Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Isolation and Identification of Bioactive Compounds with Antimicrobial Activity from Marine Facultative Anaerobe, Bacillus subtilis

Author(s): Muddukrishnaiah Kotakonda, Makesh Marappan*, Prabaharan Dharmar, Balasubramaniyan Sakthivel and Prasad Sunnapu

Volume 24, Issue 5, 2023

Published on: 23 September, 2022

Page: [698 - 707] Pages: 10

DOI: 10.2174/1389201023666220801090810

Price: $65

Abstract

Introduction: The marine ecosystem contains many microbial species that produce unique, biologically active secondary metabolites with complex chemical structures. We aimed to isolate and identify bioactive compounds with antimicrobial properties produced by a facultative anaerobic strain of Bacillus subtilis (AU-RM-1), isolated from marine sediment.

Methodology: We optimized the AU-RM-1 growth conditions, analyzed its growth kinetics and its phenotypic and genotypic characteristics. Extracts of the isolate were studied for antimicrobial activity against three clinically important microorganisms and the structure of the active compound was identified by spectroscopy.

Results: Antimicrobial activity of the AU-RM-1 DMSO extract was evaluated by disc diffusion assay and by serial dilution. The AU-RM-1 DMSO extract showed antimicrobial activity against Candida albicans, Escherichia coli, and Klebsiella pneumoniae. The bioactive fraction of the AURM- 1 DMSO extract was separated by TLC-bioautography at Rf = 0.49. We then used scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to study the morphological changes in the bacterial cells treated with the isolated compound. It was observed that cells seemed to shrink, and the cell walls appeared to be damaged. A bioactive compound was identified, and its structure was examined by spectroscopic analysis: a LC-MS molecular ion peak (ESI) m/z (% of relative abundance) was calculated for C19H22O3: 298.38, and found to be C19H22O3 +1: 299.51 [M+1]. The chemical structure of the compound (2-(2-{8-methoxy-5aH,6H,7H,8H,9H, 9aH-naphtho[2,1-b]furan-7-yl}ethyl)furan) was determined using 1HNMR and 13CNMR, and its purity was confirmed by HPLC. Fifteen known and previously reported compounds were also identified, in addition to the novel compound; these were lipopeptides, antibiotics and chemical moieties.

Conclusion: The facultative anaerobic marine organism Bacillus subtilis (AU-RM-1) produces a novel bioactive secondary metabolite with antimicrobial and antifungal activity.

Keywords: Marine sediment, facultative, anaerobic bacteria, antimicrobial, activity, structural elucidation.

Graphical Abstract

[1]
Andryukov, B.; Mikhailov, V.; Besednova, N. The biotechnological potential of secondary metabolites from marine bacteria. J. Mar. Sci. Eng., 2019, 7(6), 176.
[http://dx.doi.org/10.3390/jmse7060176]
[2]
Kang, H.K.; Seo, C.H.; Park, Y. Marine peptides and their anti-infective activities. Mar. Drugs, 2015, 13(1), 618-654.
[http://dx.doi.org/10.3390/md13010618] [PMID: 25603351]
[3]
Andryukov, B.G.; Mikhaylov, V.V.; Besednova, N.N.; Zaporozhets, T.S.; Bynina, M.P.; Matosova, E.V. The bacteriocinogenic potential of marine microorganisms. Russ. J. Mar. Biol., 2018, 44(6), 433-441.
[http://dx.doi.org/10.1134/S1063074018060020]
[4]
Bar-On, Y.M.; Phillips, R.; Milo, R. The biomass distribution on earth. Proc. Natl. Acad. Sci., 2018, 115, 6506.
[http://dx.doi.org/10.1073/pnas.1711842115]
[5]
Kennedy, J.; Marchesi, J.R.; Dobson, A.D. Marine metagenomics: Strategies for the discovery of novel enzymes with biotechnological applications from marine environments. Microb. Cell Fact., 2008, 7(1), 27.
[http://dx.doi.org/10.1186/1475-2859-7-27] [PMID: 18717988]
[6]
Rampelotto, P.H. Resistance of microorganisms to extreme environmental conditions and its contribution to astrobiology. Sustainability (Basel), 2010, 2(6), 1602-1623.
[http://dx.doi.org/10.3390/su2061602]
[7]
Jensen, P.R.; Fenical, W. Strategies for the discovery of secondary metabolites from marine bacteria: Ecological perspectives. Annu. Rev. Microbiol., 1994, 48(1), 559-584.
[http://dx.doi.org/10.1146/annurev.mi.48.100194.003015] [PMID: 7826019]
[8]
Mondol, M.A.; Shin, H.J.; Islam, M.T. Diversity of secondary metabolites from marine Bacillus species: Chemistry and biological activity. Mar. Drugs, 2013, 11(8), 2846-2872.
[http://dx.doi.org/10.3390/md11082846] [PMID: 23941823]
[9]
Hamdache, A.; Lamarti, A.; Aleu, J.; Collado, I.G. Non-peptide metabolites from the genus Bacillus. J. Nat. Prod., 2011, 74(4), 893-899.
[http://dx.doi.org/10.1021/np100853e] [PMID: 21401023]
[10]
Choi, G.H.; Fugaban, J.I.I.; Dioso, C.M.; Vazquez Bucheli, J.E.; Holzapfel, W.H.; Todorov, S.D. Selection of bacteriocinogenic Bacillus sp. from traditional fermented korean food products with additional beneficial properties. Fermentation, 2021, 7(4), 271.
[http://dx.doi.org/10.3390/fermentation7040271]
[11]
Stein, T. Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Mol. Microbiol., 2005, 56(4), 845-857.
[http://dx.doi.org/10.1111/j.1365-2958.2005.04587.x] [PMID: 15853875]
[12]
Edwards, U.; Rogall, T.; Blöcker, H.; Emde, M.; Böttger, E.C. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res., 1989, 17(19), 7843-7853.
[http://dx.doi.org/10.1093/nar/17.19.7843] [PMID: 2798131]
[13]
Moussa, S.H.; Tayel, A.A.; Al-Hassan, A.A.; Farouk, A. Tetrazolium/formazan test as an efficient method to determine fungal chitosan antimicrobial activity. J. Mycol., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/753692]
[14]
Zhang, X.; Zhang, S.; Yang, Q.; Cao, W.; Xie, Y.; Qiu, P.; Wang, S. Simultaneous quantitative determination of 12 active components in yuanhu zhitong prescription by RP-HPLC coupled with photodiode array detection. Pharmacogn. Mag., 2015, 11(41), 61-68.
[http://dx.doi.org/10.4103/0973-1296.149705] [PMID: 25709212]
[15]
Salihoglu, B.; Neuer, S.; Painting, S.; Murtugudde, R.; Hofmann, E.E.; Steele, J.H.; Sabine, C.L. Bridging marine ecosystem and biogeochemistry research: Lessons and recommendations from comparative studies. J. Mar. Syst., 2013, 109(110), 161-175.
[http://dx.doi.org/10.1016/j.jmarsys.2012.07.005]
[16]
Jha, R.K.; Zi-rong, X. Biomedical compounds from marine organisms. Mar. Drugs, 2004, 2(3), 123-146.
[http://dx.doi.org/10.3390/md203123]
[17]
Srinivasan, R.; Kannappan, A.; Shi, C.; Lin, X. Marine bacterial secondary metabolites: A treasure house for structurally unique and effective antimicrobial compounds. Mar. Drugs, 2021, 19(10), 530.
[http://dx.doi.org/10.3390/md19100530] [PMID: 34677431]
[18]
Molinski, T.F.; Dalisay, D.S.; Lievens, S.L.; Saludes, J.P. Drug development from marine natural products. Nat. Rev. Drug Discov., 2009, 8(1), 69-85.
[http://dx.doi.org/10.1038/nrd2487] [PMID: 19096380]
[19]
Feling, R.H.; Buchanan, G.O.; Mincer, T.J.; Kauffman, C.A.; Jensen, P.R.; Fenical, W.; Salinosporamide, A. A highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew. Chem. Int. Ed., 2003, 42(3), 355-357.
[http://dx.doi.org/10.1002/anie.200390115] [PMID: 12548698]
[20]
Baruzzi, F.; Quintieri, L.; Morea, M.; Caputo, L. Antimicrobial compounds produced by bacillus spp. and applications in food. In: Science against Microbial Pathogens: Communicating Current Research and Technological Advances; Vilas, A.M., Ed.; Formatex: Badajoz, Spain, 2011; pp. 1102-1111.
[21]
Bonnet, M.; Lagier, J.C.; Raoult, D.; Khelaifia, S. Bacterial culture through selective and non-selective conditions: The evolution of culture media in clinical microbiology. New Microbes New Infect., 2019, 34, 100622.
[http://dx.doi.org/10.1016/j.nmni.2019.100622] [PMID: 31956419]
[22]
Makowski, K.; Matusiak, K.; Borowski, S.; Bielnicki, J.; Tarazewicz, A.; Maroszyńska, M.; Leszczewicz, M.; Powałowski, S.; Gutarowska, B. Optimization of a culture medium using the taguchi approach for the production of microorganisms active in odorous compound removal. Appl. Sci., 2017, 7(8), 756.
[http://dx.doi.org/10.3390/app7080756]
[23]
Kaspar, F.; Neubauer, P.; Gimpel, M. Bioactive secondary metabolites from Bacillus subtilis: A comprehensive review. J. Nat. Prod., 2019, 82(7), 2038-2053.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00110] [PMID: 31287310]
[24]
Inaoka, T.; Takahashi, K.; Ohnishi-Kameyama, M.; Yoshida, M.; Ochi, K. Guanine nucleotides guanosine 5′-diphosphate 3′-diphosphate and GTP co-operatively regulate the production of an antibiotic bacilysin in Bacillus subtilis. J. Biol. Chem., 2003, 278(4), 2169-2176.
[http://dx.doi.org/10.1074/jbc.M208722200] [PMID: 12372825]
[25]
Fan, H.; Ru, J.; Zhang, Y.; Wang, Q.; Li, Y. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Microbiol. Res., 2017, 199, 89-97.
[http://dx.doi.org/10.1016/j.micres.2017.03.004] [PMID: 28454713]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy