Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

FGF23 Actions in CKD-MBD and other Organs During CKD

Author(s): Ting Sun and Xijie Yu*

Volume 30, Issue 7, 2023

Published on: 19 September, 2022

Page: [841 - 856] Pages: 16

DOI: 10.2174/0929867329666220627122733

Price: $65

Abstract

Fibroblast growth factor 23 (FGF23) is a new endocrine product discovered in the past decade. In addition to being related to bone diseases, it has also been found to be related to kidney metabolism and parathyroid metabolism, especially as a biomarker and a key factor to be used in kidney diseases. FGF23 is upregulated as early as the second and third stages of chronic kidney disease (CKD) in response to relative phosphorus overload. The early rise of FGF23 has a protective effect on the body and is essential for maintaining phosphate balance. However, with the decline in renal function, eGFR (estimated glomerular filtration rate) declines, and the phosphorus excretion effect caused by FGF23 is weakened. It eventually leads to a variety of complications, such as bone disease (Chronic Kidney Disease-Mineral and Bone Metabolism Disorder), vascular calcification (VC), and more. Monoclonal antibodies against FGF23 are currently used to treat genetic diseases with increased FGF23. CKD is also a state of increased FGF23. This article reviews the current role of FGF23 in CKD and discusses the crosstalk between various organs under CKD conditions and FGF23. Studying the effect of hyperphosphatemia on different organs of CKD is important. The prospect of FGF23 for therapy is also discussed.

Keywords: FGF23, CKD-MBD, CKD, bone, cardiovascular, parathyroid, endothelium, kidney.

[1]
Igwe, J.C.; Jiang, X.; Paic, F.; Ma, L.; Adams, D.J.; Baldock, P.A.; Pilbeam, C.C.; Kalajzic, I. Neuropeptide Y is expressed by osteocytes and can inhibit osteoblastic activity. J. Cell. Biochem., 2009, 108(3), 621-630.
[http://dx.doi.org/10.1002/jcb.22294] [PMID: 19670271]
[2]
Kharitonenkov, A.; Adams, A.C. Inventing new medicines: The FGF21 story. Mol. Metab., 2013, 3(3), 221-229.
[http://dx.doi.org/10.1016/j.molmet.2013.12.003] [PMID: 24749049]
[3]
Kuzina, E.S.; Ung, P.M-U.; Mohanty, J.; Tome, F.; Choi, J.; Pardon, E.; Steyaert, J.; Lax, I.; Schlessinger, A.; Schlessinger, J.; Lee, S. Structures of ligand-occupied β-Klotho complexes reveal a molecular mechanism underlying endocrine FGF specificity and activity. Proc. Natl. Acad. Sci. USA, 2019, 116(16), 7819-7824.
[http://dx.doi.org/10.1073/pnas.1822055116] [PMID: 30944224]
[4]
Chen, G.; Liu, Y.; Goetz, R.; Fu, L.; Jayaraman, S.; Hu, M-C.; Moe, O.W.; Liang, G.; Li, X.; Mohammadi, M. α-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature, 2018, 553(7689), 461-466.
[http://dx.doi.org/10.1038/nature25451] [PMID: 29342138]
[5]
Shimada, T.; Hasegawa, H.; Yamazaki, Y.; Muto, T.; Hino, R.; Takeuchi, Y.; Fujita, T.; Nakahara, K.; Fukumoto, S.; Yamashita, T. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res., 2004, 19(3), 429-435.
[http://dx.doi.org/10.1359/JBMR.0301264] [PMID: 15040831]
[6]
Shimada, T.; Muto, T.; Urakawa, I.; Yoneya, T.; Yamazaki, Y.; Okawa, K.; Takeuchi, Y.; Fujita, T.; Fukumoto, S.; Yamashita, T. Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinology, 2002, 143(8), 3179-3182.
[http://dx.doi.org/10.1210/endo.143.8.8795] [PMID: 12130585]
[7]
White, K.E.; Carn, G.; Lorenz-Depiereux, B.; Benet-Pages, A.; Strom, T.M.; Econs, M.J. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int., 2001, 60(6), 2079-2086.
[http://dx.doi.org/10.1046/j.1523-1755.2001.00064.x] [PMID: 11737582]
[8]
Wolf, M.; White, K.E. Coupling FGF23 production and cleavage: Iron deficiency, rickets and kidney disease. Curr. Opin. Nephrol. Hypertens., 2014, 23(4), 411.
[http://dx.doi.org/10.1097/01.mnh.0000447020.74593.6f] [PMID: 24867675]
[9]
Kurosu, H.; Kuro-O, M. The Klotho gene family as a regulator of endocrine fibroblast growth factors. Mol. Cell. Endocrinol., 2009, 299(1), 72-78.
[http://dx.doi.org/10.1016/j.mce.2008.10.052] [PMID: 19063940]
[10]
Musgrove, J.; Wolf, M. Regulation and effects of FGF23 in chronic kidney disease. Annu. Rev. Physiol., 2020, 82(1), 365-390.
[http://dx.doi.org/10.1146/annurev-physiol-021119-034650] [PMID: 31743079]
[11]
Olauson, H.; Mencke, R.; Hillebrands, J-L.; Larsson, T.E. Tissue expression and source of circulating αKlotho. Bone, 2017, 100, 19-35.
[http://dx.doi.org/10.1016/j.bone.2017.03.043] [PMID: 28323144]
[12]
Hensel, N.; Schön, A.; Konen, T.; Lübben, V.; Förthmann, B.; Baron, O.; Grothe, C.; Leifheit-Nestler, M.; Claus, P.; Haffner, D. Fibroblast growth factor 23 signaling in hippocampal cells: Impact on neuronal morphology and synaptic density. J. Neurochem., 2016, 137(5), 756-769.
[http://dx.doi.org/10.1111/jnc.13585] [PMID: 26896818]
[13]
Krick, S.; Grabner, A.; Baumlin, N.; Yanucil, C.; Helton, S.; Grosche, A.; Sailland, J.; Geraghty, P.; Viera, L.; Russell, D.W.; Wells, J.M.; Xu, X.; Gaggar, A.; Barnes, J.; King, G.D.; Campos, M.; Faul, C.; Salathe, M. Fibroblast growth factor 23 and Klotho contribute to airway inflammation. Eur. Respir. J., 2018, 52(1), 1800236.
[http://dx.doi.org/10.1183/13993003.00236-2018] [PMID: 29748308]
[14]
Smith, E.R.; Holt, S.G.; Hewitson, T.D. αKlotho-FGF23 interactions and their role in kidney disease: A molecular insight. Cell. Mol. Life Sci., 2019, 76(23), 4705-4724.
[http://dx.doi.org/10.1007/s00018-019-03241-y] [PMID: 31350618]
[15]
Vervloet, M. Renal and extrarenal effects of fibroblast growth factor 23. Nat. Rev. Nephrol., 2019, 15(2), 109-120.
[http://dx.doi.org/10.1038/s41581-018-0087-2] [PMID: 30514976]
[16]
Ben-Dov, I.Z.; Galitzer, H.; Lavi-Moshayoff, V.; Goetz, R.; Kuro-o, M.; Mohammadi, M.; Sirkis, R.; Naveh-Many, T.; Silver, J. The parathyroid is a target organ for FGF23 in rats. J. Clin. Invest., 2007, 117(12), 4003-4008.
[http://dx.doi.org/10.1172/JCI32409] [PMID: 17992255]
[17]
Hessle, L.; Johnson, K.A.; Anderson, H.C.; Narisawa, S.; Sali, A.; Goding, J.W.; Terkeltaub, R.; Millán, J.L. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc. Natl. Acad. Sci. USA, 2002, 99(14), 9445-9449.
[http://dx.doi.org/10.1073/pnas.142063399] [PMID: 12082181]
[18]
Grabner, A.; Schramm, K.; Silswal, N.; Hendrix, M.; Yanucil, C.; Czaya, B.; Singh, S.; Wolf, M.; Hermann, S.; Stypmann, J.; Di Marco, G.S.; Brand, M.; Wacker, M.J.; Faul, C. FGF23/FGFR4-mediated left ventricular hypertrophy is reversible. Sci. Rep., 2017, 7(1), 1993.
[http://dx.doi.org/10.1038/s41598-017-02068-6] [PMID: 28512310]
[19]
Farrow, E.G.; Davis, S.I.; Summers, L.J.; White, K.E. Initial FGF23-mediated signaling occurs in the distal convoluted tubule. J. Am. Soc. Nephrol., 2009, 20(5), 955-960.
[http://dx.doi.org/10.1681/ASN.2008070783] [PMID: 19357251]
[20]
Kaneko, I.; Saini, R.K.; Griffin, K.P.; Whitfield, G.K.; Haussler, M.R.; Jurutka, P.W. FGF23 gene regulation by 1,25-dihydroxyvitamin D: Opposing effects in adipocytes and osteocytes. J. Endocrinol., 2015, 226(3), 155-166.
[http://dx.doi.org/10.1530/JOE-15-0225] [PMID: 26148725]
[21]
Saito, H.; Maeda, A.; Ohtomo, S.; Hirata, M.; Kusano, K.; Kato, S.; Ogata, E.; Segawa, H.; Miyamoto, K.; Fukushima, N. Circulating FGF-23 is regulated by 1α,25-dihydroxyvitamin D3 and phosphorus in vivo. J. Biol. Chem., 2005, 280(4), 2543-2549.
[http://dx.doi.org/10.1074/jbc.M408903200] [PMID: 15531762]
[22]
Faul, C.; Amaral, A.P.; Oskouei, B.; Hu, M-C.; Sloan, A.; Isakova, T.; Gutiérrez, O.M.; Aguillon-Prada, R.; Lincoln, J.; Hare, J.M.; Mundel, P.; Morales, A.; Scialla, J.; Fischer, M.; Soliman, E.Z.; Chen, J.; Go, A.S.; Rosas, S.E.; Nessel, L.; Townsend, R.R.; Feldman, H.I.; St John Sutton, M.; Ojo, A.; Gadegbeku, C.; Di Marco, G.S.; Reuter, S.; Kentrup, D.; Tiemann, K.; Brand, M.; Hill, J.A.; Moe, O.W.; Kuro-O, M.; Kusek, J.W.; Keane, M.G.; Wolf, M. FGF23 induces left ventricular hypertrophy. J. Clin. Invest., 2011, 121(11), 4393-4408.
[http://dx.doi.org/10.1172/JCI46122] [PMID: 21985788]
[23]
Marthi, A.; Donovan, K.; Haynes, R.; Wheeler, D.C.; Baigent, C.; Rooney, C.M.; Landray, M.J.; Moe, S.M.; Yang, J.; Holland, L.; di Giuseppe, R.; Bouma-de Krijger, A.; Mihaylova, B.; Herrington, W.G. Fibroblast growth factor-23 and risks of cardiovascular and noncardiovascular diseases: A meta-analysis. J. Am. Soc. Nephrol., 2018, 29(7), 2015-2027.
[http://dx.doi.org/10.1681/ASN.2017121334] [PMID: 29764921]
[24]
Raimann, A.; Ertl, D.A.; Helmreich, M.; Sagmeister, S.; Egerbacher, M.; Haeusler, G. Fibroblast growth factor 23 and Klotho are present in the growth plate. Connect. Tissue Res., 2013, 54(2), 108-117.
[http://dx.doi.org/10.3109/03008207.2012.753879] [PMID: 23206185]
[25]
Murali, S.K.; Roschger, P.; Zeitz, U.; Klaushofer, K.; Andrukhova, O.; Erben, R.G. FGF23 regulates bone mineralization in a 1, 25 (OH) 2D3 and klotho-independent manner. J. Bone Miner. Res., 2016, 31(1), 129-142.
[http://dx.doi.org/10.1002/jbmr.2606] [PMID: 26235988]
[26]
Allard, L.; Demoncheaux, N.; Machuca-Gayet, I.; Georgess, D.; Coury-Lucas, F.; Jurdic, P.; Bacchetta, J. Biphasic effects of vitamin D and FGF23 on human osteoclast biology. Calcif. Tissue Int., 2015, 97(1), 69-79.
[http://dx.doi.org/10.1007/s00223-015-0013-6] [PMID: 25987164]
[27]
Kinoshita, Y.; Fukumoto, S. X-linked hypophosphatemia and FGF23-related hypophosphatemic diseases: Prospect for new treatment. Endocr. Rev., 2018, 39(3), 274-291.
[http://dx.doi.org/10.1210/er.2017-00220] [PMID: 29381780]
[28]
Minisola, S.; Peacock, M.; Fukumoto, S.; Cipriani, C.; Pepe, J.; Tella, S.H.; Collins, M.T. Tumour-induced osteomalacia. Nat. Rev. Dis. Primers, 2017, 3(1), 17044.
[http://dx.doi.org/10.1038/nrdp.2017.44] [PMID: 28703220]
[29]
Lafferty, F.W.; Reynolds, E.S.; Pearson, O.H. Tumoral calcinosis: A metabolic disease of obscure etiology. Am. J. Med., 1965, 38(1), 105-118.
[http://dx.doi.org/10.1016/0002-9343(65)90164-6] [PMID: 14251895]
[30]
Tiosano, D.; Abrams, S.A.; Weisman, Y. Lessons learned from hereditary 1,25-Dihydroxyvitamin D-resistant rickets patients on Vitamin D functions. J. Nutr., 2021, 151(3), 473-481.
[http://dx.doi.org/10.1093/jn/nxaa380] [PMID: 33438017]
[31]
DeLuca, H.F. The metabolism and functions of vitamin D. In: Adv. Exp. Med. Biol; , 1986; 196, pp. 361-375.
[http://dx.doi.org/10.1007/978-1-4684-5101-6_24]
[32]
Eisenberg, E. Effects of serum calcium level and parathyroid extracts on phosphate and calcium excretion in hypoparathyroid patients. J. Clin. Invest., 1965, 44(6), 942-946.
[http://dx.doi.org/10.1172/JCI105211] [PMID: 14322028]
[33]
Isakova, T.; Wahl, P.; Vargas, G.S.; Gutiérrez, O.M.; Scialla, J.; Xie, H.; Appleby, D.; Nessel, L.; Bellovich, K.; Chen, J.; Hamm, L.; Gadegbeku, C.; Horwitz, E.; Townsend, R.R.; Anderson, C.A.; Lash, J.P.; Hsu, C.Y.; Leonard, M.B.; Wolf, M. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int., 2011, 79(12), 1370-1378.
[http://dx.doi.org/10.1038/ki.2011.47] [PMID: 21389978]
[34]
Ratsma, D.M.A.; Zillikens, M.C.; van der Eerden, B.C.J. Upstream regulators of fibroblast growth factor 23. Front. Endocrinol. (Lausanne), 2021, 12, 588096.
[http://dx.doi.org/10.3389/fendo.2021.588096] [PMID: 33716961]
[35]
Shalhoub, V.; Shatzen, E.M.; Ward, S.C.; Davis, J.; Stevens, J.; Bi, V.; Renshaw, L.; Hawkins, N.; Wang, W.; Chen, C.; Tsai, M.M.; Cattley, R.C.; Wronski, T.J.; Xia, X.; Li, X.; Henley, C.; Eschenberg, M.; Richards, W.G. FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality. J. Clin. Invest., 2012, 122(7), 2543-2553.
[http://dx.doi.org/10.1172/JCI61405] [PMID: 22728934]
[36]
David, V.; Martin, A.; Isakova, T.; Spaulding, C.; Qi, L.; Ramirez, V.; Zumbrennen-Bullough, K.B.; Sun, C.C.; Lin, H.Y.; Babitt, J.L.; Wolf, M. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int., 2016, 89(1), 135-146.
[http://dx.doi.org/10.1038/ki.2015.290] [PMID: 26535997]
[37]
Smith, E.R.; Cai, M.M.; McMahon, L.P.; Holt, S.G. Biological variability of plasma intact and C-terminal FGF23 measurements. J. Clin. Endocrinol. Metab., 2012, 97(9), 3357-3365.
[http://dx.doi.org/10.1210/jc.2012-1811] [PMID: 22689697]
[38]
Farrow, E.G.; Yu, X.; Summers, L.J.; Davis, S.I.; Fleet, J.C.; Allen, M.R.; Robling, A.G.; Stayrook, K.R.; Jideonwo, V.; Magers, M.J.; Garringer, H.J.; Vidal, R.; Chan, R.J.; Goodwin, C.B.; Hui, S.L.; Peacock, M.; White, K.E. Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice. Proc. Natl. Acad. Sci. USA, 2011, 108(46), E1146-E1155.
[http://dx.doi.org/10.1073/pnas.1110905108] [PMID: 22006328]
[39]
Carpenter, T.O.; Imel, E.A.; Holm, I.A.; Jan de Beur, S.M.; Insogna, K.L. A clinician’s guide to X-linked hypophosphatemia. J. Bone Miner. Res., 2011, 26(7), 1381-1388.
[http://dx.doi.org/10.1002/jbmr.340] [PMID: 21538511]
[40]
Baroncelli, G.I.; Mora, S. X-Linked Hypophosphatemic Rickets: Multisystemic disorder in children requiring multidisciplinary management. Front. Endocrinol. (Lausanne), 2021, 12, 688309.
[http://dx.doi.org/10.3389/fendo.2021.688309] [PMID: 34421819]
[41]
Thomas, B.; Matsushita, K.; Abate, K.H.; Al-Aly, Z.; Ärnlöv, J.; Asayama, K.; Atkins, R.; Badawi, A.; Ballew, S.H.; Banerjee, A.; Barregård, L.; Barrett-Connor, E.; Basu, S.; Bello, A.K.; Bensenor, I.; Bergstrom, J.; Bikbov, B.; Blosser, C.; Brenner, H.; Carrero, J.J.; Chadban, S.; Cirillo, M.; Cortinovis, M.; Courville, K.; Dandona, L.; Dandona, R.; Estep, K.; Fernandes, J.; Fischer, F.; Fox, C.; Gansevoort, R.T.; Gona, P.N.; Gutierrez, O.M.; Hamidi, S.; Hanson, S.W.; Himmelfarb, J.; Jassal, S.K.; Jee, S.H.; Jha, V.; Jimenez-Corona, A.; Jonas, J.B.; Kengne, A.P.; Khader, Y.; Khang, Y.H.; Kim, Y.J.; Klein, B.; Klein, R.; Kokubo, Y.; Kolte, D.; Lee, K.; Levey, A.S.; Li, Y.; Lotufo, P.; El Razek, H.M.A.; Mendoza, W.; Metoki, H.; Mok, Y.; Muraki, I.; Muntner, P.M.; Noda, H.; Ohkubo, T.; Ortiz, A.; Perico, N.; Polkinghorne, K.; Al-Radaddi, R.; Remuzzi, G.; Roth, G.; Rothenbacher, D.; Satoh, M.; Saum, K.U.; Sawhney, M.; Schöttker, B.; Shankar, A.; Shlipak, M.; Silva, D.A.S.; Toyoshima, H.; Ukwaja, K.; Umesawa, M.; Vollset, S.E.; Warnock, D.G.; Werdecker, A.; Yamagishi, K.; Yano, Y.; Yonemoto, N.; Zaki, M.E.S.; Naghavi, M.; Forouzanfar, M.H.; Murray, C.J.L.; Coresh, J.; Vos, T. Global cardiovascular and renal outcomes of reduced GFR. J. Am. Soc. Nephrol., 2017, 28(7), 2167-2179.
[http://dx.doi.org/10.1681/ASN.2016050562] [PMID: 28408440]
[42]
Yilmaz, M.I.; Saglam, M.; Caglar, K.; Cakir, E.; Sonmez, A.; Ozgurtas, T.; Aydin, A.; Eyileten, T.; Ozcan, O.; Acikel, C.; Tasar, M.; Genctoy, G.; Erbil, K.; Vural, A.; Zoccali, C. The determinants of endothelial dysfunction in CKD: Oxidative stress and asymmetric dimethylarginine. Am. J. Kidney Dis., 2006, 47(1), 42-50.
[http://dx.doi.org/10.1053/j.ajkd.2005.09.029] [PMID: 16377384]
[43]
Roumeliotis, S.; Mallamaci, F.; Zoccali, C. Endothelial dysfunction in chronic kidney disease, from biology to clinical outcomes: A 2020 update. J. Clin. Med., 2020, 9(8), 2359.
[http://dx.doi.org/10.3390/jcm9082359] [PMID: 32718053]
[44]
Six, I.; Okazaki, H.; Gross, P.; Cagnard, J.; Boudot, C.; Maizel, J.; Drueke, T.B.; Massy, Z.A. Direct, acute effects of Klotho and FGF23 on vascular smooth muscle and endothelium. PLoS One, 2014, 9(4), e93423.
[http://dx.doi.org/10.1371/journal.pone.0093423] [PMID: 24695641]
[45]
Richter, B.; Haller, J.; Haffner, D.; Leifheit-Nestler, M. Klotho modulates FGF23-mediated NO synthesis and oxidative stress in human coronary artery endothelial cells. Pflugers Arch., 2016, 468(9), 1621-1635.
[http://dx.doi.org/10.1007/s00424-016-1858-x] [PMID: 27448998]
[46]
Shuto, E.; Taketani, Y.; Tanaka, R.; Harada, N.; Isshiki, M.; Sato, M.; Nashiki, K.; Amo, K.; Yamamoto, H.; Higashi, Y.; Nakaya, Y.; Takeda, E. Dietary phosphorus acutely impairs endothelial function. J. Am. Soc. Nephrol., 2009, 20(7), 1504-1512.
[http://dx.doi.org/10.1681/ASN.2008101106] [PMID: 19406976]
[47]
Jono, S.; McKee, M.D.; Murry, C.E.; Shioi, A.; Nishizawa, Y.; Mori, K.; Morii, H.; Giachelli, C.M. Phosphate regulation of vascular smooth muscle cell calcification. Circ. Res., 2000, 87(7), E10-E17.
[http://dx.doi.org/10.1161/01.RES.87.7.e10] [PMID: 11009570]
[48]
Reynolds, J.L.; Joannides, A.J.; Skepper, J.N.; McNair, R.; Schurgers, L.J.; Proudfoot, D.; Jahnen-Dechent, W.; Weissberg, P.L.; Shanahan, C.M. Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: A potential mechanism for accelerated vascular calcification in ESRD. J. Am. Soc. Nephrol., 2004, 15(11), 2857-2867.
[http://dx.doi.org/10.1097/01.ASN.0000141960.01035.28] [PMID: 15504939]
[49]
Villa-Bellosta, R.; Sorribas, V. Phosphonoformic acid prevents vascular smooth muscle cell calcification by inhibiting calcium-phosphate deposition. Arterioscler. Thromb. Vasc. Biol., 2009, 29(5), 761-766.
[http://dx.doi.org/10.1161/ATVBAHA.108.183384] [PMID: 19213941]
[50]
Lau, W.L.; Leaf, E.M.; Hu, M.C.; Takeno, M.M.; Kuro-o, M.; Moe, O.W.; Giachelli, C.M. Vitamin D receptor agonists increase klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet. Kidney Int., 2012, 82(12), 1261-1270.
[http://dx.doi.org/10.1038/ki.2012.322] [PMID: 22932118]
[51]
Lim, K.; Lu, T-S.; Molostvov, G.; Lee, C.; Lam, F.T.; Zehnder, D.; Hsiao, L-L. Vascular Klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation, 2012, 125(18), 2243-2255.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.053405] [PMID: 22492635]
[52]
Jimbo, R.; Kawakami-Mori, F.; Mu, S.; Hirohama, D.; Majtan, B.; Shimizu, Y.; Yatomi, Y.; Fukumoto, S.; Fujita, T.; Shimosawa, T. Fibroblast growth factor 23 accelerates phosphate-induced vascular calcification in the absence of Klotho deficiency. Kidney Int., 2014, 85(5), 1103-1111.
[http://dx.doi.org/10.1038/ki.2013.332] [PMID: 24088960]
[53]
Lin, R.; Vucak-Dzumhur, M.; Elder, G.J. Changes to bone mineral density, the trabecular bone score and hip structural analysis following parathyroidectomy: A case report. BMC Nephrol., 2020, 21(1), 513.
[http://dx.doi.org/10.1186/s12882-020-02168-y] [PMID: 33243169]
[54]
Wang, X.; Shapiro, J.I. Evolving concepts in the pathogenesis of uraemic cardiomyopathy. Nat. Rev. Nephrol., 2019, 15(3), 159-175.
[http://dx.doi.org/10.1038/s41581-018-0101-8] [PMID: 30664681]
[55]
Kennedy, D.; Omran, E.; Periyasamy, S.M.; Nadoor, J.; Priyadarshi, A.; Willey, J.C.; Malhotra, D.; Xie, Z.; Shapiro, J.I. Effect of chronic renal failure on cardiac contractile function, calcium cycling, and gene expression of proteins important for calcium homeostasis in the rat. J. Am. Soc. Nephrol., 2003, 14(1), 90-97.
[http://dx.doi.org/10.1097/01.ASN.0000037403.95126.03] [PMID: 12506141]
[56]
Richter, B.; Faul, C. FGF23 actions on target tissues-with and without Klotho. Front. Endocrinol. (Lausanne), 2018, 9, 189.
[http://dx.doi.org/10.3389/fendo.2018.00189] [PMID: 29770125]
[57]
Katz, M.; Amit, I.; Yarden, Y. Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochim. Biophys. Acta, 2007, 1773(8), 1161-1176.
[http://dx.doi.org/10.1016/j.bbamcr.2007.01.002] [PMID: 17306385]
[58]
Scialla, J.J.; Xie, H.; Rahman, M.; Anderson, A.H.; Isakova, T.; Ojo, A.; Zhang, X.; Nessel, L.; Hamano, T.; Grunwald, J.E.; Raj, D.S.; Yang, W.; He, J.; Lash, J.P.; Go, A.S.; Kusek, J.W.; Feldman, H.; Wolf, M. Fibroblast growth factor-23 and cardiovascular events in CKD. J. Am. Soc. Nephrol., 2014, 25(2), 349-360.
[http://dx.doi.org/10.1681/ASN.2013050465] [PMID: 24158986]
[59]
Moe, S.M.; Chertow, G.M.; Parfrey, P.S.; Kubo, Y.; Block, G.A.; Correa-Rotter, R.; Drüeke, T.B.; Herzog, C.A.; London, G.M.; Mahaffey, K.W.; Wheeler, D.C.; Stolina, M.; Dehmel, B.; Goodman, W.G.; Floege, J. Cinacalcet, fibroblast growth factor-23, and cardiovascular disease in hemodialysis: The evaluation of cinacalcet HCl therapy to lower cardiovascular events (EVOLVE) trial. Circulation, 2015, 132(1), 27-39.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.013876] [PMID: 26059012]
[60]
Pastor-Arroyo, E-M.; Gehring, N.; Krudewig, C.; Costantino, S.; Bettoni, C.; Knöpfel, T.; Sabrautzki, S.; Lorenz-Depiereux, B.; Pastor, J.; Strom, T.M.; Hrabě de Angelis, M.; Camici, G.G.; Paneni, F.; Wagner, C.A.; Rubio-Aliaga, I. The elevation of circulating fibroblast growth factor 23 without kidney disease does not increase cardiovascular disease risk. Kidney Int., 2018, 94(1), 49-59.
[http://dx.doi.org/10.1016/j.kint.2018.02.017] [PMID: 29735309]
[61]
Pavik, I.; Jaeger, P.; Ebner, L.; Wagner, C.A.; Petzold, K.; Spichtig, D.; Poster, D.; Wüthrich, R.P.; Russmann, S.; Serra, A.L. Secreted Klotho and FGF23 in chronic kidney disease Stage 1 to 5: A sequence suggested from a cross-sectional study. Nephrol. Dial. Transplant., 2013, 28(2), 352-359.
[http://dx.doi.org/10.1093/ndt/gfs460] [PMID: 23129826]
[62]
Hu, M.C.; Shi, M.; Cho, H.J.; Adams-Huet, B.; Paek, J.; Hill, K.; Shelton, J.; Amaral, A.P.; Faul, C.; Taniguchi, M.; Wolf, M.; Brand, M.; Takahashi, M.; Kuro-O, M.; Hill, J.A.; Moe, O.W. Klotho and phosphate are modulators of pathologic uremic cardiac remodeling. J. Am. Soc. Nephrol., 2015, 26(6), 1290-1302.
[http://dx.doi.org/10.1681/ASN.2014050465] [PMID: 25326585]
[63]
Leifheit-Nestler, M.; Große Siemer, R.; Flasbart, K.; Richter, B.; Kirchhoff, F.; Ziegler, W.H.; Klintschar, M.; Becker, J.U.; Erbersdobler, A.; Aufricht, C.; Seeman, T.; Fischer, D.C.; Faul, C.; Haffner, D. Induction of cardiac FGF23/FGFR4 expression is associated with left ventricular hypertrophy in patients with chronic kidney disease. Nephrol. Dial. Transplant., 2016, 31(7), 1088-1099.
[http://dx.doi.org/10.1093/ndt/gfv421] [PMID: 26681731]
[64]
Leifheit-Nestler, M.; Grabner, A.; Hermann, L.; Richter, B.; Schmitz, K.; Fischer, D-C.; Yanucil, C.; Faul, C.; Haffner, D. Vitamin D treatment attenuates cardiac FGF23/FGFR4 signaling and hypertrophy in uremic rats. Nephrol. Dial. Transplant., 2017, 32(9), 1493-1503.
[http://dx.doi.org/10.1093/ndt/gfw454] [PMID: 28339837]
[65]
Edmonston, D.; Wolf, M. FGF23 at the crossroads of phosphate, iron economy and erythropoiesis. Nat. Rev. Nephrol., 2020, 16(1), 7-19.
[http://dx.doi.org/10.1038/s41581-019-0189-5] [PMID: 31519999]
[66]
Hasegawa, H.; Nagano, N.; Urakawa, I.; Yamazaki, Y.; Iijima, K.; Fujita, T.; Yamashita, T.; Fukumoto, S.; Shimada, T. Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease. Kidney Int., 2010, 78(10), 975-980.
[http://dx.doi.org/10.1038/ki.2010.313] [PMID: 20844473]
[67]
Westerberg, P-A.; Linde, T.; Wikström, B.; Ljunggren, O.; Stridsberg, M.; Larsson, T.E. Regulation of fibroblast growth factor-23 in chronic kidney disease. Nephrol. Dial. Transplant., 2007, 22(11), 3202-3207.
[http://dx.doi.org/10.1093/ndt/gfm347] [PMID: 17567652]
[68]
Canalejo, A.; Almadén, Y.; Torregrosa, V.; Gomez-Villamandos, J.C.; Ramos, B.; Campistol, J.M.; Felsenfeld, A.J.; Rodríguez, M. The in vitro effect of calcitriol on parathyroid cell proliferation and apoptosis. J. Am. Soc. Nephrol., 2000, 11(10), 1865-1872.
[http://dx.doi.org/10.1681/ASN.V11101865] [PMID: 11004217]
[69]
Levin, A.; Bakris, G.L.; Molitch, M.; Smulders, M.; Tian, J.; Williams, L.A.; Andress, D.L. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: Results of the study to evaluate early kidney disease. Kidney Int., 2007, 71(1), 31-38.
[http://dx.doi.org/10.1038/sj.ki.5002009] [PMID: 17091124]
[70]
Carpenter, T.O.; Mitnick, M.A.; Ellison, A.; Smith, C.; Insogna, K.L. Nocturnal hyperparathyroidism: A frequent feature of X-linked hypophosphatemia. J. Clin. Endocrinol. Metab., 1994, 78(6), 1378-1383.
[PMID: 8200940]
[71]
Meir, T.; Levi, R.; Lieben, L.; Libutti, S.; Carmeliet, G.; Bouillon, R.; Silver, J.; Naveh-Many, T. Deletion of the vitamin D receptor specifically in the parathyroid demonstrates a limited role for the receptor in parathyroid physiology. Am. J. Physiol. Renal Physiol., 2009, 297(5), F1192-F1198.
[http://dx.doi.org/10.1152/ajprenal.00360.2009] [PMID: 19692484]
[72]
Eswarakumar, V.P.; Lax, I.; Schlessinger, J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev., 2005, 16(2), 139-149.
[http://dx.doi.org/10.1016/j.cytogfr.2005.01.001] [PMID: 15863030]
[73]
Chande, S.; Bergwitz, C. Role of phosphate sensing in bone and mineral metabolism. Nat. Rev. Endocrinol., 2018, 14(11), 637-655.
[http://dx.doi.org/10.1038/s41574-018-0076-3] [PMID: 30218014]
[74]
KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl., 2009, 113, S1-S130.
[PMID: 19644521]
[75]
Sprague, S.M.; Bellorin-Font, E.; Jorgetti, V.; Carvalho, A.B.; Malluche, H.H.; Ferreira, A.; D’Haese, P.C.; Drüeke, T.B.; Du, H.; Manley, T.; Rojas, E.; Moe, S.M. Diagnostic accuracy of bone turnover markers and bone histology in patients with CKD treated by dialysis. Am. J. Kidney Dis., 2016, 67(4), 559-566.
[http://dx.doi.org/10.1053/j.ajkd.2015.06.023] [PMID: 26321176]
[76]
Ketteler, M.; Block, G.A.; Evenepoel, P.; Fukagawa, M.; Herzog, C.A.; McCann, L.; Moe, S.M.; Shroff, R.; Tonelli, M.A.; Toussaint, N.D.; Vervloet, M.G.; Leonard, M.B. Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Guideline Update: What’s changed and why it matters. Kidney Int., 2017, 92(1), 26-36.
[http://dx.doi.org/10.1016/j.kint.2017.04.006] [PMID: 28646995]
[77]
Evenepoel, P.; Cunningham, J.; Ferrari, S.; Haarhaus, M.; Javaid, M.K.; Lafage-Proust, M-H.; Prieto-Alhambra, D.; Torres, P.U.; Cannata-Andia, J. European Consensus Statement on the diagnosis and management of osteoporosis in chronic kidney disease stages G4–G5D; Oxford University Press: UK, 2021.
[78]
Rodríguez-García, M.; Gómez-Alonso, C.; Naves-Díaz, M.; Diaz-Lopez, J.B.; Diaz-Corte, C.; Cannata-Andía, J.B.; Group, A.S. Vascular calcifications, vertebral fractures and mortality in haemodialysis patients. Nephrol. Dial. Transplant., 2009, 24(1), 239-246.
[http://dx.doi.org/10.1093/ndt/gfn466] [PMID: 18725376]
[79]
Honma, M.; Ikebuchi, Y.; Kariya, Y.; Hayashi, M.; Hayashi, N.; Aoki, S.; Suzuki, H. RANKL subcellular trafficking and regulatory mechanisms in osteocytes. J. Bone Miner. Res., 2013, 28(9), 1936-1949.
[http://dx.doi.org/10.1002/jbmr.1941] [PMID: 23529793]
[80]
Paszty, C.; Turner, C.H.; Robinson, M.K. Sclerostin: A gem from the genome leads to bone-building antibodies. J. Bone Miner. Res., 2010, 25(9), 1897-1904.
[http://dx.doi.org/10.1002/jbmr.161] [PMID: 20564241]
[81]
Rowe, P.S. The wrickkened pathways of FGF23, MEPE and PHEX. Crit. Rev. Oral Biol. Med., 2004, 15(5), 264-281.
[http://dx.doi.org/10.1177/154411130401500503] [PMID: 15470265]
[82]
Robling, A.G.; Bonewald, L.F. The osteocyte: New insights. Annu. Rev. Physiol., 2020, 82(1), 485-506.
[http://dx.doi.org/10.1146/annurev-physiol-021119-034332] [PMID: 32040934]
[83]
Fratzl-Zelman, N.; Gamsjaeger, S.; Blouin, S.; Kocijan, R.; Plasenzotti, P.; Rokidi, S.; Nawrot-Wawrzyniak, K.; Roetzer, K.; Uyanik, G.; Haeusler, G.; Shane, E.; Cohen, A.; Klaushofer, K.; Paschalis, E.P.; Roschger, P.; Fratzl, P.; Zwerina, J.; Zwettler, E. Alterations of bone material properties in adult patients with X-linked hypophosphatemia (XLH). J. Struct. Biol., 2020, 211(3), 107556.
[http://dx.doi.org/10.1016/j.jsb.2020.107556] [PMID: 32619592]
[84]
Miller, P.D.; Jamal, S.A.; Evenepoel, P.; Eastell, R.; Boonen, S. Renal safety in patients treated with bisphosphonates for osteoporosis: A review. J. Bone Miner. Res., 2013, 28(10), 2049-2059.
[http://dx.doi.org/10.1002/jbmr.2058] [PMID: 23907861]
[85]
Seeman, E.; Martin, T.J. Antiresorptive and anabolic agents in the prevention and reversal of bone fragility. Nat. Rev. Rheumatol., 2019, 15(4), 225-236.
[http://dx.doi.org/10.1038/s41584-019-0172-3] [PMID: 30755735]
[86]
Hsu, J.J.; Lu, J.; Umar, S.; Lee, J.T.; Kulkarni, R.P.; Ding, Y.; Chang, C-C.; Hsiai, T.K.; Hokugo, A.; Gkouveris, I.; Tetradis, S.; Nishimura, I.; Demer, L.L.; Tintut, Y. Effects of teriparatide on morphology of aortic calcification in aged hyperlipidemic mice. Am. J. Physiol. Heart Circ. Physiol., 2018, 314(6), H1203-H1213.
[http://dx.doi.org/10.1152/ajpheart.00718.2017] [PMID: 29451816]
[87]
Angelova, P.R.; Baev, A.Y.; Berezhnov, A.V.; Abramov, A.Y. Role of inorganic polyphosphate in mammalian cells: From signal transduction and mitochondrial metabolism to cell death. Biochem. Soc. Trans., 2016, 44(1), 40-45.
[http://dx.doi.org/10.1042/BST20150223] [PMID: 26862186]
[88]
Beck, L.; Leroy, C.; Salaün, C.; Margall-Ducos, G.; Desdouets, C.; Friedlander, G. Identification of a novel function of PiT1 critical for cell proliferation and independent of its phosphate transport activity. J. Biol. Chem., 2009, 284(45), 31363-31374.
[http://dx.doi.org/10.1074/jbc.M109.053132] [PMID: 19726692]
[89]
Teixeira, C.C.; Mansfield, K.; Hertkorn, C.; Ischiropoulos, H.; Shapiro, I.M. Phosphate-induced chondrocyte apoptosis is linked to nitric oxide generation. Am. J. Physiol. Cell Physiol., 2001, 281(3), C833-C839.
[http://dx.doi.org/10.1152/ajpcell.2001.281.3.C833] [PMID: 11502560]
[90]
Couasnay, G.; Beck-Cormier, S.; Devignes, C-S.; Sourice, S.; Bianchi, A.; Véziers, J.; Weiss, P.; Provot, S.; Guicheux, J.; Beck, L. Maintenance of chondrocyte survival by PIT1/SLC20A1-mediated regulation of endoplasmic reticulum homeostasis. Osteoarthritis Cartilage, 2016, 24, S135.
[http://dx.doi.org/10.1016/j.joca.2016.01.265]
[91]
Gutiérrez, O.M.; Wolf, M.; Taylor, E.N. Fibroblast growth factor 23, cardiovascular disease risk factors, and phosphorus intake in the health professionals follow-up study. Clin. J. Am. Soc. Nephrol., 2011, 6(12), 2871-2878.
[http://dx.doi.org/10.2215/CJN.02740311] [PMID: 22034506]
[92]
Isakova, T.; Gutierrez, O.; Shah, A.; Castaldo, L.; Holmes, J.; Lee, H.; Wolf, M. Postprandial mineral metabolism and secondary hyperparathyroidism in early CKD. J. Am. Soc. Nephrol., 2008, 19(3), 615-623.
[http://dx.doi.org/10.1681/ASN.2007060673] [PMID: 18216315]
[93]
Sirikul, W.; Siri-Angkul, N.; Chattipakorn, N.; Chattipakorn, S.C. Fibroblast growth factor 23 and osteoporosis: Evidence from bench to bedside. Int. J. Mol. Sci., 2022, 23(5), 2500.
[http://dx.doi.org/10.3390/ijms23052500] [PMID: 35269640]
[94]
Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; Ahmadian, E.; Al-Aly, Z.; Alipour, V.; Almasi-Hashiani, A.; Al-Raddadi, R.M.; Alvis-Guzman, N.; Amini, S.; Andrei, T.; Andrei, C.L.; Andualem, Z.; Anjomshoa, M.; Arabloo, J.; Ashagre, A.F.; Asmelash, D.; Ataro, Z.; Atout, M.M.W.; Ayanore, M.A.; Badawi, A.; Bakhtiari, A.; Ballew, S.H.; Balouchi, A.; Banach, M.; Barquera, S.; Basu, S.; Bayih, M.T.; Bedi, N.; Bello, A.K.; Bensenor, I.M.; Bijani, A.; Boloor, A.; Borzì, A.M.; Cámera, L.A.; Carrero, J.J.; Carvalho, F.; Castro, F.; Catalá-López, F.; Chang, A.R.; Chin, K.L.; Chung, S-C.; Cirillo, M.; Cousin, E.; Dandona, L.; Dandona, R.; Daryani, A.; Das Gupta, R.; Demeke, F.M.; Demoz, G.T.; Desta, D.M.; Do, H.P.; Duncan, B.B.; Eftekhari, A.; Esteghamati, A.; Fatima, S.S.; Fernandes, J.C.; Fernandes, E.; Fischer, F.; Freitas, M.; Gad, M.M.; Gebremeskel, G.G.; Gebresillassie, B.M.; Geta, B.; Ghafourifard, M.; Ghajar, A.; Ghith, N.; Gill, P.S.; Ginawi, I.A.; Gupta, R.; Hafezi-Nejad, N.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hariyani, N.; Hasan, M.; Hasankhani, M.; Hasanzadeh, A.; Hassen, H.Y.; Hay, S.I.; Heidari, B.; Herteliu, C.; Hoang, C.L.; Hosseini, M.; Hostiuc, M.; Irvani, S.S.N.; Islam, S.M.S.; Jafari Balalami, N.; James, S.L.; Jassal, S.K.; Jha, V.; Jonas, J.B.; Joukar, F.; Jozwiak, J.J.; Kabir, A.; Kahsay, A.; Kasaeian, A.; Kassa, T.D.; Kassaye, H.G.; Khader, Y.S.; Khalilov, R.; Khan, E.A.; Khan, M.S.; Khang, Y-H.; Kisa, A.; Kovesdy, C.P.; Kuate Defo, B.; Kumar, G.A.; Larsson, A.O.; Lim, L-L.; Lopez, A.D.; Lotufo, P.A.; Majeed, A.; Malekzadeh, R.; März, W.; Masaka, A.; Meheretu, H.A.A.; Miazgowski, T.; Mirica, A.; Mirrakhimov, E.M.; Mithra, P.; Moazen, B.; Mohammad, D.K.; Mohammadpourhodki, R.; Mohammed, S.; Mokdad, A.H.; Morales, L.; Moreno Velasquez, I.; Mousavi, S.M.; Mukhopadhyay, S.; Nachega, J.B.; Nadkarni, G.N.; Nansseu, J.R.; Natarajan, G.; Nazari, J.; Neal, B.; Negoi, R.I.; Nguyen, C.T.; Nikbakhsh, R.; Noubiap, J.J.; Nowak, C.; Olagunju, A.T.; Ortiz, A.; Owolabi, M.O.; Palladino, R.; Pathak, M.; Poustchi, H.; Prakash, S.; Prasad, N.; Rafiei, A.; Raju, S.B.; Ramezanzadeh, K.; Rawaf, S.; Rawaf, D.L.; Rawal, L.; Reiner, R.C., Jr; Rezapour, A.; Ribeiro, D.C.; Roever, L.; Rothenbacher, D.; Rwegerera, G.M.; Saadatagah, S.; Safari, S.; Sahle, B.W.; Salem, H.; Sanabria, J.; Santos, I.S.; Sarveazad, A.; Sawhney, M.; Schaeffner, E.; Schmidt, M.I.; Schutte, A.E.; Sepanlou, S.G.; Shaikh, M.A.; Sharafi, Z.; Sharif, M.; Sharifi, A.; Silva, D.A.S.; Singh, J.A.; Singh, N.P.; Sisay, M.M.M.; Soheili, A.; Sutradhar, I.; Teklehaimanot, B.F.; Tesfay, B.; Teshome, G.F.; Thakur, J.S.; Tonelli, M.; Tran, K.B.; Tran, B.X.; Tran Ngoc, C.; Ullah, I.; Valdez, P.R.; Varughese, S.; Vos, T.; Vu, L.G.; Waheed, Y.; Werdecker, A.; Wolde, H.F.; Wondmieneh, A.B.; Wulf Hanson, S.; Yamada, T.; Yeshaw, Y.; Yonemoto, N.; Yusefzadeh, H.; Zaidi, Z.; Zaki, L.; Zaman, S.B.; Zamora, N.; Zarghi, A.; Zewdie, K.A.; Ärnlöv, J.; Coresh, J.; Perico, N.; Remuzzi, G.; Murray, C.J.L.; Vos, T. Global, regional, and national burden of chronic kidney disease, 1990-2017: A systematic analysis for the global burden of disease study 2017. Lancet, 2020, 395(10225), 709-733.
[http://dx.doi.org/10.1016/S0140-6736(20)30045-3] [PMID: 32061315]
[95]
Couser, W.G.; Remuzzi, G.; Mendis, S.; Tonelli, M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int., 2011, 80(12), 1258-1270.
[http://dx.doi.org/10.1038/ki.2011.368] [PMID: 21993585]
[96]
Ferreira, A.C.; Cotovio, P.; Aires, I.; Mendes, M.; Navarro, D.; Silva, C.; Caeiro, F.; Salvador, R.; Correia, B.; Cabral, G. The role of bone volume, FGF23 and sclerostin in calcifications and mortality; A cohort study in CKD stage 5 patients. Calcif. Tissue Int., 2021, [EPub ahead of print].
[PMID: 34477944]
[97]
Xu, Y.; Evans, M.; Soro, M.; Barany, P.; Carrero, J.J. Secondary hyperparathyroidism and adverse health outcomes in adults with chronic kidney disease. Clin. Kidney J., 2021, 14(10), 2213-2220.
[http://dx.doi.org/10.1093/ckj/sfab006] [PMID: 34603697]
[98]
Gutiérrez, O.M. Recent advances in the role of diet in bone and mineral disorders in chronic kidney disease. Curr. Osteoporos. Rep., 2021, 19(6), 574-579.
[http://dx.doi.org/10.1007/s11914-021-00710-x] [PMID: 34729692]
[99]
Machado, A.D.; Gómez, L.M.; Marchioni, D.M.L.; Dos Anjos, F.S.N.; Molina, M.d.C.B.; Lotufo, P.A.; Benseñor, I.J.M.; Titan, S.M. Association between dietary intake and coronary artery calcification in non-dialysis chronic kidney disease: The PROGREDIR study. 2018, 10(3), 372.
[http://dx.doi.org/10.3390/nu10030372]
[100]
De Pascale, M.R.; Della Mura, N.; Vacca, M.; Napoli, C.J.G.F. Useful applications of growth factors for cardiovascular regenerative medicine. Growth Factors, 2020, 38(1), 35-63.
[http://dx.doi.org/10.1080/08977194.2020.1825410]
[101]
Neyra, J.A.; Hu, M.C.; Moe, O.W.J.N. Fibroblast Growth Factor 23 and αKlotho in acute kidney injury. Curr. Status Diagnos. Thera. Appl., 2020, 144(12), 665-672.
[102]
Cheung, W.H.; Wong, R.M.Y.; Choy, V.M.H.; Li, M.C.M.; Cheng, K.Y.K.; Chow, S.K.H.J.I. Enhancement of osteoporotic fracture healing by vibration treatment: The role of osteocytes. 2021, 52, S97-S100.
[103]
Clinkenbeard, E. L.; White, K. E. J. B. Heritable and acquired disorders of phosphate metabolism: Etiologies involving FGF23 and current therapeutics. Bone, 2017, 102, 31-39.
[http://dx.doi.org/10.1016/j.bone.2017.01.034]
[104]
Agrawal, A.; Ni, P.; Agoro, R.; White, K.E.; DiMarchi, R.D. Identification of a second Klotho interaction site in the C terminus of FGF23. Cell Rep., 2021, 34(4), 108665.
[http://dx.doi.org/10.1016/j.celrep.2020.108665] [PMID: 33503417]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy