Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Resveratrol Effects on Molecular Pathways and MicroRNAs in Gastrointestinal Cancers

Author(s): Amirhossein Davoodvandi, Pouya Mahdavi Sharif, Parisa Maleki Dana and Zatollah Asemi*

Volume 30, Issue 7, 2023

Published on: 16 September, 2022

Page: [820 - 840] Pages: 21

DOI: 10.2174/0929867329666220729153654

Price: $65

Abstract

Gastrointestinal (GI) cancers are one of the most prevalent types of neoplasms worldwide. The incidence of GI cancers is increasing rapidly. Despite all advances in the management of GI cancers, treatment options for these disorders are still limited and there are no effective therapeutic approaches. Hence, finding new treatment strategies seems to be necessary to decrease mortality in patients with such cancers. The application of natural products has found a prominent role in the management of some neoplastic disorders. Resveratrol is a phytochemical found in various fruits and plants such as red grapes and tea. Recently, the effects of resveratrol on the microRNAs in the management of some neoplastic disorders have been investigated. This review is aimed to illustrate the molecular pathways related to resveratrol and evaluate the impacts of resveratrol on the different microRNAs in the milieu of the prevention and treatment of GI cancers.

Keywords: Resveratrol, gastrointestinal, cancer, microRNA, phytochemical, neoplasm.

[1]
Murphy, N.; Jenab, M.; Gunter, M.J. Adiposity and gastrointestinal cancers: Epidemiology, mechanisms and future directions. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(11), 659-670.
[http://dx.doi.org/10.1038/s41575-018-0038-1] [PMID: 29970888]
[2]
Seitz, H.K.; Cho, C.H. Contribution of alcohol and tobacco use in gastrointestinal cancer development. Cancer Epidemiology; Springer, 2009, pp. 217-241.
[3]
Aituov, B.; Duisembekova, A.; Bulenova, A.; Alibek, K. Pathogen-driven gastrointestinal cancers: Time for a change in treatment paradigm? Infect. Agent. Cancer, 2012, 7(1), 18.
[http://dx.doi.org/10.1186/1750-9378-7-18] [PMID: 22873119]
[4]
Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M. Global cancer observatory. In: Cancer today; WHO: Lyon, France, 2018.
[5]
Ye, C.; Hu, Y.; Wang, J. MicroRNA-377 targets zinc finger E-box-binding homeobox 2 to inhibit cell proliferation and invasion of cervical cancer. Oncol. Res., 2019, 27(2), 183-192.
[http://dx.doi.org/10.3727/096504018X15201124340860] [PMID: 29523224]
[6]
García-Becerra, R.; Santos, N.; Díaz, L.; Camacho, J. Mechanisms of resistance to endocrine therapy in breast cancer: Focus on signaling pathways, miRNAs and genetically based resistance. Int. J. Mol. Sci., 2012, 14(1), 108-145.
[http://dx.doi.org/10.3390/ijms14010108] [PMID: 23344024]
[7]
Lei, S.L.; Zhao, H.; Yao, H.L.; Chen, Y.; Lei, Z.D.; Liu, K.J.; Yang, Q. Regulatory roles of microRNA-708 and microRNA-31 in proliferation, apoptosis and invasion of colorectal cancer cells. Oncol. Lett., 2014, 8(4), 1768-1774.
[http://dx.doi.org/10.3892/ol.2014.2328] [PMID: 25202407]
[8]
Lima, C.R.; Geraldo, M.V.; Fuziwara, C.S.; Kimura, E.T.; Santos, M.F. MiRNA-146b-5p upregulates migration and invasion of different papillary thyroid carcinoma cells. BMC Cancer, 2016, 16(1), 108.
[http://dx.doi.org/10.1186/s12885-016-2146-z] [PMID: 26883911]
[9]
Zheng, Q.; Chen, C.; Guan, H.; Kang, W.; Yu, C. Prognostic role of microRNAs in human gastrointestinal cancer: A systematic review and meta-analysis. Oncotarget, 2017, 8(28), 46611-46623.
[http://dx.doi.org/10.18632/oncotarget.16679] [PMID: 28402940]
[10]
Buckley, A.M.; Lynam-Lennon, N.; O’Neill, H.; O’Sullivan, J. Targeting hallmarks of cancer to enhance radiosensitivity in gastrointestinal cancers. Nat. Rev. Gastroenterol. Hepatol., 2020, 17(5), 298-313.
[http://dx.doi.org/10.1038/s41575-019-0247-2] [PMID: 32005946]
[11]
Waltenberger, B.; Mocan, A.; Šmejkal, K.; Heiss, E.; Atanasov, A. Natural products to counteract the epidemic of cardiovascular and metabolic disorders. Molecules, 2016, 21(6), 807.
[http://dx.doi.org/10.3390/molecules21060807] [PMID: 27338339]
[12]
Bose, S.; Malik, J.; Mandal, S.C. Application of Phytochemicals in Pharmaceuticals. Advances in Pharmaceutical Biotechnology; Springer, 2020, pp. 55-68.
[13]
Charles, D.J. Natural antioxidants. Antioxidant properties of spices, herbs and other sources; Springer, 2012, pp. 39-64.
[http://dx.doi.org/10.1007/978-1-4614-4310-0_3]
[14]
Jasiński, M.; Jasińska, L.; Ogrodowczyk, M. Resveratrol in prostate diseases-a short review. Cent. Eur. J. Urol., 2013, 66(2), 144-149.
[PMID: 24579014]
[15]
Carrizzo, A.; Forte, M.; Damato, A.; Trimarco, V.; Salzano, F.; Bartolo, M.; Maciag, A.; Puca, A.A.; Vecchione, C. Antioxidant effects of resveratrol in cardiovascular, cerebral and metabolic diseases. Food Chem. Toxicol., 2013, 61, 215-226.
[http://dx.doi.org/10.1016/j.fct.2013.07.021] [PMID: 23872128]
[16]
Szkudelski, T.; Szkudelska, K. Resveratrol and diabetes: From animal to human studies. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(6), 1145-1154.
[http://dx.doi.org/10.1016/j.bbadis.2014.10.013]
[17]
Carter, L.G.; D’Orazio, J.A.; Pearson, K.J. Resveratrol and cancer: Focus on in vivo evidence. Endocr. Relat. Cancer, 2014, 21(3), R209-R225.
[http://dx.doi.org/10.1530/ERC-13-0171] [PMID: 24500760]
[18]
Csiszar, A. Anti-inflammatory effects of resveratrol: Possible role in prevention of age-related cardiovascular disease. Ann. N. Y. Acad. Sci., 2011, 1215(1), 117-122.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05848.x] [PMID: 21261649]
[19]
Liu, P.; Liang, H.; Xia, Q.; Li, P.; Kong, H.; Lei, P.; Wang, S.; Tu, Z. Resveratrol induces apoptosis of pancreatic cancers cells by inhibiting miR-21 regulation of BCL-2 expression. Clin. Transl. Oncol., 2013, 15(9), 741-746.
[http://dx.doi.org/10.1007/s12094-012-0999-4] [PMID: 23359184]
[20]
Karimi Dermani, F.; Saidijam, M.; Amini, R.; Mahdavinezhad, A.; Heydari, K.; Najafi, R. Resveratrol inhibits proliferation, invasion, and epithelial–mesenchymal transition by increasing miR-200c expression in HCT-116 colorectal cancer cells. J. Cell. Biochem., 2017, 118(6), 1547-1555.
[http://dx.doi.org/10.1002/jcb.25816] [PMID: 27918105]
[21]
Mo, W.; Xu, X.; Xu, L.; Wang, F.; Ke, A.; Wang, X.; Guo, C. Resveratrol inhibits proliferation and induces apoptosis through the hedgehog signaling pathway in pancreatic cancer cell. Pancreatology, 2011, 11(6), 601-609.
[http://dx.doi.org/10.1159/000333542] [PMID: 22301921]
[22]
Sales, J.M.; Resurreccion, A.V.A. Resveratrol in peanuts. Crit. Rev. Food Sci. Nutr., 2014, 54(6), 734-770.
[http://dx.doi.org/10.1080/10408398.2011.606928] [PMID: 24345046]
[23]
Chang, C.H.; Lee, C.Y.; Lu, C.C.; Tsai, F.J.; Hsu, Y.M.; Tsao, J.W.; Juan, Y.N.; Chiu, H.Y.; Yang, J.S.; Wang, C.C. Resveratrol-induced autophagy and apoptosis in cisplatin-resistant human oral cancer CAR cells: A key role of AMPK and Akt/mTOR signaling. Int. J. Oncol., 2017, 50(3), 873-882.
[http://dx.doi.org/10.3892/ijo.2017.3866] [PMID: 28197628]
[24]
Lin, F.Y.; Hsieh, Y.H.; Yang, S.F.; Chen, C.T.; Tang, C.H.; Chou, M.Y.; Chuang, Y.T.; Lin, C.W.; Chen, M.K. Resveratrol suppresses TPA-induced matrix metalloproteinase-9 expression through the inhibition of MAPK pathways in oral cancer cells. J. Oral Pathol. Med., 2015, 44(9), 699-706.
[http://dx.doi.org/10.1111/jop.12288] [PMID: 25401496]
[25]
Dalirsani, Z.; Pakfetrat, A.; Delavarian, Z.; Hashemy, S.I.; Vazifeh Mostaan, L.; Abdollahnejad, M.; Fani Pakdel, A.; Banihashemi, E.; Ghazi, A. Comparison of matrix metalloproteinases 2 and 9 levels in saliva and serum of patients with head and neck squamous cell carcinoma and healthy subjects. Int. J. Cancer Manag., 2019.
[http://dx.doi.org/10.5812/ijcm.90249]
[26]
Yu, X.D.; Yang, J.; Zhang, W.L.; Liu, D.X. Resveratrol inhibits oral squamous cell carcinoma through induction of apoptosis and G2/M phase cell cycle arrest. Tumour Biol., 2016, 37(3), 2871-2877.
[http://dx.doi.org/10.1007/s13277-015-3793-4] [PMID: 26409447]
[27]
Zhou, H.B.; Yan, Y.; Sun, Y-N.; Zhu, J-R. Resveratrol induces apoptosis in human esophageal carcinoma cells. World J. Gastroenterol., 2003, 9(3), 408-411.
[http://dx.doi.org/10.3748/wjg.v9.i3.408] [PMID: 12632486]
[28]
Woodall, C.E.; Li, Y.; Liu, Q.H.; Wo, J.; Martin, R.C.G. Chemoprevention of metaplasia initiation and carcinogenic progression to esophageal adenocarcinoma by resveratrol supplementation. Anticancer Drugs, 2009, 20(6), 437-443.
[http://dx.doi.org/10.1097/CAD.0b013e32832afb95] [PMID: 19398904]
[29]
Li, Z.G.; Hong, T.; Shimada, Y.; Komoto, I.; Kawabe, A.; Ding, Y.; Kaganoi, J.; Hashimoto, Y.; Imamura, M. Suppression of N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumorigenesis in F344 rats by resveratrol. Carcinogenesis, 2002, 23(9), 1531-1536.
[http://dx.doi.org/10.1093/carcin/23.9.1531] [PMID: 12189197]
[30]
Pacheco-Pinedo, E.C.; Durham, A.C.; Stewart, K.M.; Goss, A.M.; Lu, M.M.; DeMayo, F.J.; Morrisey, E.E. Wnt/β-catenin signaling accelerates mouse lung tumorigenesis by imposing an embryonic distal progenitor phenotype on lung epithelium. J. Clin. Invest., 2011, 121(5), 1935-1945.
[http://dx.doi.org/10.1172/JCI44871] [PMID: 21490395]
[31]
Dai, H.; Deng, H.B.; Wang, Y.H.; Guo, J.J. Resveratrol inhibits the growth of gastric cancer via the Wnt/β-catenin pathway. Oncol. Lett., 2018, 16(2), 1579-1583.
[http://dx.doi.org/10.3892/ol.2018.8772] [PMID: 30008840]
[32]
Thayer, S.P.; di Magliano, M.P.; Heiser, P.W.; Nielsen, C.M.; Roberts, D.J.; Lauwers, G.Y.; Qi, Y.P.; Gysin, S.; Castillo, C.F.; Yajnik, V.; Antoniu, B.; McMahon, M.; Warshaw, A.L.; Hebrok, M. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature, 2003, 425(6960), 851-856.
[http://dx.doi.org/10.1038/nature02009] [PMID: 14520413]
[33]
Gao, Q.; Yuan, Y.; Gan, H.Z.; Peng, Q. Resveratrol inhibits the hedgehog signaling pathway and epithelial-mesenchymal transition and suppresses gastric cancer invasion and metastasis. Oncol. Lett., 2015, 9(5), 2381-2387.
[http://dx.doi.org/10.3892/ol.2015.2988] [PMID: 26137075]
[34]
MacDonald, J.S.; Schein, P.S.; Woolley, P.V.; Smythe, T.; Ueno, W.; Hoth, D.; Smith, F.; Boiron, M.; Gisselbrecht, C.; Brunet, R.; Lagarde, C. 5-Fluorouracil, doxorubicin, and mitomycin (FAM) combination chemotherapy for advanced gastric cancer. Ann. Intern. Med., 1980, 93(4), 533-536.
[http://dx.doi.org/10.7326/0003-4819-93-4-533] [PMID: 7436184]
[35]
Morikawa, Y.; Kezuka, C.; Endo, S.; Ikari, A.; Soda, M.; Yamamura, K.; Toyooka, N.; El-Kabbani, O.; Hara, A.; Matsunaga, T. Acquisition of doxorubicin resistance facilitates migrating and invasive potentials of gastric cancer MKN45 cells through up-regulating aldo–keto reductase 1B10. Chem. Biol. Interact., 2015, 230, 30-39.
[http://dx.doi.org/10.1016/j.cbi.2015.02.005] [PMID: 25686905]
[36]
Xu, J.; Liu, D.; Niu, H.; Zhu, G.; Xu, Y.; Ye, D.; Li, J.; Zhang, Q. Resveratrol reverses Doxorubicin resistance by inhibiting epithelial-mesenchymal transition (EMT) through modulating PTEN/Akt signaling pathway in gastric cancer. J. Exp. Clin. Cancer Res., 2017, 36(1), 19.
[http://dx.doi.org/10.1186/s13046-016-0487-8] [PMID: 28126034]
[37]
Miki, H.; Uehara, N.; Kimura, A.; Sasaki, T.; Yuri, T.; Yoshizawa, K.; Tsubura, A. Resveratrol induces apoptosis via ROS-triggered autophagy in human colon cancer cells. Int. J. Oncol., 2012, 40(4), 1020-1028.
[http://dx.doi.org/10.3892/ijo.2012.1325] [PMID: 22218562]
[38]
Wang, Z.; Li, W.; Meng, X.; Jia, B. Resveratrol induces gastric cancer cell apoptosis via reactive oxygen species, but independent of sirtuin1. Clin. Exp. Pharmacol. Physiol., 2012, 39(3), 227-232.
[http://dx.doi.org/10.1111/j.1440-1681.2011.05660.x] [PMID: 22211760]
[39]
Jing, X.; Cheng, W.; Wang, S.; Li, P.; He, L. Resveratrol induces cell cycle arrest in human gastric cancer MGC803 cells via the PTEN-regulated PI3K/Akt signaling pathway. Oncol. Rep., 2016, 35(1), 472-478.
[http://dx.doi.org/10.3892/or.2015.4384] [PMID: 26530632]
[40]
Razavi, M.; Jamilian, M.; Karamali, M.; Bahmani, F.; Aghadavod, E.; Asemi, Z. The effects of vitamin D-K-calcium co-supplementation on endocrine, inflammation, and oxidative stress biomarkers in vitamin D-deficient women with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial. Horm. Metab. Res., 2016, 48(7), 446-451.
[http://dx.doi.org/10.1055/s-0042-104060] [PMID: 27050252]
[41]
Yan, Y.; Zhou, C.; Li, J.; Chen, K.; Wang, G.; Wei, G.; Chen, M.; Li, X. Resveratrol inhibits hepatocellular carcinoma progression driven by hepatic stellate cells by targeting Gli-1. Mol. Cell. Biochem., 2017, 434(1-2), 17-24.
[http://dx.doi.org/10.1007/s11010-017-3031-z] [PMID: 28455791]
[42]
Choi, H.Y.; Chong, S.A.; Nam, M.J. Resveratrol induces apoptosis in human SK-HEP-1 hepatic cancer cells. Cancer Genom. Proteom., 2009, 6(5), 263-268.
[PMID: 19996131]
[43]
Delmas, D.; Jannin, B.; Cherkaoui Malki, M.; Latruffe, N. Inhibitory effect of resveratrol on the proliferation of human and rat hepatic derived cell lines. Oncol. Rep., 2000, 7(4), 847-852.
[http://dx.doi.org/10.3892/or.7.4.847] [PMID: 10854556]
[44]
Gherardi, E.; Birchmeier, W.; Birchmeier, C.; Woude, G.V. Targeting MET in cancer: Rationale and progress. Nat. Rev. Cancer, 2012, 12(2), 89-103.
[http://dx.doi.org/10.1038/nrc3205] [PMID: 22270953]
[45]
Marano, L.; Chiari, R.; Fabozzi, A.; De Vita, F.; Boccardi, V.; Roviello, G.; Petrioli, R.; Marrelli, D.; Roviello, F.; Patriti, A. c-Met targeting in advanced gastric cancer: An open challenge. Cancer Lett., 2015, 365(1), 30-36.
[http://dx.doi.org/10.1016/j.canlet.2015.05.028] [PMID: 26049023]
[46]
Burggraaf, J.; Kamerling, I.M.C.; Gordon, P.B.; Schrier, L.; de Kam, M.L.; Kales, A.J.; Bendiksen, R.; Indrevoll, B.; Bjerke, R.M.; Moestue, S.A.; Yazdanfar, S.; Langers, A.M.J.; Swaerd-Nordmo, M.; Torheim, G.; Warren, M.V.; Morreau, H.; Voorneveld, P.W.; Buckle, T.; van Leeuwen, F.W.B.; Ødegårdstuen, L.I.; Dalsgaard, G.T.; Healey, A.; Hardwick, J.C.H. Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against c-Met. Nat. Med., 2015, 21(8), 955-961.
[http://dx.doi.org/10.1038/nm.3641] [PMID: 26168295]
[47]
You, H.; Ding, W.; Dang, H.; Jiang, Y.; Rountree, C.B. c-Met represents a potential therapeutic target for personalized treatment in hepatocellular carcinoma. Hepatology, 2011, 54(3), 879-889.
[http://dx.doi.org/10.1002/hep.24450] [PMID: 21618573]
[48]
Gao, F.; Deng, G.; Liu, W.; Zhou, K.; Li, M. Resveratrol suppresses human hepatocellular carcinoma via targeting HGF-c-Met signaling pathway. Oncol. Rep., 2017, 37(2), 1203-1211.
[http://dx.doi.org/10.3892/or.2017.5347] [PMID: 28075467]
[49]
Zhang, B.; Yin, X.; Sui, S. Resveratrol inhibited the progression of human hepatocellular carcinoma by inducing autophagy via regulating p53 and the phosphoinositide 3 kinase/protein kinase B pathway. Oncol. Rep., 2018, 40(5), 2758-2765.
[http://dx.doi.org/10.3892/or.2018.6648] [PMID: 30132535]
[50]
Vega-Rubín-de-Celis, S. The role of beclin 1-dependent autophagy in cancer. Biology (Basel), 2019, 9(1), 4.
[http://dx.doi.org/10.3390/biology9010004] [PMID: 31877888]
[51]
Howells, L.M.; Berry, D.P.; Elliott, P.J.; Jacobson, E.W.; Hoffmann, E.; Hegarty, B.; Brown, K.; Steward, W.P.; Gescher, A.J. Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases--safety, pharmacokinetics, and pharmacodynamics. Cancer Prev. Res. (Phila.), 2011, 4(9), 1419-1425.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0148] [PMID: 21680702]
[52]
Wu, X.Z. Origin of cancer stem cells: The role of self-renewal and differentiation. Ann. Surg. Oncol., 2008, 15(2), 407-414.
[http://dx.doi.org/10.1245/s10434-007-9695-y] [PMID: 18043974]
[53]
Gangemi, R.; Paleari, L.; Orengo, A.; Cesario, A.; Chessa, L.; Ferrini, S.; Russo, P. Cancer stem cells: A new paradigm for understanding tumor growth and progression and drug resistance. Curr. Med. Chem., 2009, 16(14), 1688-1703.
[http://dx.doi.org/10.2174/092986709788186147] [PMID: 19442140]
[54]
Hoca, M.; Becer, E.; Kabadayı, H.; Yücecan, S.; Vatansever, H.S. The effect of resveratrol and quercetin on epithelial-mesenchymal transition in pancreatic cancer stem cell. Nutr. Cancer, 2020, 72(7), 1231-1242.
[http://dx.doi.org/10.1080/01635581.2019.1670853] [PMID: 31595775]
[55]
Shah, A.N.; Summy, J.M.; Zhang, J.; Park, S.I.; Parikh, N.U.; Gallick, G.E. Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann. Surg. Oncol., 2007, 14(12), 3629-3637.
[http://dx.doi.org/10.1245/s10434-007-9583-5] [PMID: 17909916]
[56]
Moore, M.J.; Goldstein, D.; Hamm, J.; Figer, A.; Hecht, J.R.; Gallinger, S.; Au, H.J.; Murawa, P.; Walde, D.; Wolff, R.A.; Campos, D.; Lim, R.; Ding, K.; Clark, G.; Voskoglou-Nomikos, T.; Ptasynski, M.; Parulekar, W. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: A phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol., 2007, 25(15), 1960-1966.
[http://dx.doi.org/10.1200/JCO.2006.07.9525] [PMID: 17452677]
[57]
Zhou, C.; Qian, W.; Ma, J.; Cheng, L.; Jiang, Z.; Yan, B.; Li, J.; Duan, W.; Sun, L.; Cao, J.; Wang, F.; Wu, E.; Wu, Z.; Ma, Q.; Li, X. Resveratrol enhances the chemotherapeutic response and reverses the stemness induced by gemcitabine in pancreatic cancer cells via targeting SREBP1. Cell Prolif., 2019, 52(1), e12514.
[http://dx.doi.org/10.1111/cpr.12514] [PMID: 30341797]
[58]
Xiao, Y.; Qin, T.; Sun, L.; Qian, W.; Li, J.; Duan, W.; Lei, J.; Wang, Z.; Ma, J.; Li, X.; Ma, Q.; Xu, Q. Resveratrol ameliorates the malignant progression of pancreatic cancer by inhibiting hypoxia-induced pancreatic stellate cell activation. Cell Transplant., 2020, 29, 963689720929987.
[http://dx.doi.org/10.1177/0963689720929987] [PMID: 32463297]
[59]
Duan, J.; Yue, W.; e, J.Y.; Malhotra, J.; Lu, S.; Gu, J.; Xu, F.; Tan, X-L. In vitro comparative studies of resveratrol and triacetylresveratrol on cell proliferation, apoptosis, and STAT3 and NFκB signaling in pancreatic cancer cells. Sci. Rep., 2016, 6(1), 31672.
[http://dx.doi.org/10.1038/srep31672]
[60]
Zhu, M.; Zhang, Q.; Wang, X.; Kang, L.; Yang, Y.; Liu, Y.; Yang, L.; Li, J.; Yang, L.; Liu, J.; Li, Y.; Zu, L.; Shen, Y.; Qi, Z. Metformin potentiates anti-tumor effect of resveratrol on pancreatic cancer by down-regulation of VEGF-B signaling pathway. Oncotarget, 2016, 7(51), 84190-84200.
[http://dx.doi.org/10.18632/oncotarget.12391] [PMID: 27705937]
[61]
Holcombe, R.F.; Nguyen, A.; Martinez; Stamos, M.J.; Moyer, M.P.; Planutis, K.; Hope; Holcombe, R.F. Results of a phase I pilot clinical trial examining the effect of plant-derived resveratrol and grape powder on Wnt pathway target gene expression in colonic mucosa and colon cancer. Cancer Manag. Res., 2009, 1, 25-37.
[http://dx.doi.org/10.2147/CMAR.S4544] [PMID: 21188121]
[62]
Cha, H.J.; Lee, H.H.; Chae, S.W.; Cho, W.J.; Kim, Y.M.; Choi, H-J.; Choi, D.H.; Jung, S.W.; Min, Y.J.; Lee, B.J.; Park, S.E.; Park, J.W. Tristetraprolin downregulates the expression of both VEGF and COX-2 in human colon cancer. Hepatogastroenterology, 2011, 58(107-108), 790-795.
[PMID: 21830391]
[63]
Young, L.E.; Sanduja, S.; Bemis-Standoli, K.; Pena, E.A.; Price, R.L.; Dixon, D.A. The mRNA binding proteins HuR and tristetraprolin regulate cyclooxygenase 2 expression during colon carcinogenesis. Gastroenterology, 2009, 136(5), 1669-1679.
[http://dx.doi.org/10.1053/j.gastro.2009.01.010] [PMID: 19208339]
[64]
Lee, S.R.; Jin, H.; Kim, W.T.; Kim, W.J.; Kim, S.Z.; Leem, S.H.; Kim, S.M. Tristetraprolin activation by resveratrol inhibits the proliferation and metastasis of colorectal cancer cells. Int. J. Oncol., 2018, 53(3), 1269-1278.
[http://dx.doi.org/10.3892/ijo.2018.4453] [PMID: 29956753]
[65]
Xiong, H.; Zhao, W.; Wang, J.; Seifer, B.J.; Ye, C.; Chen, Y.; Jia, Y.; Chen, C.; Shen, J.; Wang, L.; Sui, X.; Zhou, J. Oncogenic mechanisms of Lin28 in breast cancer: New functions and therapeutic opportunities. Oncotarget, 2017, 8(15), 25721-25735.
[http://dx.doi.org/10.18632/oncotarget.14891] [PMID: 28147339]
[66]
Chung, M.Y.; Mah, E.; Masterjohn, C.; Noh, S.K.; Park, H.J.; Clark, R.M.; Park, Y.K.; Lee, J.Y.; Bruno, R.S. Green tea lowers hepatic COX-2 and prostaglandin E2 in rats with dietary fat-induced nonalcoholic steatohepatitis. J. Med. Food, 2015, 18(6), 648-655.
[http://dx.doi.org/10.1089/jmf.2014.0048] [PMID: 25453513]
[67]
Liu, H.E.; Chang, A.S.Y.; Teng, C.M.; Chen, C.C.; Tsai, A.C.; Yang, C.R. Potent anti-inflammatory effects of denbinobin mediated by dual inhibition of expression of inducible no synthase and cyclooxygenase 2. Shock, 2011, 35(2), 191-197.
[http://dx.doi.org/10.1097/SHK.0b013e3181f0e9a8] [PMID: 20661183]
[68]
Gong, W.H.; Zhao, N.; Zhang, Z.M.; Zhang, Y.X.; Yan, L.; Li, J.B. The inhibitory effect of resveratrol on COX-2 expression in human colorectal cancer: A promising therapeutic strategy. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(5), 1136-1143.
[PMID: 28338176]
[69]
Buhrmann, C.; Yazdi, M.; Popper, B.; Shayan, P.; Goel, A.; Aggarwal, B.B.; Shakibaei, M. Evidence that TNF-β induces proliferation in colorectal cancer cells and resveratrol can down-modulate it. Exp. Biol. Med. (Maywood), 2019, 244(1), 1-12.
[http://dx.doi.org/10.1177/1535370218824538] [PMID: 30661394]
[70]
Du, Z.; Zhou, F.; Jia, Z.; Zheng, B.; Han, S.; Cheng, J.; Zhu, G.; Huang, P. The hedgehog/Gli-1 signaling pathways is involved in the inhibitory effect of resveratrol on human colorectal cancer HCT116 cells. Iran. J. Basic Med. Sci., 2016, 19(11), 1171-1176.
[PMID: 27917272]
[71]
Yang, Z.; Zhang, C.; Qi, W.; Cui, Y.; Xuan, Y. GLI1 promotes cancer stemness through intracellular signaling pathway PI3K/Akt/NFκB in colorectal adenocarcinoma. Exp. Cell Res., 2018, 373(1-2), 145-154.
[http://dx.doi.org/10.1016/j.yexcr.2018.10.006] [PMID: 30321514]
[72]
Zhang, X.; Bruice, T.C. Mechanism of product specificity of AdoMet methylation catalyzed by lysine methyltransferases: Transcriptional factor p53 methylation by histone lysine methyltransferase SET7/9. Biochemistry, 2008, 47(9), 2743-2748.
[http://dx.doi.org/10.1021/bi702370p] [PMID: 18260647]
[73]
Liu, Z.; Wu, X.; Lv, J.; Sun, H.; Zhou, F. Resveratrol induces p53 in colorectal cancer through SET7/9. Oncol. Lett., 2019, 17(4), 3783-3789.
[http://dx.doi.org/10.3892/ol.2019.10034] [PMID: 30881498]
[74]
Buhrmann, C.; Yazdi, M.; Popper, B.; Shayan, P.; Goel, A.; Aggarwal, B.; Shakibaei, M. Resveratrol chemosensitizes TNF-β-induced survival of 5-FU-treated colorectal cancer cells. Nutrients, 2018, 10(7), 888.
[http://dx.doi.org/10.3390/nu10070888] [PMID: 30002278]
[75]
Ji, Q.; Liu, X.; Han, Z.; Zhou, L.; Sui, H.; Yan, L.; Jiang, H.; Ren, J.; Cai, J.; Li, Q. Resveratrol suppresses epithelial-to-mesenchymal transition in colorectal cancer through TGF-β1/Smads signaling pathway mediated Snail/E-cadherin expression. BMC Cancer, 2015, 15(1), 97.
[http://dx.doi.org/10.1186/s12885-015-1119-y] [PMID: 25884904]
[76]
Chung, S.S.; Dutta, P.; Austin, D.; Wang, P.; Awad, A.; Vadgama, J.V. Combination of resveratrol and 5-flurouracil enhanced anti-telomerase activity and apoptosis by inhibiting STAT3 and Akt signaling pathways in human colorectal cancer cells. Oncotarget, 2018, 9(68), 32943-32957.
[http://dx.doi.org/10.18632/oncotarget.25993] [PMID: 30250641]
[77]
Tavakolizadeh, J.; Roshanaei, K.; Salmaninejad, A.; Yari, R.; Nahand, J.S.; Sarkarizi, H.K.; Mousavi, S.M.; Salarinia, R.; Rahmati, M.; Mousavi, S.F.; Mokhtari, R.; Mirzaei, H. MicroRNAs and exosomes in depression: Potential diagnostic biomarkers. J. Cell. Biochem., 2018, 119(5), 3783-3797.
[http://dx.doi.org/10.1002/jcb.26599] [PMID: 29236313]
[78]
Dysregulated microRNAs in neurodegenerative disorders. In: Seminars in Cell & Developmental Biology; Lau, P.; De Strooper, B., Eds.; Elsevier, 2010.
[79]
Nishiguchi, T; Imanishi, T; Akasaka, T. MicroRNAs and cardiovascular diseases. BioMed. Res. Int., 2015, 2015, 682857.
[http://dx.doi.org/10.1155/2015/682857]
[80]
Landrier, J-F.; Derghal, A.; Karkeni, E.; Mounien, L. MicroRNAs in endocrine disorders. EJIFCC, 2019, 30(2), 146-164.
[81]
Garzon, R.; Calin, G.A.; Croce, C.M. MicroRNAs in Cancer. Annu. Rev. Med., 2009, 60(1), 167-179.
[http://dx.doi.org/10.1146/annurev.med.59.053006.104707] [PMID: 19630570]
[82]
Liu, C-J.; Kao, S-Y.; Tu, H-F.; Tsai, M-M.; Chang, K-W.; Lin, S-C. Increase of microRNA miR-31 level in plasma could be a potential marker of oral cancer. Oral Dis., 2010, 16(4), 360-364.
[http://dx.doi.org/10.1111/j.1601-0825.2009.01646.x] [PMID: 20233326]
[83]
Uesugi, A.; Kozaki, K.; Tsuruta, T.; Furuta, M.; Morita, K.; Imoto, I.; Omura, K.; Inazawa, J. The tumor suppressive microRNA miR-218 targets the mTOR component Rictor and inhibits AKT phosphorylation in oral cancer. Cancer Res., 2011, 71(17), 5765-5778.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-0368] [PMID: 21795477]
[84]
Lu, Y.C.; Chen, Y.J.; Wang, H.M.; Tsai, C.Y.; Chen, W.H.; Huang, Y.C.; Fan, K.H.; Tsai, C.N.; Huang, S.F.; Kang, C.J.; Chang, J.T.C.; Cheng, A.J. Oncogenic function and early detection potential of miRNA-10b in oral cancer as identified by microRNA profiling. Cancer Prev. Res. (Phila.), 2012, 5(4), 665-674.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0358] [PMID: 22318752]
[85]
Yang, Y.; Goldstein, B.G.; Chao, H.H.; Katz, J. KLF4 and KLF5 regulate proliferation, Apoptosis and invasion in esophageal cancer cells. Cancer Biol. Ther., 2005, 4(11), 1216-1221.
[http://dx.doi.org/10.4161/cbt.4.11.2090] [PMID: 16357509]
[86]
Tian, Y.; Luo, A.; Cai, Y.; Su, Q.; Ding, F.; Chen, H.; Liu, Z. MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines. J. Biol. Chem., 2010, 285(11), 7986-7994.
[http://dx.doi.org/10.1074/jbc.M109.062877] [PMID: 20075075]
[87]
Lee, K.H.; Goan, Y.G.; Hsiao, M.; Lee, C.H.; Jian, S.H.; Lin, J.T.; Chen, Y.L.; Lu, P.J. MicroRNA-373 (miR-373) post-transcriptionally regulates large tumor suppressor, homolog 2 (LATS2) and stimulates proliferation in human esophageal cancer. Exp. Cell Res., 2009, 315(15), 2529-2538.
[http://dx.doi.org/10.1016/j.yexcr.2009.06.001] [PMID: 19501585]
[88]
Bamodu, O.A.; Chang, H.L.; Ong, J.R.; Lee, W.H.; Yeh, C.T.; Tsai, J.T. Elevated PDK1 expression drives PI3K/AKT/MTOR signaling promotes radiation-resistant and dedifferentiated phenotype of hepatocellular carcinoma. Cells, 2020, 9(3), 746.
[http://dx.doi.org/10.3390/cells9030746] [PMID: 32197467]
[89]
Qin, W.; Tian, Y.; Zhang, J.; Liu, W.; Zhou, Q.; Hu, S.; Yang, F.; Lu, L.; Lu, H.; Cui, S.; Wen, L.; Wei, S. The double inhibition of PDK1 and STAT3-Y705 prevents liver metastasis in colorectal cancer. Sci. Rep., 2019, 9(1), 12973.
[http://dx.doi.org/10.1038/s41598-019-49480-8] [PMID: 31506552]
[90]
Yang, Z.; Wu, Z.; Liu, T.; Han, L.; Wang, C.; Yang, B.; Zheng, F. Upregulation of PDK1 associates with poor prognosis in esophageal squamous cell carcinoma with facilitating tumorigenicity in vitro. Med. Oncol., 2014, 31(12), 337.
[http://dx.doi.org/10.1007/s12032-014-0337-5] [PMID: 25416048]
[91]
Li, X.; Lin, R.; Li, J. Epigenetic silencing of microRNA-375 regulates PDK1 expression in esophageal cancer. Dig. Dis. Sci., 2011, 56(10), 2849-2856.
[http://dx.doi.org/10.1007/s10620-011-1711-1] [PMID: 21533613]
[92]
Duvvuri, U.; Shiwarski, D.J.; Xiao, D.; Bertrand, C.; Huang, X.; Edinger, R.S.; Rock, J.R.; Harfe, B.D.; Henson, B.J.; Kunzelmann, K.; Schreiber, R.; Seethala, R.S.; Egloff, A.M.; Chen, X.; Lui, V.W.; Grandis, J.R.; Gollin, S.M. TMEM16A induces MAPK and contributes directly to tumorigenesis and cancer progression. Cancer Res., 2012, 72(13), 3270-3281.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-0475-T] [PMID: 22564524]
[93]
Cao, Q.; Liu, F.; Ji, K.; Liu, N.; He, Y.; Zhang, W.; Wang, L. MicroRNA-381 inhibits the metastasis of gastric cancer by targeting TMEM16A expression. J. Exp. Clin. Cancer Res., 2017, 36(1), 29.
[http://dx.doi.org/10.1186/s13046-017-0499-z] [PMID: 28193228]
[94]
Wang, J.; Wen, T.; Li, Z.; Che, X.; Gong, L.; Yang, X.; Zhang, J.; Tang, H.; He, L.; Qu, X.; Liu, Y. MicroRNA-1224 inhibits tumor metastasis in intestinal-type gastric cancer by directly targeting FAK. Front. Oncol., 2019, 9, 222.
[http://dx.doi.org/10.3389/fonc.2019.00222] [PMID: 31019895]
[95]
Song, M.K.; Park, Y.K.; Ryu, J.C. Polycyclic aromatic hydrocarbon (PAH)-mediated upregulation of hepatic microRNA-181 family promotes cancer cell migration by targeting MAPK phosphatase-5, regulating the activation of p38 MAPK. Toxicol. Appl. Pharmacol., 2013, 273(1), 130-139.
[http://dx.doi.org/10.1016/j.taap.2013.08.016] [PMID: 23993976]
[96]
Jiang, J.; Zhang, Y.; Yu, C.; Li, Z.; Pan, Y.; Sun, C. MicroRNA-492 expression promotes the progression of hepatic cancer by targeting PTEN. Cancer Cell Int., 2014, 14(1), 95.
[http://dx.doi.org/10.1186/s12935-014-0095-7] [PMID: 25253996]
[97]
Gu, J.; Liu, X.; Li, J.; He, Y. MicroRNA-144 inhibits cell proliferation, migration and invasion in human hepatocellular carcinoma by targeting CCNB1. Cancer Cell Int., 2019, 19(1), 15.
[http://dx.doi.org/10.1186/s12935-019-0729-x] [PMID: 30651720]
[98]
Shi, C.; Yang, Y.; Yu, J.; Meng, F.; Zhang, T.; Gao, Y. The long noncoding RNA LINC00473, a target of microRNA 34a, promotes tumorigenesis by inhibiting ILF2 degradation in cervical cancer. Am. J. Cancer Res., 2017, 7(11), 2157-2168.
[PMID: 29218240]
[99]
Yin, Z-H; Jiang, X-W; Shi, W-B; Gui, Q-L; Yu, D-F Expression and clinical significance of ILF2 in gastric cancer. Disease Markers, 2017, 2017, 4387081.
[http://dx.doi.org/10.1155/2017/4387081]
[100]
Zhao, M.; Liu, Y.; Chang, J.; Qi, J.; Liu, R.; Hou, Y.; Wang, Y.; Zhang, X.; Qiao, L.; Ren, L. ILF2 cooperates with E2F1 to maintain mitochondrial homeostasis and promote small cell lung cancer progression. Cancer Biol. Med., 2019, 16(4), 771-783.
[PMID: 31908894]
[101]
Bi, Y.; Shen, W.; Min, M.; Liu, Y. MicroRNA-7 functions as a tumor-suppressor gene by regulating ILF2 in pancreatic carcinoma. Int. J. Mol. Med., 2017, 39(4), 900-906.
[http://dx.doi.org/10.3892/ijmm.2017.2894] [PMID: 28259961]
[102]
Yang, H.; Liu, G.; Liu, Y.; Zhao, H.; Yang, Z.; Zhao, C.; Zhang, X.; Ye, H. Over-expression of microRNA-940 promotes cell proliferation by targeting GSK3β and sFRP1 in human pancreatic carcinoma. Biomed. Pharmacother., 2016, 83, 593-601.
[http://dx.doi.org/10.1016/j.biopha.2016.06.057] [PMID: 27459115]
[103]
Wang, C.; Feng, Z.; Jiang, K.; Zuo, X. Upregulation of microRNA-935 promotes the malignant behaviors of pancreatic carcinoma PANC-1 cells via targeting inositol polyphosphate 4-phosphatase type I gene (INPP4A). Oncol. Res., 2017, 25(4), 559-569.
[http://dx.doi.org/10.3727/096504016X14759554689565] [PMID: 27733216]
[104]
Wang, W.; Ning, J.Z.; Tang, Z.G.; He, Y.; Yao, L.C.; Ye, L.; Wu, L. MicroRNA-23a acts as an oncogene in pancreatic carcinoma by targeting TFPI-2. Exp. Ther. Med., 2020, 20(5), 1.
[http://dx.doi.org/10.3892/etm.2020.9181] [PMID: 32952643]
[105]
Islam, F.; Gopalan, V.; Vider, J.; Lu, C.; Lam, A.K.Y. MiR-142-5p act as an oncogenic microRNA in colorectal cancer: Clinicopathological and functional insights. Exp. Mol. Pathol., 2018, 104(1), 98-107.
[http://dx.doi.org/10.1016/j.yexmp.2018.01.006] [PMID: 29337244]
[106]
Zhang, Y.; Guo, L.; Li, Y.; Feng, G.H.; Teng, F.; Li, W.; Zhou, Q. MicroRNA-494 promotes cancer progression and targets adenomatous polyposis coli in colorectal cancer. Mol. Cancer, 2018, 17(1), 1-11.
[http://dx.doi.org/10.1186/s12943-017-0753-1] [PMID: 29304823]
[107]
Mokutani, Y.; Uemura, M.; Munakata, K.; Okuzaki, D.; Haraguchi, N.; Takahashi, H.; Nishimura, J.; Hata, T.; Murata, K.; Takemasa, I.; Mizushima, T.; Doki, Y.; Mori, M.; Yamamoto, H. Down-regulation of microRNA-132 is associated with poor prognosis of colorectal cancer. Ann. Surg. Oncol., 2016, 23(S5), 599-608.
[http://dx.doi.org/10.1245/s10434-016-5133-3] [PMID: 26868958]
[108]
Fu, J.; Shrivastava, A.; Shrivastava, S.; Srivastava, R.; Shankar, S. Triacetyl resveratrol upregulates miRNA-200 and suppresses the Shh pathway in pancreatic cancer: A potential therapeutic agent. Int. J. Oncol., 2019, 54(4), 1306-1316.
[http://dx.doi.org/10.3892/ijo.2019.4700] [PMID: 30720134]
[109]
Soleymani Fard, S.; Sotoudeh, M.; Saliminejad, K.; Yazdanbod, M.; Mahmoodzadeh, H.; Kouchaki, S.; Yaghmaie, M.; Mousavi, S.A.; Malekzadeh, R.; Alimoghaddam, K.; Ghaffari, S.H. Investigation of the correlation between androgen receptor and ZEB1 and its value in progression of gastric cancer. Avicenna J. Med. Biotechnol., 2020, 12(1), 52-60.
[PMID: 32153739]
[110]
Yadav, R.K.; Chae, S.W.; Kim, H.R.; Chae, H.J. Endoplasmic reticulum stress and cancer. J. Cancer Prev., 2014, 19(2), 75-88.
[http://dx.doi.org/10.15430/JCP.2014.19.2.75] [PMID: 25337575]
[111]
Wu, H.; Wang, Y.; Wu, C.; Yang, P.; Li, H.; Li, Z. Resveratrol induces cancer cell apoptosis through MiR-326/PKM2-mediated ER stress and mitochondrial fission. J. Agric. Food Chem., 2016, 64(49), 9356-9367.
[http://dx.doi.org/10.1021/acs.jafc.6b04549] [PMID: 27960279]
[112]
Altamemi, I.; Murphy, E.A.; Catroppo, J.F.; Zumbrun, E.E.; Zhang, J.; McClellan, J.L.; Singh, U.P.; Nagarkatti, P.S.; Nagarkatti, M. Role of microRNAs in resveratrol-mediated mitigation of colitis-associated tumorigenesis in Apc(Min/+) mice. J. Pharmacol. Exp. Ther., 2014, 350(1), 99-109.
[http://dx.doi.org/10.1124/jpet.114.213306] [PMID: 24817032]
[113]
Tili, E.; Michaille, J.J.; Alder, H.; Volinia, S.; Delmas, D.; Latruffe, N.; Croce, C.M. Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFβ signaling pathway in SW480 cells. Biochem. Pharmacol., 2010, 80(12), 2057-2065.
[http://dx.doi.org/10.1016/j.bcp.2010.07.003] [PMID: 20637737]
[114]
Yang, S.; Li, W.; Sun, H.; Wu, B.; Ji, F.; Sun, T.; Chang, H.; Shen, P.; Wang, Y.; Zhou, D. Resveratrol elicits anti- colorectal cancer effect by activating miR-34c-KITLG in vitro and in vivo. BMC Cancer, 2015, 15(1), 969.
[http://dx.doi.org/10.1186/s12885-015-1958-6] [PMID: 26674205]
[115]
Song, F; Zhang, Y; Pan, Z; Zhang, Q; Lu, X; Huang, P Resveratrol inhibits the migration, invasion and epithelial-mesenchymal transition in liver cancer cells through up- miR-186-5p expression. J. Zhejiang Univ. Med. Sci., 2021, 50, 582-90.
[116]
Shaito, A.; Posadino, A.M.; Younes, N.; Hasan, H.; Halabi, S.; Alhababi, D.; Al-Mohannadi, A.; Abdel-Rahman, W.M.; Eid, A.H.; Nasrallah, G.K.; Pintus, G. Potential adverse effects of resveratrol: A literature review. Int. J. Mol. Sci., 2020, 21(6), 2084.
[http://dx.doi.org/10.3390/ijms21062084] [PMID: 32197410]
[117]
Calabrese, E.J.; Mattson, M.P.; Calabrese, V. Resveratrol commonly displays hormesis: Occurrence and biomedical significance. Hum. Exp. Toxicol., 2010, 29(12), 980-1015.
[http://dx.doi.org/10.1177/0960327110383625] [PMID: 21115559]
[118]
Rocha, K.K.; Souza, G.A.; Ebaid, G.X.; Seiva, F.R.; Cataneo, A.C.; Novelli, E.L. Resveratrol toxicity: Effects on risk factors for atherosclerosis and hepatic oxidative stress in standard and high-fat diets. Food Chem. Toxicol., 2009, 47, 1362-1367.
[http://dx.doi.org/10.1016/j.fct.2009.03.010]
[119]
Posadino, A.M.; Giordo, R.; Cossu, A.; Nasrallah, G.K.; Shaito, A.; Abou-Saleh, H.; Eid, A.H.; Pintus, G. Flavin oxidase-induced ROS generation modulates pkc biphasic effect of resveratrol on endothelial cell survival. Biomolecules, 2019, 9(6), 209.
[http://dx.doi.org/10.3390/biom9060209] [PMID: 31151226]
[120]
Patel, K.R.; Brown, V.A.; Jones, D.J.L.; Britton, R.G.; Hemingway, D.; Miller, A.S.; West, K.P.; Booth, T.D.; Perloff, M.; Crowell, J.A.; Brenner, D.E.; Steward, W.P.; Gescher, A.J.; Brown, K. Clinical pharmacology of resveratrol and its metabolites in colorectal cancer patients. Cancer Res., 2010, 70(19), 7392-7399.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2027] [PMID: 20841478]
[121]
Lin, C.C.; Chin, Y.T.; Shih, Y.J.; Chen, Y.R.; Chung, Y.Y.; Lin, C.Y.; Hsiung, C.N.; Whang-Peng, J.; Lee, S.Y.; Lin, H.Y.; Davis, P.J.; Wang, K. Resveratrol antagonizes thyroid hormone-induced expression of checkpoint and proliferative genes in oral cancer cells. J. Dent. Sci., 2019, 14(3), 255-262.
[http://dx.doi.org/10.1016/j.jds.2019.01.013] [PMID: 31528253]
[122]
Kim, S.H.; Kim, H.J.; Lee, M.H.; Yu, S.K.; Kim, C.S.; Kook, J.K.; Chun, H.S.; Park, E.; Lee, S-Y.; Kim, S.G.; Kim, H.R.; Kim, D.K. Resveratrol induces apoptosis of KB human oral cancer cells. J. Korean Soc. Appl. Biol. Chem., 2011, 54(6), 966-971.
[http://dx.doi.org/10.1007/BF03253187]
[123]
Ho, Y.; Wu, C.Y.; Chin, Y.T.; Li, Z.L.; Pan, Y.; Huang, T.Y.; Su, P.Y.; Lee, S.Y.; Crawford, D.R.; Su, K.W.; Chiu, H.C.; Shih, Y.J.; Changou, C.A.; Yang, Y.C.S.H.; Whang-Peng, J.; Chen, Y.R.; Lin, H.Y.; Mousa, S.A.; Davis, P.J.; Wang, K. NDAT suppresses pro-inflammatory gene expression to enhance resveratrol-induced anti-proliferation in oral cancer cells. Food Chem. Toxicol., 2020, 136, 111092.
[http://dx.doi.org/10.1016/j.fct.2019.111092] [PMID: 31883986]
[124]
Kim, J.Y.; Cho, K.H.; Lee, H.Y. Effect of resveratrol on oral cancer cell invasion induced by lysophosphatidic acid. J. Dental Hygiene Sci., 2018, 18(3), 188-193.
[http://dx.doi.org/10.17135/jdhs.2018.18.3.188]
[125]
Chang, H-J.; Chou, C-T.; Chang, H-T.; Liang, W-Z.; Hung, T-Y.; Li, Y-D.; Fang, Y-C.; Kuo, C-C.; Kuo, D-H.; Shieh, P.; Jan, C-R. Mechanisms of resveratrol-induced changes in cytosolic free calcium ion concentrations and cell viability in OC2 human oral cancer cells. Hum. Exp. Toxicol., 2015, 34(3), 289-299.
[http://dx.doi.org/10.1177/0960327114537536] [PMID: 24925362]
[126]
Kim, J.Y.; Cho, K.H.; Jeong, B.Y.; Park, C.G.; Lee, H.Y. Zeb1 for RCP-induced oral cancer cell invasion and its suppression by resveratrol. Exp. Mol. Med., 2020, 52(7), 1152-1163.
[http://dx.doi.org/10.1038/s12276-020-0474-1] [PMID: 32728068]
[127]
Bang, T.H.; Park, B.S.; Kang, H.M.; Kim, J.H.; Kim, I.R. Polydatin, a glycoside of resveratrol, induces apoptosis and inhibits metastasis oral squamous cell carcinoma cells in vitro. Pharmaceuticals (Basel), 2021, 14(9), 902.
[http://dx.doi.org/10.3390/ph14090902] [PMID: 34577602]
[128]
Xiao, Y.; Duan, Y.; Wang, Y.; Yin, X. Resveratrol suppresses malignant progression of oral squamous cell carcinoma cells by inducing the ZNF750/RAC1 signaling pathway. Bioengineered, 2021, 12(1), 2863-2873.
[http://dx.doi.org/10.1080/21655979.2021.1940616] [PMID: 34176441]
[129]
Shang, Y.; Jiang, Y.L.; Ye, L.J.; Chen, L.N.; Ke, Y. Resveratrol acts via melanoma-associated antigen A12 (MAGEA12)/protein kinase B (Akt) signaling to inhibit the proliferation of oral squamous cell carcinoma cells. Bioengineered, 2021, 12(1), 2253-2262.
[http://dx.doi.org/10.1080/21655979.2021.1934242] [PMID: 34085601]
[130]
Chang, W.S.; Tsai, C.W.; Yang, J.S.; Hsu, Y.M.; Shih, L.C.; Chiu, H.Y.; Bau, D.T.; Tsai, F.J. Resveratrol inhibited the metastatic behaviors of cisplatin-resistant human oral cancer cells via phosphorylation of ERK/p-38 and suppression of MMP-2/9. J. Food Biochem., 2021, 45(6), e13666.
[http://dx.doi.org/10.1111/jfbc.13666] [PMID: 34008860]
[131]
Chen, L.; Xia, J.S.; Wu, J.H.; Chen, Y.G.; Qiu, C.J. Resveratrol inhibits oral squamous cell carcinoma cells proliferation while promoting apoptosis through inhibition of CBX7 protein. Environ. Toxicol., 2020, 35(11), 1234-1240.
[http://dx.doi.org/10.1002/tox.22988] [PMID: 32621571]
[132]
Jin, Z.; Feng, W.; Ji, Y.; Jin, L. Resveratrol mediates cell cycle arrest and cell death in human esophageal squamous cell carcinoma by directly targeting the EGFR signaling pathway. Oncol. Lett., 2017, 13(1), 347-355.
[http://dx.doi.org/10.3892/ol.2016.5391] [PMID: 28123566]
[133]
Tang, Q.; Li, G.; Wei, X.; Zhang, J.; Chiu, J.F.; Hasenmayer, D.; Zhang, D.; Zhang, H. Resveratrol-induced apoptosis is enhanced by inhibition of autophagy in esophageal squamous cell carcinoma. Cancer Lett., 2013, 336(2), 325-337.
[http://dx.doi.org/10.1016/j.canlet.2013.03.023] [PMID: 23541682]
[134]
Joe, A.K.; Liu, H.; Suzui, M.; Vural, M.E.; Xiao, D.; Weinstein, I.B. Resveratrol induces growth inhibition, S-phase arrest, apoptosis, and changes in biomarker expression in several human cancer cell lines. Clin. Cancer Res., 2002, 8(3), 893-903.
[PMID: 11895924]
[135]
Li, Y.; Sun, X.; Wang, C. Detection of apoptosis of esophageal cancer cells induced by resveratrol and its related genes expression by flow cytometry. Lab. Med., 2009, 24(3), 196-200.
[136]
Fan, G.H.; Wang, Z.M.; Yang, X.; Xu, L.P.; Qin, Q.; Zhang, C.; Ma, J.X.; Cheng, H.Y.; Sun, X.C. Resveratrol inhibits oesophageal adenocarcinoma cell proliferation via AMP-activated protein kinase signaling. Asian Pac. J. Cancer Prev., 2014, 15(2), 677-682.
[http://dx.doi.org/10.7314/APJCP.2014.15.2.677] [PMID: 24568477]
[137]
Dhir, H.; Choudhury, M.; Patil, K.; Cheung, C.; Bodlak, A.; Pardo, D.; Adams, A.; Travaglino, S.; Rojas, J.A.; Pai, S.B. Interception of signaling circuits of esophageal adenocarcinoma cells by resveratrol reveals molecular and immunomodulatory signatures. Cancers (Basel), 2021, 13(22), 5811.
[http://dx.doi.org/10.3390/cancers13225811] [PMID: 34830970]
[138]
Holian, O.; Wahid, S.; Atten, M.J.; Attar, B.M. Inhibition of gastric cancer cell proliferation by resveratrol: Role of nitric oxide. Am. J. Physiol. Gastrointest. Liver Physiol., 2002, 282(5), G809-G816.
[http://dx.doi.org/10.1152/ajpgi.00193.2001] [PMID: 11960777]
[139]
Signorelli, P.; Munoz-Olaya, J.M.; Gagliostro, V.; Casas, J.; Ghidoni, R.; Fabriàs, G. Dihydroceramide intracellular increase in response to resveratrol treatment mediates autophagy in gastric cancer cells. Cancer Lett., 2009, 282(2), 238-243.
[http://dx.doi.org/10.1016/j.canlet.2009.03.020] [PMID: 19394759]
[140]
Yang, Z.; Xie, Q.; Chen, Z.; Ni, H.; Xia, L.; Zhao, Q.; Chen, Z.; Chen, P. Resveratrol suppresses the invasion and migration of human gastric cancer cells via inhibition of MALAT1-mediated epithelial-to-mesenchymal transition. Exp. Ther. Med., 2019, 17(3), 1569-1578.
[PMID: 30783423]
[141]
Wu, X.; Xu, Y.; Zhu, B.; Liu, Q.; Yao, Q.; Zhao, G. Resveratrol induces apoptosis in SGC-7901 gastric cancer cells. Oncol. Lett., 2018, 16(3), 2949-2956.
[http://dx.doi.org/10.3892/ol.2018.9045] [PMID: 30127883]
[142]
Ren, M.; Zhou, X.; Gu, M.; Jiao, W.; Yu, M.; Wang, Y.; Liu, S.; Yang, J.; Ji, F. Resveratrol synergizes with cisplatin in antineoplastic effects against AGS gastric cancer cells by inducing endoplasmic reticulum stress-mediated apoptosis and G2/M phase arrest. Oncol. Rep., 2020, 44(4), 1605-1615.
[http://dx.doi.org/10.3892/or.2020.7708] [PMID: 32945472]
[143]
Yang, T.; Zhang, J.; Zhou, J.; Zhu, M.; Wang, L.; Yan, L. Resveratrol inhibits Interleukin-6 induced invasion of human gastric cancer cells. Biomed. Pharmacother., 2018, 99, 766-773.
[http://dx.doi.org/10.1016/j.biopha.2018.01.153] [PMID: 29710474]
[144]
Kim, S.; Kim, W.; Kim, D.H.; Jang, J.H.; Kim, S.J.; Park, S.A.; Hahn, H.; Han, B.W.; Na, H.K.; Chun, K.S.; Choi, B.Y.; Surh, Y.J. Resveratrol suppresses gastric cancer cell proliferation and survival through inhibition of PIM-1 kinase activity. Arch. Biochem. Biophys., 2020, 689, 108413.
[http://dx.doi.org/10.1016/j.abb.2020.108413] [PMID: 32473133]
[145]
Lu, W.; Ni, Z.; Jiang, S.; Tong, M.; Zhang, J.; Zhao, J.; Feng, C.; Jia, Q.; Wang, J.; Yao, T.; Ning, H.; Shi, Y. Resveratrol inhibits bile acid-induced gastric intestinal metaplasia via the PI3K / AKT / P-FOXO4 signalling pathway. Phytother. Res., 2021, 35(3), 1495-1507.
[http://dx.doi.org/10.1002/ptr.6915] [PMID: 33103284]
[146]
Yang, Y.; Huang, X.; Chen, S.; Ma, G.; Zhu, M.; Yan, F.; Yu, J. Resveratrol induced apoptosis in human gastric carcinoma SGC-7901 cells via activation of mitochondrial pathway. Asia Pac. J. Clin. Oncol., 2018, 14(5), e317-e324.
[http://dx.doi.org/10.1111/ajco.12841] [PMID: 29316254]
[147]
Mieszala, K.; Rudewicz, M.; Gomulkiewicz, A.; Ratajczak-Wielgomas, K.; Grzegrzolka, J.; Dziegiel, P.; Borska, S. Expression of genes and proteins of multidrug resistance in gastric cancer cells treated with resveratrol. Oncol. Lett., 2018, 15(4), 5825-5832.
[http://dx.doi.org/10.3892/ol.2018.8022] [PMID: 29552213]
[148]
Xu, H.; Yu, W.B.; Gao, Y.; Zhang, M.J.; Malhotra, A.; Yu, W.H. Modulatory potential of curcumin and resveratrol on p53 post-translational modifications during gastric cancer. J. Environ. Pathol. Toxicol. Oncol., 2018, 37(2), 93-101.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2018025547] [PMID: 30055545]
[149]
Yin, L.; Zhang, R.; Hu, Y.; Li, W.; Wang, M.; Liang, Z.; Sun, Z.; Ji, R.; Xu, W.; Qian, H. Gastric-cancer-derived mesenchymal stem cells: A promising target for resveratrol in the suppression of gastric cancer metastasis. Hum. Cell, 2020, 33(3), 652-662.
[http://dx.doi.org/10.1007/s13577-020-00339-5] [PMID: 32350750]
[150]
Okamoto, H.; Matsukawa, T.; Doi, S.; Tsunoda, T.; Sawata, Y.; Naemura, M.; Ohnuki, K.; Shirasawa, S.; Kotake, Y. A novel resveratrol derivative selectively inhibits the proliferation of colorectal cancer cells with KRAS mutation. Mol. Cell. Biochem., 2018, 442(1-2), 39-45.
[http://dx.doi.org/10.1007/s11010-017-3191-x] [PMID: 28936721]
[151]
Wang, Z.; Zhang, L.; Ni, Z.; Sun, J.; Gao, H.; Cheng, Z.; Xu, J.; Yin, P. Resveratrol induces AMPK-dependent MDR1 inhibition in colorectal cancer HCT116/L-OHP cells by preventing activation of NF-κB signaling and suppressing cAMP-responsive element transcriptional activity. Tumour Biol., 2015, 36(12), 9499-9510.
[http://dx.doi.org/10.1007/s13277-015-3636-3] [PMID: 26124005]
[152]
Khaleel, S.A.; Al-Abd, A.M.; Ali, A.A.; Abdel-Naim, A.B. Didox and resveratrol sensitize colorectal cancer cells to doxorubicin via activating apoptosis and ameliorating P-glycoprotein activity. Sci. Rep., 2016, 6(1), 36855.
[http://dx.doi.org/10.1038/srep36855] [PMID: 27841296]
[153]
Cesmeli, S.; Goker Bagca, B.; Caglar, H.O.; Ozates, N.P.; Gunduz, C.; Biray Avci, C. Combination of resveratrol and BIBR1532 inhibits proliferation of colon cancer cells by repressing expression of LncRNAs. Med. Oncol., 2022, 39(1), 12.
[http://dx.doi.org/10.1007/s12032-021-01611-w] [PMID: 34779924]
[154]
Wang, C.; Wang, N.; Li, N.; Yu, Q.; Wang, F. Combined effects of resveratrol and vitamin E from peanut seeds and sprouts on colorectal cancer cells. Front. Pharmacol., 2021, 12, 760919.
[http://dx.doi.org/10.3389/fphar.2021.760919] [PMID: 34803703]
[155]
Wang, Y.; Wang, W.; Wu, X.; Li, C.; Huang, Y.; Zhou, H.; Cui, Y. Resveratrol sensitizes colorectal cancer cells to cetuximab by connexin 43 upregulation-induced Akt inhibition. Front. Oncol., 2020, 10, 383.
[http://dx.doi.org/10.3389/fonc.2020.00383] [PMID: 32318334]
[156]
Cao, L.; Chen, X.; Xiao, X.; Ma, Q.; Li, W. Resveratrol inhibits hyperglycemia-driven ROS-induced invasion and migration of pancreatic cancer cells via suppression of the ERK and p38 MAPK signaling pathways. Int. J. Oncol., 2016, 49(2), 735-743.
[http://dx.doi.org/10.3892/ijo.2016.3559] [PMID: 27278736]
[157]
Jiang, Z.; Chen, X.; Chen, K.; Sun, L.; Gao, L.; Zhou, C.; Lei, M.; Duan, W.; Wang, Z.; Ma, Q.; Ma, J. YAP inhibition by resveratrol via activation of AMPK enhances the sensitivity of pancreatic cancer cells to gemcitabine. Nutrients, 2016, 8(10), 546.
[http://dx.doi.org/10.3390/nu8100546] [PMID: 27669292]
[158]
Qin, T.; Cheng, L.; Xiao, Y.; Qian, W.; Li, J.; Wu, Z.; Wang, Z.; Xu, Q.; Duan, W.; Wong, L.; Wu, E.; Ma, Q.; Ma, J. NAF-1 inhibition by resveratrol suppresses cancer stem cell-like properties and the invasion of pancreatic cancer. Front. Oncol., 2020, 10, 1038.
[http://dx.doi.org/10.3389/fonc.2020.01038] [PMID: 32766132]
[159]
Srivani, G.; Behera, S.K.; Dariya, B.; Aliya, S.; Alam, A.; Nagaraju, G.P. Resveratrol binds and inhibits transcription factor HIF-1α in pancreatic cancer. Exp. Cell Res., 2020, 394(1), 112126.
[http://dx.doi.org/10.1016/j.yexcr.2020.112126] [PMID: 32485183]
[160]
Qian, W.; Xiao, Q.; Wang, L.; Qin, T.; Xiao, Y.; Li, J.; Yue, Y.; Zhou, C.; Duan, W.; Ma, Q.; Ma, J. Resveratrol slows the tumourigenesis of pancreatic cancer by inhibiting NFκB activation. Biomed. Pharmacother., 2020, 127, 110116.
[http://dx.doi.org/10.1016/j.biopha.2020.110116] [PMID: 32428833]
[161]
Ratajczak, K.; Glatzel-Plucińska, N.; Ratajczak-Wielgomas, K.; Nowińska, K.; Borska, S. Effect of resveratrol treatment on human pancreatic cancer cells through alterations of Bcl-2 family members. Molecules, 2021, 26(21), 6560.
[http://dx.doi.org/10.3390/molecules26216560] [PMID: 34770968]
[162]
Inbaraj, B.S.; Hua, L.H.; Chen, B.H. Comparative study on inhibition of pancreatic cancer cells by resveratrol gold nanoparticles and a resveratrol nanoemulsion prepared from grape skin. Pharmaceutics, 2021, 13(11), 1871.
[http://dx.doi.org/10.3390/pharmaceutics13111871] [PMID: 34834286]
[163]
Dai, H.; Li, M.; Yang, W.; Sun, X.; Wang, P.; Wang, X.; Su, J.; Wang, X.; Hu, X.; Zhao, M. Resveratrol inhibits the malignant progression of hepatocellular carcinoma via MARCH1-induced regulation of PTEN/AKT signaling. Aging (Albany NY), 2020, 12(12), 11717-11731.
[http://dx.doi.org/10.18632/aging.103338] [PMID: 32530437]
[164]
Gao, M.; Deng, C.; Dang, F. Synergistic antitumor effect of resveratrol and sorafenib on hepatocellular carcinoma through PKA/AMPK/eEF2K pathway. Food Nutr. Res., 2021, 65, 65.
[http://dx.doi.org/10.29219/fnr.v65.3602] [PMID: 34776832]
[165]
Ismail, N.; Abdel-Mottaleb, Y.; Eissa Ahmed, A.A.; El-Maraghy, N.N. Novel combination of thymoquinone and resveratrol enhances anticancer effect on hepatocellular carcinoma cell line. Future J. Pharmaceut. Sci., 2018, 4(1), 41-46.
[http://dx.doi.org/10.1016/j.fjps.2017.08.001]
[166]
Rawat, D.; Shrivastava, S.; Naik, R.A.; Chhonker, S.K.; Koiri, R.K. SIRT1-mediated amelioration of oxidative stress in kidney of alcohol-aflatoxin-B1-induced hepatocellular carcinoma by resveratrol is catalase dependent and GPx independent. J. Biochem. Mol. Toxicol., 2020, 34(11), e22576.
[http://dx.doi.org/10.1002/jbt.22576] [PMID: 32640115]
[167]
Rawat, D.; Chhonker, S.K.; Naik, R.A.; Koiri, R.K. Modulation of antioxidant enzymes, SIRT1 and NF-κB by resveratrol and nicotinamide in alcohol-aflatoxin B1-induced hepatocellular carcinoma. J. Biochem. Mol. Toxicol., 2021, 35(1), e22625.
[http://dx.doi.org/10.1002/jbt.22625] [PMID: 32894639]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy