acetate composite films. Carbohydr Polym 2015; 115: 170-6.
[http://dx.doi.org/10.1016/j.carbpol.2014.08.089] [PMID: 25439882]
[101]
Feng T, Wei Y, Lee RJ, Zhao L. Liposomal curcumin and its application in cancer. Int J Nanomedicine 2017; 12: 6027-44.
[http://dx.doi.org/10.2147/IJN.S132434] [PMID: 28860764]
[102]
Ghalandarlaki N, Alizadeh AM, Ashkani-Esfahani S. Nanotechnology-applied curcumin for different diseases therapy. BioMed Res Int 2014; 2014: 394264.
[http://dx.doi.org/10.1155/2014/394264] [PMID: 24995293]
[103]
Sengel-Turk CT, Gumustas M, Uslu B, et al. Nanosized drug carriers for oral delivery of anticancer compounds and the importance of the chromatographic techniques. Nano- and Microscale Drug Deliv Syst 2017; 165-95.
[104]
Atawodi SE, Atawodi JC, Idakwo GA, et al. Polyphenol composition and antioxidant potential of Hibiscus esculentus L. fruit cultivated in Nigeria. J Med Food 2009; 12(6): 1316-20.
[http://dx.doi.org/10.1089/jmf.2008.0211] [PMID: 20041787]
[105]
Liao H, Liu H, Yuan K. A new flavonol glycoside from the Abelmoschus esculentus Linn. Pharmacogn Mag 2012; 8(29): 12-5.
[http://dx.doi.org/10.4103/0973-1296.93303] [PMID: 22438657]
[106]
Dadwal A, Baldi A, Kumar Narang R. Nanoparticles as carriers for drug delivery in cancer. Artif Cells Nanomed Biotechnol 2018; 46: 295-305.
[http://dx.doi.org/10.1080/21691401.2018.1457039] [PMID: 30043651]
[107]
Dianzani C, Zara GP, Maina G, et al. Drug delivery nanoparticles in skin cancers. BioMed Res Int 2014; 2014: 895986.
[http://dx.doi.org/10.1155/2014/895986] [PMID: 25101298]
[108]
Moorthi C, Krishnan K, Manavalan R, Kathiresan K. Preparation and characterization of curcumin-piperine dual drug loaded nanoparticles. Asian Pac J Trop Biomed 2012; 2(11): 841-8.
[http://dx.doi.org/10.1016/S2221-1691(12)60241-X] [PMID: 23569859]
[109]
Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanoformulations: A future nanomedicine for cancer. Drug Discov Today 2012; 17(1-2): 71-80.
[http://dx.doi.org/10.1016/j.drudis.2011.09.009] [PMID: 21959306]
[110]
Nampuak C, Tongkhao K. Okra mucilage powder: A novel functional ingredient with antioxidant activity and antibacterial mode of action revealed by scanning and transmission electron microscopy. Int J Food Sci Technol 2020; 55(2): 569-77.
[http://dx.doi.org/10.1111/ijfs.14308]
[111]
Madkour LH. Nanoparticle and polymeric nanoparticle-based targeted drug delivery systems. Nucleic Acids Gene Anticancer Drug Deliv Ther 2019; 191-240.
[http://dx.doi.org/10.1016/B978-0-12-819777-6.00013-5]
[112]
Nosrati H, Salehiabar M, Davaran S, Danafar H, Manjili HK. Methotrexate-conjugated L-lysine coated iron oxide magnetic nanoparticles for inhibition of MCF-7 breast cancer cells. Drug Dev Ind Pharm 2018; 44(6): 886-94.
[http://dx.doi.org/10.1080/03639045.2017.1417422] [PMID: 29280388]
[113]
Maji R, Dey NS, Satapathy BS, Mukherjee B, Mondal S. Preparation and characterization of Tamoxifen citrate loaded nanoparticles for breast cancer therapy. Int J Nanomedicine 2014; 9: 3107-18.
[PMID: 25028549]
[114]
Vardhan H, Mittal P, Adena SKR, Mishra B. Long-circulating polyhydroxybutyrate-co-hydroxyvalerate nanoparticles for tumor targeted docetaxel delivery: Formulation, optimization and in vitro characterization. Eur J Pharm Sci 2017; 99: 85-94.
[http://dx.doi.org/10.1016/j.ejps.2016.12.007] [PMID: 28002762]
[115]
Hwang H-Y, Kim I-S, Kwon IC, Kim YH. Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles. J Control Release 2008; 128(1): 23-31.
[http://dx.doi.org/10.1016/j.jconrel.2008.02.003] [PMID: 18374444]
[116]
Tomoda M, Shimizu N, Gonda R. Plant mucilages. XXXVI. Isolation and characterization of a mucilage, ‘okra-mucilage R’, from the roots of Abelmoschus esculentus. Chem Pharm Bull 1985; 33(8): 3330-5.
[http://dx.doi.org/10.1248/cpb.33.3330]
[117]
Ramachandran S, Sandeep VS, Srinivas NK, et al. Anti-diabetic activity of Abelmoschus esculentus Linn on alloxan-induced diabetic rats. Res Rev Biosci 2010; 4: 121-3.
[118]
Sabitha V, Ramachandran S, Naveen KR, Panneerselvam K. Investigation of in vivo antioxidant property of Abelmoschus esculentus (L) moench. fruit seed and peel powders in streptozotocin-induced diabetic rats. J Ayurveda Integr Med 2012; 3(4): 188-93.
[http://dx.doi.org/10.4103/0975-9476.104432] [PMID: 23326089]
[119]
Sabitha V, Ramachandran S, Naveen KR, Panneerselvam K. Antidiabetic and antihyperlipidemic potential of Abelmoschus esculentus (L.) Moench. in streptozotocin-induced diabetic rats. J Pharm Bioallied Sci 2011; 3(3): 397-402.
[http://dx.doi.org/10.4103/0975-7406.84447] [PMID: 21966160]
[120]
Souto EB, Souto SB, Campos JR, et al. Nanoparticle delivery systems in the treatment of diabetes complications. Molecules 2019; 24(23): 4209.
[http://dx.doi.org/10.3390/molecules24234209] [PMID: 31756981]
[121]
Lengsfeld C, Titgemeyer F, Faller G, Hensel A. Glycosylated compounds from okra inhibit adhesion of Helicobacter pylori to human gastric mucosa. J Agric Food Chem 2004; 52(6): 1495-503.
[http://dx.doi.org/10.1021/jf030666n] [PMID: 15030201]
[122]
Messing J, Thöle C, Niehues M, et al. Antiadhesive properties of Abelmoschus esculentus (Okra) immature fruit extract against Helicobacter pylori adhesion. PLoS One 2014; 9(1): e84836.
[http://dx.doi.org/10.1371/journal.pone.0084836] [PMID: 24416297]
[123]
Roy A, Khanra K, Mishra A, et al. General analysis and antioxidant study of traditional fermented drink Handia, its concentrate and volatiles. Adv Life Sci Its Appl 2012; 1: 54-7.
[124]
Roy A. An antioxidant-rich fermented substrate produced by a newly isolated bacterium showing antimicrobial property against human pathogen, may be a potent nutraceutical in the near future. Adv Life Sci Its Appl 2012; 1: 36-44.
[125]
Raj V, Shim J-J, Lee J. Grafting modification of okra mucilage: Recent findings, applications, and future directions. Carbohydr Polym 2020; 246: 116653.
[http://dx.doi.org/10.1016/j.carbpol.2020.116653] [PMID: 32747285]
[126]
Rajendran NK, Kumar SSD, Houreld NN, Abrahamse H. A review on nanoparticle based treatment for wound healing. J Drug Deliv Sci Technol 2018; 44: 421-30.
[http://dx.doi.org/10.1016/j.jddst.2018.01.009]
[127]
Thakkar H, Kumar Sharma R, Murthy RSR. Enhanced retention of celecoxib-loaded solid lipid nanoparticles after intra-articular administration. Drugs R D 2007; 8(5): 275-85.
[http://dx.doi.org/10.2165/00126839-200708050-00002] [PMID: 17767393]
[128]
Bhalekar MR, Pokharkar V, Madgulkar A, Patil N, Patil N. Preparation and evaluation of miconazole nitrate-loaded solid lipid nanoparticles for topical delivery. AAPS PharmSciTech 2009; 10(1): 289-96.
[http://dx.doi.org/10.1208/s12249-009-9199-0] [PMID: 19294517]
[129]
Kang S, Wang H, Xia L, et al. Colorimetric film based on polyvinyl alcohol/okra mucilage polysaccharide incorporated with rose anthocyanins for shrimp freshness monitoring. Carbohydr Polym 2020; 229: 115402.
[http://dx.doi.org/10.1016/j.carbpol.2019.115402] [PMID: 31826465]
[130]
Akhtar N, Verma A, Pathak K. Exploring preclinical and clinical effectiveness of nanoformulations in the treatment of atopic dermatitis: Safety aspects and patent reviews. Bull Fac Pharm Cairo Univ 2017; 55(1): 1-10.
[http://dx.doi.org/10.1016/j.bfopcu.2016.12.003]
[131]
Wang Z, Guo W, Kuang X, Hou S, Liu H. Nanopreparations for mitochondria targeting drug delivery system: Current strategies and future prospective. Asian J Pharm Sci 2017; 12(6): 498-508.
[http://dx.doi.org/10.1016/j.ajps.2017.05.006] [PMID: 32104363]
[132]
Gambhire MS, Bhalekar MR, Gambhire VM. Statistical optimization of dithranol-loaded solid lipid nanoparticles using factorial design. Braz J Pharm Sci 2011; 47(3): 503-11.
[http://dx.doi.org/10.1590/S1984-82502011000300008]
[133]
Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. J Control Release 2008; 127(2): 97-109.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.018] [PMID: 18313785]
[134]
Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. BioMed Res Int 2014; 2014: 869269.
[http://dx.doi.org/10.1155/2014/869269] [PMID: 25136634]
[135]
Lohani A, Verma A, Joshi H, Yadav N, Karki N. Nanotechnology-based cosmeceuticals. ISRN Dermatol 2014; 2014: 843687.
[http://dx.doi.org/10.1155/2014/843687] [PMID: 24963412]
[136]
Hidayah R, Soeratri W, Rosita N. Nano carrier as a cosmetic delivery system. Sun Int J Eng Basic Sci 2018; 1(3): 45-8.
[http://dx.doi.org/10.30558/ijebs.20180103002]
[137]
Dwivedi A, Mazumder A, du Plessis L, du Preez JL, Haynes RK, du Plessis J. in vitro anti-cancer effects of artemisone nano-vesicular formulations on melanoma cells. Nanomedicine 2015; 11(8): 2041-50.
[http://dx.doi.org/10.1016/j.nano.2015.07.010] [PMID: 26282380]
[138]
Tosif MM, Najda A, Bains A, et al. A comprehensive review on plant-derived mucilage: Characterization, functional properties, applications, and its utilization for nanocarrier fabrication. Polymers 2021; 13(7): 1066.
[http://dx.doi.org/10.3390/polym13071066] [PMID: 33800613]
[139]
Iavicoli I, Leso V, Ricciardi W, Hodson LL, Hoover MD. Opportunities and challenges of nanotechnology in the green economy. Environ Health 2014; 13(1): 78.
[http://dx.doi.org/10.1186/1476-069X-13-78] [PMID: 25294341]
[140]
Liou S-H, Tsou T-C, Wang S-L, et al. Epidemiological study of health hazards among workers handling engineered nanomaterials. J Nanopart Res 2012; 14(8): 1-15.
[http://dx.doi.org/10.1007/s11051-012-0878-5]
[141]
Murtaza M, Ahmad HM, Zhou X, Al-Shehri D, Mahmoud M, Shahzad Kamal M. Okra mucilage as environment friendly and non-toxic shale swelling inhibitor in water based drilling fluids. Fuel 2022; 320: 123868.
[http://dx.doi.org/10.1016/j.fuel.2022.123868]
[142]
Viswanath B, Kim S. Influence of nanotoxicity on human health and environment: The alternative strategies. Rev Environ Contam Toxicol 2017; 242: 61-104.
[PMID: 27718008]
[143]
Sturm R. Theoretical diagnosis of emphysema by aerosol bolus inhalation. Ann Transl Med 2017; 7: 154.
[144]
Sharma M. Understanding the mechanism of toxicity of carbon nanoparticles in humans in the new millennium: A systemic review. Indian J Occup Environ Med 2010; 14(1): 3-5.
[http://dx.doi.org/10.4103/0019-5278.64607] [PMID: 20808660]
[145]
Arts JH, Hadi M, Irfan M-A, et al. A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping). Regul Toxicol Pharmacol 2015; 71(2): S1-S27.
[http://dx.doi.org/10.1016/j.yrtph.2015.03.007] [PMID: 25818068]
[146]
Braakhuis HM, Oomen AG, Cassee FR. Grouping nanomaterials to predict their potential to induce pulmonary inflammation. Toxicol Appl Pharmacol 2016; 299: 3-7.
[http://dx.doi.org/10.1016/j.taap.2015.11.009] [PMID: 26603513]
[147]
Li N, Sioutas C, Cho A, et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 2003; 111(4): 455-60.
[http://dx.doi.org/10.1289/ehp.6000] [PMID: 12676598]
[148]
Kahru A, Ivask A. Mapping the dawn of nanoecotoxicological research. Acc Chem Res 2013; 46(3): 823-33.
[http://dx.doi.org/10.1021/ar3000212] [PMID: 23148404]
[149]
Dhawan A, Sharma V. Toxicity assessment of nanomaterials: Methods and challenges. Anal Bioanal Chem 2010; 398(2): 589-605.
[http://dx.doi.org/10.1007/s00216-010-3996-x] [PMID: 20652549]
[150]
Loureiro S, Tourinho PS, Cornelis G, et al. Nanomaterials as soil pollutants. Soil Pollution 2018; 2018: 161-90.
[http://dx.doi.org/10.1016/B978-0-12-849873-6.00007-8]
[151]
Girija AR, Sakthi Kumar D. Novel paradigm of design and delivery of nutraceuticals with nanoscience and technology. Nutraceuticals 2016; 4: 343-85.
[http://dx.doi.org/10.1016/B978-0-12-804305-9.00010-5]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy