Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

The Combination of Baicalin with Knockdown of mir148a Gene Suppresses Cell Viability and Proliferation and Induces the Apoptosis and Autophagy of Human Glioblastoma Multiforme T98G and U87MG Cells

Author(s): Monika Paul-Samojedny*, Emilia Liduk, Małgorzata Kowalczyk, Paulina Borkowska, Aleksandra Zielińska, Renata Suchanek-Raif and Jan Kowalski

Volume 24, Issue 5, 2023

Published on: 27 September, 2022

Page: [686 - 697] Pages: 12

DOI: 10.2174/1389201023666220627144100

Price: $65

conference banner
Abstract

Background: Glioblastoma multiforme (GBM) is a heterogeneous and highly vascularized brain tumor that avoids apoptosis due to P-glycoprotein (P-gp) mediated multidrug resistance. Therefore, the development of new therapeutic strategies that induce apoptosis and inhibit proliferation is urgently warranted.

Objectives: We examined the efficacy of the combination of baicalin (BAI) and knockdown of miR-148a gene in human glioblastoma T98G and U87MG cell lines.

Methods: T98G and U87MG cells were transfected with miR148a siRNA. The influence of miR- 148a siRNA in combination with BAI on T98G and U87MG cell viability, proliferation, apoptosis, and autophagy was evaluated as well. Alterations in the mRNA expression of autophagy-related genes were analyzed using RT-qPCR.

Results: The transfection of T98G and U87MG cells with miR148a specific siRNA and exposition on baicalin led to a significant reduction in cell viability and proliferation, the accumulation of sub G1-phase cells and a reduced population of cells in the S and G2/M phases (only in U87MG cell line), increased population of cells in the S phase in T98G cell line and apoptosis or necrosis induction and induction of autophagy for both cell lines.

Conclusion: The siRNA-induced miR-148a mRNA knockdown in combination with baicalin may offer a novel therapeutic strategy to more effectively control the growth of human GBM cells. Thus, knockdown of this gene in combination with baicalin inhibits proliferation (cell cycle arrest in the S phase in T98G but not in U87MG cells), induces apoptosis, and regulates autophagy in T98G and U87MG cells. However, further studies are urgently needed to confirm a positive phenomenon for the treatment of GBM.

Keywords: Glioblastoma multiforme, baicalin, siRNA, miR148a, apoptosis, autophagy.

Graphical Abstract

[1]
Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; Curschmann, J.; Janzer, R.C.; Ludwin, S.K.; Gorlia, T.; Allgeier, A.; Lacombe, D.; Cairncross, J.G.; Eisenhauer, E.; Mirimanoff, R.O. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med., 2005, 352(10), 987-996.
[http://dx.doi.org/10.1056/NEJMoa043330] [PMID: 15758009]
[2]
Bezecny, P. Histone deacetylase inhibitors in glioblastoma: Pre-clinical and clinical experience. Med. Oncol., 2014, 31(6), 985.
[http://dx.doi.org/10.1007/s12032-014-0985-5] [PMID: 24838514]
[3]
Baek, D.; Villén, J.; Shin, C.; Camargo, F.D.; Gygi, S.P.; Bartel, D.P. The impact of microRNAs on protein output. Nature, 2008, 455(7209), 64-71.
[http://dx.doi.org/10.1038/nature07242] [PMID: 18668037]
[4]
Li, X.; Jin, P. Roles of small regulatory RNAs in determining neuronal identity. Nat. Rev. Neurosci., 2010, 11(5), 329-338.
[http://dx.doi.org/10.1038/nrn2739] [PMID: 20354535]
[5]
Møller, H.G.; Rasmussen, A.P.; Andersen, H.H.; Johnsen, K.B.; Henriksen, M.; Duroux, M. A systematic review of microRNA in glioblastoma multiforme: Micro-modulators in the mesenchymal mode of migration and invasion. Mol. Neurobiol., 2013, 47(1), 131-144.
[http://dx.doi.org/10.1007/s12035-012-8349-7] [PMID: 23054677]
[6]
Visani, M.; de Biase, D.; Marucci, G.; Cerasoli, S.; Nigrisoli, E.; Bacchi Reggiani, M.L.; Albani, F.; Baruzzi, A.; Pession, A. Expression of 19 microRNAs in glioblastoma and comparison with other brain neoplasia of grades I-III. Mol. Oncol., 2014, 8(2), 417-430.
[http://dx.doi.org/10.1016/j.molonc.2013.12.010] [PMID: 24412053]
[7]
Shea, A.; Harish, V.; Afzal, Z.; Chijioke, J.; Kedir, H.; Dusmatova, S.; Roy, A.; Ramalinga, M.; Harris, B.; Blancato, J.; Verma, M.; Kumar, D. MicroRNAs in glioblastoma multiforme pathogenesis and therapeutics. Cancer Med., 2016, 5(8), 1917-1946.
[http://dx.doi.org/10.1002/cam4.775] [PMID: 27282910]
[8]
Srinivasan, S.; Patric, I.R.; Somasundaram, K. A ten-microRNA expression signature predicts survival in glioblastoma. PLoS One, 2011, 6(3), e17438.
[http://dx.doi.org/10.1371/journal.pone.0017438] [PMID: 21483847]
[9]
Jiang, L.; Mao, P.; Song, L.; Wu, J.; Huang, J.; Lin, C.; Yuan, J.; Qu, L.; Cheng, S.Y.; Li, J. miR-182 as a prognostic marker for glioma progression and patient survival. Am. J. Pathol., 2010, 177(1), 29-38.
[http://dx.doi.org/10.2353/ajpath.2010.090812] [PMID: 20472885]
[10]
Guan, Y.; Mizoguchi, M.; Yoshimoto, K.; Hata, N.; Shono, T.; Suzuki, S.O.; Araki, Y.; Kuga, D.; Nakamizo, A.; Amano, T.; Ma, X.; Hayashi, K.; Sasaki, T. MiRNA-196 is upregulated in glioblastoma but not in anaplastic astrocytoma and has prognostic significance. Clin. Cancer Res., 2010, 16(16), 4289-4297.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0207] [PMID: 20601442]
[11]
Zhi, F.; Chen, X.; Wang, S.; Xia, X.; Shi, Y.; Guan, W.; Shao, N.; Qu, H.; Yang, C.; Zhang, Y.; Wang, Q.; Wang, R.; Zen, K.; Zhang, C.Y.; Zhang, J.; Yang, Y. The use of hsa-miR-21, hsa-miR-181b and hsa-miR-106a as prognostic indicators of astrocytoma. Eur. J. Cancer, 2010, 46(9), 1640-1649.
[http://dx.doi.org/10.1016/j.ejca.2010.02.003] [PMID: 20219352]
[12]
Kim, J.; Zhang, Y.; Skalski, M.; Hayes, J.; Kefas, B.; Schiff, D.; Purow, B.; Parsons, S.; Lawler, S.; Abounader, R. microRNA-148a is a prognostic oncomiR that targets MIG6 and BIM to regulate EGFR and apoptosis in glioblastoma. Cancer Res., 2014, 74(5), 1541-1553.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-1449] [PMID: 24425048]
[13]
Li, Y.; Deng, X.; Zeng, X.; Peng, X. The role of Mir-148a in cancer. J. Cancer, 2016, 7(10), 1233-1241.
[http://dx.doi.org/10.7150/jca.14616] [PMID: 27390598]
[14]
Li, Y.; Li, W.; Zeng, X.; Tang, X.; Zhang, S.; Zhong, F.; Peng, X.; Zhong, Y.; Rosol, T.J.; Deng, X.; Liu, Z.; Peng, S.; Peng, X. The role of microRNA-148a and downstream DLGAP1 on the molecular regulation and tumor progression on human glioblastoma. Oncogene, 2019, 38(47), 7234-7248.
[http://dx.doi.org/10.1038/s41388-019-0922-3] [PMID: 31477833]
[15]
Chen, S.; Ruan, Q.; Bedner, E.; Deptala, A.; Wang, X.; Hsieh, T.C.; Traganos, F.; Darzynkiewicz, Z. Effects of the flavonoid baicalin and its metabolite baicalein on androgen receptor expression, cell cycle progression and apoptosis of prostate cancer cell lines. Cell Prolif., 2001, 34(5), 293-304.
[http://dx.doi.org/10.1046/j.0960-7722.2001.00213.x] [PMID: 11591177]
[16]
Shieh, D.E.; Cheng, H.Y.; Yen, M.H.; Chiang, L.C.; Lin, C.C. Baicalin-induced apoptosis is mediated by Bcl-2-dependent, but not p53-dependent, pathway in human leukemia cell lines. Am. J. Chin. Med., 2006, 34(2), 245-261.
[http://dx.doi.org/10.1142/S0192415X06003801] [PMID: 16552836]
[17]
Ma, Z.; Otsuyama, K.; Liu, S.; Abroun, S.; Ishikawa, H.; Tsuyama, N.; Obata, M.; Li, F.J.; Zheng, X.; Maki, Y.; Miyamoto, K.; Kawano, M.M. Baicalein, a component of Scutellaria radix from Huang-Lian-Jie-Du-Tang (HLJDT), leads to suppression of proliferation and induction of apoptosis in human myeloma cells. Blood, 2005, 105(8), 3312-3318.
[http://dx.doi.org/10.1182/blood-2004-10-3915] [PMID: 15626742]
[18]
Liu, Y.; Hong, Z.; Chen, P.; Wang, J.; Zhou, Y.; Huang, J. Baicalin inhibits growth and induces apoptosis of human osteosarcoma cells by suppressing the AKT pathway. Oncol. Lett., 2019, 18(3), 3188-3194.
[http://dx.doi.org/10.3892/ol.2019.10617] [PMID: 31452795]
[19]
Liu, D.K.; Dong, H.F.; Liu, R.F.; Xiao, X.L. Baicalin inhibits the TGF-β1/p-Smad3 pathway to suppress epithelial-mesenchymal transition-induced metastasis in breast cancer. Oncotarget, 2020, 11(29), 2863-2872.
[http://dx.doi.org/10.18632/oncotarget.27677] [PMID: 32754303]
[20]
Stein, G.H. T98G: An anchorage-independent human tumor cell line that exhibits stationary phase G1 arrest in vitro. J. Cell. Physiol., 1979, 99(1), 43-54.
[http://dx.doi.org/10.1002/jcp.1040990107] [PMID: 222778]
[21]
Paul-Samojedny, M.; Suchanek, R.; Borkowska, P.; Pudełko, A.; Owczarek, A.; Kowalczyk, M.; Machnik, G.; Fila-Daniłow, A.; Kowalski, J. Knockdown of AKT3 (PKBγ) and PI3KCA suppresses cell viability and proliferation and induces the apoptosis of glioblastoma multiforme T98G cells. BioMed Res. Int., 2014, 2014, 768181.
[http://dx.doi.org/10.1155/2014/768181] [PMID: 24967401]
[22]
Darzynkiewicz, Z.; Robinson, J.P.; Crissman, H.A. Flow cytometry. In: Methods in Cell Biology; Academic Press, Inc.: San Diego, 1994.
[23]
Henery, S.; George, T.; Hall, B.; Basiji, D.; Ortyn, W.; Morrissey, P. Quantitative image based apoptotic index measurement using multispectral imaging flow cytometry: A comparison with standard photometric methods. Apoptosis, 2008, 13(8), 1054-1063.
[http://dx.doi.org/10.1007/s10495-008-0227-4] [PMID: 18543109]
[24]
Calin, G.A.; Croce, C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer, 2006, 6(11), 857-866.
[http://dx.doi.org/10.1038/nrc1997] [PMID: 17060945]
[25]
Di Leva, G.; Garofalo, M.; Croce, C.M. MicroRNAs in cancer. Annu. Rev. Pathol., 2014, 9(1), 287-314.
[http://dx.doi.org/10.1146/annurev-pathol-012513-104715] [PMID: 24079833]
[26]
Ling, H.; Fabbri, M.; Calin, G.A. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat. Rev. Drug Discov., 2013, 12(11), 847-865.
[http://dx.doi.org/10.1038/nrd4140] [PMID: 24172333]
[27]
Iorio, M.V.; Croce, C.M. MicroRNAs in cancer: Small molecules with a huge impact. J. Clin. Oncol., 2009, 27(34), 5848-5856.
[http://dx.doi.org/10.1200/JCO.2009.24.0317] [PMID: 19884536]
[28]
Li, Y.; Kong, D.; Wang, Z.; Sarkar, F.H. Regulation of microRNAs by natural agents: An emerging field in chemoprevention and chemotherapy research. Pharm. Res., 2010, 27(6), 1027-1041.
[http://dx.doi.org/10.1007/s11095-010-0105-y] [PMID: 20306121]
[29]
Li-Weber, M. New therapeutic aspects of flavones: The anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat. Rev., 2009, 35(1), 57-68.
[http://dx.doi.org/10.1016/j.ctrv.2008.09.005] [PMID: 19004559]
[30]
Zhu, Y.; Fang, J.; Wang, H.; Fei, M.; Tang, T.; Liu, K.; Niu, W.; Zhou, Y. Baicalin suppresses proliferation, migration, and invasion in human glioblastoma cells via Ca2+-dependent pathway. Drug Des. Devel. Ther., 2018, 12(12), 3247-3261.
[http://dx.doi.org/10.2147/DDDT.S176403] [PMID: 30323558]
[31]
Leung, H.W.; Yang, W.H.; Lai, M.Y.; Lin, C.J.; Lee, H.Z. Inhibition of 12-lipoxygenase during baicalein-induced human lung nonsmall carcinoma H460 cell apoptosis. Food Chem. Toxicol., 2007, 45(3), 403-411.
[http://dx.doi.org/10.1016/j.fct.2006.08.021] [PMID: 17050058]
[32]
Bie, B.; Sun, J.; Li, J.; Guo, Y.; Jiang, W.; Huang, C.; Yang, J.; Li, Z. Baicalein, a natural anti-cancer compound, alters MicroRNA expression profiles in Bel-7402 human hepatocellular carcinoma cells. Cell. Physiol. Biochem., 2017, 41(4), 1519-1531.
[http://dx.doi.org/10.1159/000470815] [PMID: 28351032]
[33]
Yu, Y.; Pei, M.; Li, L. Baicalin induces apoptosis in hepatic cancer cells in vitro and suppresses tumor growth in vivo. Int. J. Clin. Exp. Med., 2015, 8(6), 8958-8967.
[PMID: 26309548]
[34]
Song, K.S.; Kim, J.S.; Yun, E.J.; Kim, Y.R.; Seo, K.S.; Park, J.H.; Jung, Y.J.; Park, J.I.; Kweon, G.R.; Yoon, W.H.; Lim, K.; Hwang, B.D. Rottlerin induces autophagy and apoptotic cell death through a PKC-delta-independent pathway in HT1080 human fibrosarcoma cells: The protective role of autophagy in apoptosis. Autophagy, 2008, 4(5), 650-658.
[http://dx.doi.org/10.4161/auto.6057] [PMID: 18424913]
[35]
Janku, F.; McConkey, D.J.; Hong, D.S.; Kurzrock, R. Autophagy as a target for anticancer therapy. Nat. Rev. Clin. Oncol., 2011, 8(9), 528-539.
[http://dx.doi.org/10.1038/nrclinonc.2011.71] [PMID: 21587219]
[36]
Maiuri, M.C.; Zalckvar, E.; Kimchi, A.; Kroemer, G. Self-eating and self-killing: Crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol., 2007, 8(9), 741-752.
[http://dx.doi.org/10.1038/nrm2239] [PMID: 17717517]
[37]
Thorpe, L.M.; Yuzugullu, H.; Zhao, J.J. PI3K in cancer: Divergent roles of isoforms, modes of activation and therapeutic targeting. Nat. Rev. Cancer, 2015, 15(1), 7-24.
[http://dx.doi.org/10.1038/nrc3860] [PMID: 25533673]
[38]
Elgendy, M.; Ciro, M.; Abdel-Aziz, A.K.; Belmonte, G.; Dal Zuffo, R.; Mercurio, C.; Miracco, C.; Lanfrancone, L.; Foiani, M.; Minucci, S. Beclin 1 restrains tumorigenesis through Mcl-1 destabilization in an autophagy-independent reciprocal manner. Nat. Commun., 2014, 5(1), 5637.
[http://dx.doi.org/10.1038/ncomms6637] [PMID: 25472497]
[39]
Roth, P.; Wischhusen, J.; Happold, C.; Chandran, P.A.; Hofer, S.; Eisele, G.; Weller, M.; Keller, A. A specific miRNA signature in the peripheral blood of glioblastoma patients. J. Neurochem., 2011, 118(3), 449-457.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07307.x] [PMID: 21561454]
[40]
Hua, D.; Mo, F.; Ding, D.; Li, L.; Han, X.; Zhao, N.; Foltz, G.; Lin, B.; Lan, Q.; Huang, Q. A catalogue of glioblastoma and brain MicroRNAs identified by deep sequencing. OMICS, 2012, 16(12), 690-699.
[http://dx.doi.org/10.1089/omi.2012.0069] [PMID: 23215807]
[41]
Wang, H.; Pan, J.Q.; Luo, L.; Ning, X.J.; Ye, Z.P.; Yu, Z.; Li, W.S. NF-κB induces miR-148a to sustain TGF-β/Smad signaling activation in glioblastoma. Mol. Cancer, 2015, 14(1), 2.
[http://dx.doi.org/10.1186/1476-4598-14-2] [PMID: 25971746]
[42]
Dafre, A.L.; Schmitz, A.E.; Maher, P. Methylglyoxal-induced AMPK activation leads to autophagic degradation of thioredoxin 1 and glyoxalase 2 in HT22 nerve cells. Free Radic. Biol. Med., 2017, 108, 270-279.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.03.028] [PMID: 28363601]
[43]
Tomasiak, M.; Cichacz, B.; Pedrycz, A. Authophagy-adaptive molecular mechanisms in conditions of starvation. Pol. Hyperb. Res., 2015, 3(52), 71-75.
[http://dx.doi.org/10.1515/phr-2015-0018]
[44]
Hur, E.M.; Zhou, F.Q. GSK3 signalling in neural development. Nat. Rev. Neurosci., 2010, 11(8), 539-551.
[http://dx.doi.org/10.1038/nrn2870] [PMID: 20648061]
[45]
Maurer, U.; Preiss, F.; Brauns-Schubert, P.; Schlicher, L.; Charvet, C. GSK-3 - at the crossroads of cell death and survival. J. Cell Sci., 2014, 127(Pt 7), 1369-1378.
[http://dx.doi.org/10.1242/jcs.138057] [PMID: 24687186]
[46]
Gammoh, N.; Florey, O.; Overholtzer, M.; Jiang, X. Interaction between FIP200 and ATG16L1 distinguishes ULK1 complex-dependent and -independent autophagy. Nat. Struct. Mol. Biol., 2013, 20(2), 144-149.
[http://dx.doi.org/10.1038/nsmb.2475] [PMID: 23262492]
[47]
Yao, J.; Jia, L.; Khan, N.; Lin, C.; Mitter, S.K.; Boulton, M.E.; Dunaief, J.L.; Klionsky, D.J.; Guan, J.L.; Thompson, D.A.; Zacks, D.N. Deletion of autophagy inducer RB1CC1 results in degeneration of the retinal pigment epithelium. Autophagy, 2015, 11(6), 939-953.
[http://dx.doi.org/10.1080/15548627.2015.1041699] [PMID: 26075877]
[48]
Hara, T.; Takamura, A.; Kishi, C.; Iemura, S.; Natsume, T.; Guan, J.L.; Mizushima, N. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol., 2008, 181(3), 497-510.
[http://dx.doi.org/10.1083/jcb.200712064] [PMID: 18443221]
[49]
Hosokawa, N.; Hara, T.; Kaizuka, T.; Kishi, C.; Takamura, A.; Miura, Y.; Iemura, S.; Natsume, T.; Takehana, K.; Yamada, N.; Guan, J.L.; Oshiro, N.; Mizushima, N. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell, 2009, 20(7), 1981-1991.
[http://dx.doi.org/10.1091/mbc.e08-12-1248] [PMID: 19211835]
[50]
Karmakar, S.; Weinberg, M.S.; Banik, N.L.; Patel, S.J.; Ray, S.K. Activation of multiple molecular mechanisms for apoptosis in human malignant glioblastoma T98G and U87MG cells treated with sulforaphane. Neuroscience, 2006, 141(3), 1265-1280.
[http://dx.doi.org/10.1016/j.neuroscience.2006.04.075] [PMID: 16765523]
[51]
Paul-Samojedny, M.; Łasut, B.; Pudełko, A.; Fila-Daniłow, A.; Kowalczyk, M.; Suchanek-Raif, R.; Zieliński, M.; Borkowska, P.; Kowalski, J. Methylglyoxal (MGO) inhibits proliferation and induces cell death of human glioblastoma multiforme T98G and U87MG cells. Biomed. Pharmacother., 2016, 80, 236-243.
[http://dx.doi.org/10.1016/j.biopha.2016.03.021] [PMID: 27133062]
[52]
Zhang, X.H.; Feng, R.; Lv, M.; Jiang, Q.; Zhu, H.H.; Qing, Y.H.; Bao, J.L.; Huang, X.J.; Zhengc, X.L. Arsenic trioxide induces different gene expression profiles of genes related to growth and apoptosis in glioma cells dependent on the p53 status. Leuk. Res., 2013, 37(12), 1719-1725.
[http://dx.doi.org/10.1016/j.leukres.2013.09.019] [PMID: 24211095]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy