Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

The Association Between the Risk of Breast Cancer and Epigallocatechin- 3-Gallate Intake: A Literature Review of a Potential Chemopreventive Agent

Author(s): Efstratios Athanasiou*, Georgios-Ioannis Verras, Savvas Papageorgiou, Ioannis Kelesis, Athanasios Gatsis, Christina Karaoulani, Ioannis Stouras, Panagiotis Kanatas, Elmina-Marina Saitani, Maria-Eleni Oikonomou, Danae-Anastasia Vlassi, Maria Vasileiou, Christos Tsagkaris, Athanasios Alexiou and Mohammad Amjad Kamal

Volume 29, Issue 40, 2022

Published on: 27 August, 2022

Page: [6169 - 6196] Pages: 28

DOI: 10.2174/0929867329666220726153412

Price: $65

Abstract

According to the latest epidemiological data, breast cancer has recently been the most frequently diagnosed malignancy. To date, a body of evidence has established the involvement of multiple - and frequently interrelated - genetic and environmental factors in the pathogenesis of the disease. Emerging research on cancer prevention has highlighted the deterrence potential of interventions targeting environmental risk factors, particularly diet. In this aspect, the current review reveals the latest scientific results regarding epigallocatechin-3-gallate (EGCG) - a catechin most commonly found in green tea, as a potential chemopreventive dietary agent against breast cancer. in vitro studies on EGCG have demonstrated its effect on cell cycle progression and its potential to suppress several intracellular signaling pathways involved in breast cancer pathogenesis. In addition, EGCG possesses specific apoptosis-inducing characteristics that seem to enhance its role as a regulator of cell survival. Preclinical data seem to support using EGCG as an effective adjunct to EGFR-targeting treatments. The authors’ appraisal of the literature suggests that although preclinical evidence has documented the anticarcinogenic features of EGCG, limited large-scale epidemiological studies are investigating the consumption of EGCG - containing nutrients in the prevention and management of breast cancer risk. This literature review aims to liaise between preclinical and epidemiological research, surveying the existing evidence and unraveling relevant knowledge gaps.

Keywords: Epigallocatechin-3-gallate, breast cancer, chemoprevention, green tea, natural products, antioxidant properties, and anti-inflammatory properties.

[1]
American Cancer Society. How common is breast cancer? Available from: https://www.cancer.org/cancer/breast-cancer/about/how-common-is-breast-cancer.html
[2]
Allan, D.A.; Basco, R. Medical language for modern health care, 4th ed, Mcgraw-Hill Education, NY, USA 2018.
[3]
Ginsburg, O.; Yip, C. H.; Brooks, A.; Cabanes, A.; Caleffi, M.; Dunstan Yataco, J. A.; Gyawali, B.; McCormack, V.; McLaughlin de Anderson, M.; Mehrotra, R.; Mohar, A.; Murillo, R.; Pace, L. E.; Paskett, E. D.; Romanoff, A.; Rositch, A. F.; Scheel, J. R.; Schneidman, M.; Unger-Saldaña, K.; Vanderpuye, V.; Wu, T. Y.; Yuma, S.; Dvaladze, A.; Duggan, C.; Anderson, B. O. Breast cancer early detection: A phased approach to implementation. Cancer, 2020, 126(Suppl. 10), 2379-2393.
[http://dx.doi.org/10.1002/cncr.32887]
[4]
DeSantis, C.E.; Bray, F.; Ferlay, J.; Lortet-Tieulent, J.; Anderson, B.O.; Jemal, A. International variation in female breast cancer incidence and mortality rates. Cancer Epidemiol. Biomarkers Prev., 2015, 24(10), 1495-1506.
[http://dx.doi.org/10.1158/1055-9965.EPI-15-0535] [PMID: 26359465]
[5]
Wild, C.P.; Weiderpass, E.; Stewart, B.W. World Cancer Report: Cancer Research for Cancer Prevention. , 2020. Available from: https://publications.iarc.fr/Non-Series- Publications/World-Cancer-Reports/World-Cancer-Report-Cancer-Research-For-Cancer-Prevention-2020
[6]
IARC. Global Cancer Observatory. Available from: https://gco.iarc.fr/ (Accessed on: Nov 23, 2021).
[7]
Arthur, R.S.; Wang, T.; Xue, X.; Kamensky, V.; Rohan, T.E. Genetic factors, adherence to healthy lifestyle behavior, and risk of invasive breast cancer among women in the UK biobank. J. Natl. Cancer Inst., 2020, 112(9), 893-901.
[http://dx.doi.org/10.1093/jnci/djz241] [PMID: 31899501]
[8]
Murray, P.J.; Wivell, G.; Denton, E. Breast cancer screening and diagnosis in the 21st century within the U.K. Post Reprod. Health, 2015, 21(3), 105-111.
[http://dx.doi.org/10.1177/2053369115594954] [PMID: 26209528]
[9]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[10]
De Silva, S.; Tennekoon, K.H.; Karunanayake, E.H. Overview of the genetic basis toward early detection of breast cancer. Breast Cancer (Dove Med. Press), 2019, 11, 71-80.
[http://dx.doi.org/10.2147/BCTT.S185870] [PMID: 30718964]
[11]
Naeem, M.; Hayat, M.; Qamar, S. A.; Mehmood, T.; Munir, A.; Ahmad, G.; Azmi, U. R.; Faryad, M. A.; Talib, M. Z.; Irfan, M.; Hussain, A.; Hayder, M. A.; Ghani, U.; Mehmood, F. Risk factors, genetic mutations and prevention of breast cancer. Int. J. BioSci., 2019, 14(4), 492-496.
[12]
Feng, Y.; Spezia, M.; Huang, S.; Yuan, C.; Zeng, Z.; Zhang, L.; Ji, X.; Liu, W.; Huang, B.; Luo, W.; Liu, B.; Lei, Y.; Du, S.; Vuppalapati, A.; Luu, H.H.; Haydon, R.C.; He, T.C.; Ren, G. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis., 2018, 5(2), 77-106.
[http://dx.doi.org/10.1016/j.gendis.2018.05.001] [PMID: 30258937]
[13]
Ikeda, K.; Horie-Inoue, K.; Inoue, S. Identification of estrogen-responsive genes based on the dna binding properties of estrogen receptors using high-throughput sequencing technology. Acta Pharmacol. Sin., 2014, 36(1), 24-31.
[http://dx.doi.org/10.1038/aps.2014.123]
[14]
Keung, M.Y.; Wu, Y.; Badar, F.; Vadgama, J.V. Response of breast cancer cells to PARP inhibitors is independent of BRCA status. J. Clin. Med., 2020, 9(4), E940.
[http://dx.doi.org/10.3390/jcm9040940] [PMID: 32235451]
[15]
Liu, X.; Miller, C.W.; Koeffler, P.H.; Berk, A.J. The p53 activation domain binds the TATA box-binding polypeptide in Holo-TFIID, and a neighboring p53 domain inhibits transcription. Mol. Cell. Biol., 1993, 13(6), 3291-3300.
[http://dx.doi.org/10.1128/mcb.13.6.3291-3300.1993] [PMID: 8497252]
[16]
Oh, D.Y.; Bang, Y.J. HER2-targeted therapies - a role beyond breast cancer. Nat. Rev. Clin. Oncol., 2020, 17(1), 33-48.
[http://dx.doi.org/10.1038/s41571-019-0268-3] [PMID: 31548601]
[17]
Costa, R.L.B.; Han, H.S.; Gradishar, W.J. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: A review. Breast Cancer Res. Treat., 2018, 169(3), 397-406.
[http://dx.doi.org/10.1007/s10549-018-4697-y] [PMID: 29417298]
[18]
Ortega, M.A.; Fraile-Martínez, O.; Asúnsolo, Á.; Buján, J.; García-Honduvilla, N.; Coca, S. Signal transduction pathways in breast cancer: The important role of PI3K/Akt/mTOR. J. Oncol., 2020, 2020, 9258396.
[http://dx.doi.org/10.1155/2020/9258396] [PMID: 32211045]
[19]
Duffy, M.J.; Synnott, N.C.; Crown, J. Mutant p53 in breast cancer: Potential as a therapeutic target and biomarker. Breast Cancer Res. Treat., 2018, 170(2), 213-219.
[http://dx.doi.org/10.1007/s10549-018-4753-7] [PMID: 29564741]
[20]
Wang, D.; Qiu, C.; Zhang, H.; Wang, J.; Cui, Q.; Yin, Y. Human microRNA oncogenes and tumor suppressors show significantly different biological patterns: From functions to targets. PLoS One, 2010, 5(9), e13067.
[http://dx.doi.org/10.1371/journal.pone.0013067] [PMID: 20927335]
[21]
Jovanovic, J.; Rønneberg, J.A.; Tost, J.; Kristensen, V. The epigenetics of breast cancer. Mol. Oncol., 2010, 4(3), 242-254.
[http://dx.doi.org/10.1016/j.molonc.2010.04.002] [PMID: 20627830]
[22]
Garcia-Martinez, L.; Zhang, Y.; Nakata, Y.; Chan, H. L.; Morey, L. Epigenetic mechanisms in breast cancer therapy and resistance. Nat. Commun., 2021, 12(1), 1-14.
[http://dx.doi.org/10.1038/s41467-021-22024-3]
[23]
Győrffy, B.; Bottai, G.; Fleischer, T.; Munkácsy, G.; Budczies, J.; Paladini, L.; Børresen-Dale, A.L.; Kristensen, V.N.; Santarpia, L. Aberrant DNA methylation impacts gene expression and prognosis in breast cancer subtypes. Int. J. Cancer, 2016, 138(1), 87-97.
[http://dx.doi.org/10.1002/ijc.29684] [PMID: 26174627]
[24]
Good, C.R.; Panjarian, S.; Kelly, A.D.; Madzo, J.; Patel, B.; Jelinek, J.; Issa, J.J. TET1-mediated hypomethylation activates oncogenic signaling in triple-negative breast cancer. Cancer Res., 2018, 78(15), 4126-4137.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2082] [PMID: 29891505]
[25]
Huang, Y.; Nayak, S.; Jankowitz, R.; Davidson, N.E.; Oesterreich, S. Epigenetics in breast cancer: What’s new? Breast Cancer Res., 2011, 13(6), 225.
[http://dx.doi.org/10.1186/bcr2925] [PMID: 22078060]
[26]
Connolly, R.; Stearns, V. Epigenetics as a therapeutic target in breast cancer. J. Mammary Gland Biol. Neoplasia, 2012, 17(3-4), 191-204.
[http://dx.doi.org/10.1007/s10911-012-9263-3] [PMID: 22836913]
[27]
Sher, G.; Salman, N.A.; Khan, A.Q.; Prabhu, K.S.; Raza, A.; Kulinski, M.; Dermime, S.; Haris, M.; Junejo, K.; Uddin, S. Epigenetic and breast cancer therapy: Promising diagnostic and therapeutic applications. Semin. Cancer Biol., 2020, 2020, S1044-579X(20)30181-4.
[http://dx.doi.org/10.1016/j.semcancer.2020.08.009] [PMID: 32858230]
[28]
Vo, A.T.; Millis, R.M. Epigenetics and breast cancers. Obstet. Gynecol. Int., 2012, 2012, 602720.
[http://dx.doi.org/10.1155/2012/602720] [PMID: 22567014]
[29]
Sheng, J.; Shi, W.; Guo, H.; Long, W.; Wang, Y.; Qi, J.; Liu, J.; Xu, Y. The inhibitory effect of (−)-epigallocatechin-3-gallate on breast cancer progression via reducing SCUBE2 methylation and DNMT activity. Mol., 2019, 24(16), 2899.
[http://dx.doi.org/10.3390/molecules24162899]
[30]
Elsheikh, S.E.; Green, A.R.; Rakha, E.A.; Powe, D.G.; Ahmed, R.A.; Collins, H.M.; Soria, D.; Garibaldi, J.M.; Paish, C.E.; Ammar, A.A.; Grainge, M.J.; Ball, G.R.; Abdelghany, M.K.; Martinez-Pomares, L.; Heery, D.M.; Ellis, I.O. Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res., 2009, 69(9), 3802-3809.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3907] [PMID: 19366799]
[31]
Wang, C.; Zhou, Z.; Subhramanyam, C. S.; Cao, Q.; Heng, Z. S. L.; Liu, W.; Fu, X.; Hu, Q. SRPK1 acetylation modulates alternative splicing to regulate cisplatin resistance in breast cancer cells. Commun. Biol., 2020, 3(1), 1-13.
[http://dx.doi.org/10.1038/s42003-020-0983-4]
[32]
Lustberg, M.B.; Ramaswamy, B. Epigenetic therapy in breast cancer. Curr. Breast Cancer Rep., 2011, 3(1), 34-43.
[http://dx.doi.org/10.1007/s12609-010-0034-0] [PMID: 23097683]
[33]
Watson, J.D.; Baker, T.A.; Bell, S.P.; Gann, A.; Levine, M.; Losick, R. Molecular Biology of the Gene, 7th Ed.; Pearson: London, UK, 2013, p. 912.
[34]
Shi, S.J.; Wang, L.J.; Yu, B.; Li, Y.H.; Jin, Y.; Bai, X.Z. LncRNA-ATB promotes trastuzumab resistance and invasion-metastasis cascade in breast cancer. Oncotarget, 2015, 6(13), 11652-11663.
[http://dx.doi.org/10.18632/oncotarget.3457] [PMID: 25871474]
[35]
Schwingshackl, L.; Schwedhelm, C.; Galbete, C.; Hoffmann, G. Adherence to mediterranean diet and risk of cancer: An updated systematic review and meta-analysis. Nutrients, 2017, 9(10), E1063.
[http://dx.doi.org/10.3390/nu9101063] [PMID: 28954418]
[36]
Moore, S.C.; Lee, I.M.; Weiderpass, E.; Campbell, P.T.; Sampson, J.N.; Kitahara, C.M.; Keadle, S.K.; Arem, H.; Berrington de Gonzalez, A.; Hartge, P.; Adami, H.O.; Blair, C.K.; Borch, K.B.; Boyd, E.; Check, D.P.; Fournier, A.; Freedman, N.D.; Gunter, M.; Johannson, M.; Khaw, K.T.; Linet, M.S.; Orsini, N.; Park, Y.; Riboli, E.; Robien, K.; Schairer, C.; Sesso, H.; Spriggs, M.; Van Dusen, R.; Wolk, A.; Matthews, C.E.; Patel, A.V. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern. Med., 2016, 176(6), 816-825.
[http://dx.doi.org/10.1001/jamainternmed.2016.1548] [PMID: 27183032]
[37]
Peterson, L.L.; Ligibel, J.A. Physical activity and breast cancer: An opportunity to improve outcomes. Curr. Oncol. Rep., 2018, 20(7), 50.
[http://dx.doi.org/10.1007/s11912-018-0702-1] [PMID: 29713835]
[38]
Lynch, B.M.; Neilson, H.K.; Friedenreich, C.M. Physical activity and breast cancer prevention. Recent Results Cancer Res., 2011, 186, 13-42.
[http://dx.doi.org/10.1007/978-3-642-04231-7_2] [PMID: 21113759]
[39]
Friedenreich, C.M.; Cust, A.E. Physical activity and breast cancer risk: Impact of timing, type and dose of activity and population subgroup effects. Br. J. Sports Med., 2008, 42(8), 636-647.
[http://dx.doi.org/10.1136/bjsm.2006.029132] [PMID: 18487249]
[40]
Loprinzi, P.D.; Cardinal, B.J.; Winters-Stone, K.; Smit, E.; Loprinzi, C.L. Physical activity and the risk of breast cancer recurrence: A literature review. Oncol. Nurs. Forum, 2012, 39(3), 269-274.
[http://dx.doi.org/10.1188/12.ONF.269-274] [PMID: 22543385]
[41]
Argolo, D.F.; Hudis, C.A.; Iyengar, N.M. The impact of obesity on breast cancer. Curr. Oncol. Rep., 2018, 20(6), 47.
[http://dx.doi.org/10.1007/s11912-018-0688-8]
[42]
James, F.R.; Wootton, S.; Jackson, A.; Wiseman, M.; Copson, E.R.; Cutress, R.I. Obesity in breast cancer--what is the risk factor? Eur. J. Cancer, 2015, 51(6), 705-720.
[http://dx.doi.org/10.1016/j.ejca.2015.01.057] [PMID: 25747851]
[43]
Lee, S.; Quiambao, A.L.; Lee, J.; Ro, J.; Lee, E.S.; Jung, S.Y.; Sung, M.K.; Kim, J. Dietary inflammatory index and risk of breast cancer based on hormone receptor status: A case-control study in Korea. Nutrients, 2019, 11(8), E1949.
[http://dx.doi.org/10.3390/nu11081949] [PMID: 31430979]
[44]
Jung, S.; Wang, M.; Anderson, K.; Baglietto, L.; Bergkvist, L.; Bernstein, L.; van den Brandt, P.A.; Brinton, L.; Buring, J.E.; Eliassen, A.H.; Falk, R.; Gapstur, S.M.; Giles, G.G.; Goodman, G.; Hoffman-Bolton, J.; Horn-Ross, P.L.; Inoue, M.; Kolonel, L.N.; Krogh, V.; Lof, M.; Maas, P.; Miller, A.B.; Neuhouser, M.L.; Park, Y.; Robien, K.; Rohan, T.E.; Scarmo, S.; Schouten, L.J.; Sieri, S.; Stevens, V.L.; Tsugane, S.; Visvanathan, K.; Wilkens, L.R.; Wolk, A.; Weiderpass, E.; Willett, W.C.; Zeleniuch-Jacquotte, A.; Zhang, S.M.; Zhang, X.; Ziegler, R.G.; Smith-Warner, S.A. Alcohol consumption and breast cancer risk by estrogen receptor status: In a pooled analysis of 20 studies. Int. J. Epidemiol., 2016, 45(3), 916-928.
[http://dx.doi.org/10.1093/ije/dyv156] [PMID: 26320033]
[45]
Terry, P.D.; Goodman, M. Is the association between cigarette smoking and breast cancer modified by genotype? A review of epidemiologic studies and meta-analysis. Cancer Epidemiol. Biomarkers Prev., 2006, 15(4), 602-611.
[http://dx.doi.org/10.1158/1055-9965.EPI-05-0853] [PMID: 16614098]
[46]
Reynolds, P. Smoking and breast cancer. J. Mammary Gland Biol. Neoplasia, 2013, 18(1), 15-23.
[http://dx.doi.org/10.1007/s10911-012-9269-x] [PMID: 23179580]
[47]
Di Cello, F.; Flowers, V.L.; Li, H.; Vecchio-Pagán, B.; Gordon, B.; Harbom, K.; Shin, J.; Beaty, R.; Wang, W.; Brayton, C.; Baylin, S.B.; Zahnow, C.A. Cigarette smoke induces epithelial to mesenchymal transition and increases the metastatic ability of breast cancer cells. Mol. Cancer, 2013, 12(1), 90.
[http://dx.doi.org/10.1186/1476-4598-12-90] [PMID: 23919753]
[48]
Vegunta, S.; Lester, S. P.; Pruthi, S.; Mussallem, D. M. Effects of major lifestyle factors on breast cancer risk: Impact of weight, nutrition, physical activity, alcohol and tobacco. 2020, 9(4), BMT51.
[http://dx.doi.org/10.2217/bmt-2020-0033]
[49]
Muscaritoli, M.; Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Hütterer, E.; Isenring, E.; Kaasa, S.; Krznaric, Z.; Laird, B.; Larsson, M.; Laviano, A.; Mühlebach, S.; Oldervoll, L.; Ravasco, P.; Solheim, T.S.; Strasser, F.; de van der Schueren, M.; Preiser, J.C.; Bischoff, S.C. ESPEN practical guideline: Clinical Nutrition in cancer. Clin. Nutr., 2021, 40(5), 2898-2913.
[http://dx.doi.org/10.1016/j.clnu.2021.02.005] [PMID: 33946039]
[50]
Hilakivi-Clarke, L. Maternal exposure to diethylstilbestrol during pregnancy and increased breast cancer risk in daughters. Breast Cancer Res., 2014, 16(2), 208.
[http://dx.doi.org/10.1186/bcr3649] [PMID: 25032259]
[51]
Cedó, L.; Reddy, S.T.; Mato, E.; Blanco-Vaca, F.; Escolà-Gil, J.C. HDL and LDL: Potential new players in breast cancer development. J. Clin. Med., 2019, 8(6), E853.
[http://dx.doi.org/10.3390/jcm8060853] [PMID: 31208017]
[52]
Buja, A.; Pierbon, M.; Lago, L.; Grotto, G.; Baldo, V. Breast cancer primary prevention and diet: An umbrella review. Int. J. Environ. Res. Public Heal., 2020, 17(13), 4731.
[http://dx.doi.org/10.3390/ijerph17134731]
[53]
Al Shaikh, A.; Braakhuis, A.J.; Bishop, K.S. The mediterranean diet and breast cancer: A personalised approach. Healthcare, 2019, 7(3), 7030104.
[http://dx.doi.org/10.3390/healthcare7030104]
[54]
Porciello, G.; Montagnese, C.; Crispo, A.; Grimaldi, M.; Libra, M.; Vitale, S.; Palumbo, E.; Pica, R.; Calabrese, I.; Cubisino, S.; Falzone, L.; Poletto, L.; Martinuzzo, V.; Prete, M.; Esindi, N.; Thomas, G.; Cianniello, D.; Pinto, M.; Laurentiis, M.; Pacilio, C.; Rinaldo, M.; D’Aiuto, M.; Serraino, D.; Massarut, S.; Evangelista, C.; Steffan, A.; Catalano, F.; Banna, G.L.; Scandurra, G.; Ferraù, F.; Rossello, R.; Antonelli, G.; Guerra, G.; Farina, A.; Messina, F.; Riccardi, G.; Gatti, D.; Jenkins, D.J.A.; Minopoli, A.; Grilli, B.; Cavalcanti, E.; Celentano, E.; Botti, G.; Montella, M.; Augustin, L.S.A. Mediterranean diet and quality of life in women treated for breast cancer: A baseline analysis of DEDiCa multicentre trial. PLoS One, 2020, 15(10), e0239803.
[http://dx.doi.org/10.1371/journal.pone.0239803] [PMID: 33031478]
[55]
Dieterich, M.; Stubert, J.; Reimer, T.; Erickson, N.; Berling, A. Influence of lifestyle factors on breast cancer risk. Breast Care (Basel), 2014, 9(6), 407-414.
[http://dx.doi.org/10.1159/000369571] [PMID: 25759623]
[56]
Lofterød, T.; Frydenberg, H.; Flote, V.; Eggen, A.E.; McTiernan, A.; Mortensen, E.S.; Akslen, L.A.; Reitan, J.B.; Wilsgaard, T.; Thune, I. Exploring the effects of lifestyle on breast cancer risk, age at diagnosis, and survival: The EBBA-Life study. Breast Cancer Res. Treat., 2020, 182(1), 215-227.
[http://dx.doi.org/10.1007/s10549-020-05679-2] [PMID: 32436147]
[57]
Romieu, I.I.; Amadou, A.; Chajes, V. The role of diet, physical activity, body fatness, and breastfeeding in breast cancer in young women: Epidemiological evidence. Rev. Invest. Clin., 2017, 69(4), 193-203.
[http://dx.doi.org/10.24875/RIC.17002263] [PMID: 28776604]
[58]
Chang, Y.J.; Hou, Y.C.; Chen, L.J.; Wu, J.H.; Wu, C.C.; Chang, Y.J.; Chung, K.P. Is vegetarian diet associated with a lower risk of breast cancer in Taiwanese women? BMC Public Health, 2017, 17(1), 800.
[http://dx.doi.org/10.1186/s12889-017-4819-1] [PMID: 29017525]
[59]
Lee, K.; Kruper, L.; Dieli-Conwright, C.M.; Mortimer, J.E. The impact of obesity on breast cancer diagnosis and treatment. Curr. Oncol. Rep., 2019, 21(5), 41.
[http://dx.doi.org/10.1007/s11912-019-0787-1] [PMID: 30919143]
[60]
Moreno, A.C.; Sahni, S.K.; Smith, T.L.; Batur, P. Women’s health 2019: Osteoporosis, breast cancer, contraception, and hormone therapy. Cleve. Clin. J. Med., 2019, 86(6), 400-406.
[http://dx.doi.org/10.3949/ccjm.86a.18130] [PMID: 31204979]
[61]
Heath, A.K.; Muller, D.C.; van den Brandt, P.A.; Papadimitriou, N.; Critselis, E.; Gunter, M.; Vineis, P.; Weiderpass, E.; Fagherazzi, G.; Boeing, H.; Ferrari, P.; Olsen, A.; Tjønneland, A.; Arveux, P.; Boutron-Ruault, M.C.; Mancini, F.R.; Kühn, T.; Turzanski-Fortner, R.; Schulze, M.B.; Karakatsani, A.; Thriskos, P.; Trichopoulou, A.; Masala, G.; Contiero, P.; Ricceri, F.; Panico, S.; Bueno-de-Mesquita, B.; Bakker, M.F.; van Gils, C.H.; Olsen, K.S.; Skeie, G.; Lasheras, C.; Agudo, A.; Rodríguez-Barranco, M.; Sánchez, M.J.; Amiano, P.; Chirlaque, M.D.; Barricarte, A.; Drake, I.; Ericson, U.; Johansson, I.; Winkvist, A.; Key, T.; Freisling, H.; His, M.; Huybrechts, I.; Christakoudi, S.; Ellingjord-Dale, M.; Riboli, E.; Tsilidis, K.K.; Tzoulaki, I. Nutrient-wide association study of 92 foods and nutrients and breast cancer risk. Breast Cancer Res., 2020, 22(1), 5.
[http://dx.doi.org/10.1186/s13058-019-1244-7] [PMID: 31931881]
[62]
Taylor, K.W.; Troester, M.A.; Herring, A.H.; Engel, L.S.; Nichols, H.B.; Sandler, D.P.; Baird, D.D. Associations between personal care product use patterns and breast cancer risk among white and black women in the sister study. Environ. Health Perspect., 2018, 126(2), 027011.
[http://dx.doi.org/10.1289/EHP1480] [PMID: 29467107]
[63]
Nelson, B. Birth control and breast cancer: An unclear connection. Cancer Cytopathol., 2018, 126(9), 751-752.
[http://dx.doi.org/10.1002/cncy.22059] [PMID: 30358925]
[64]
Fagundo-Rivera, J.; Allande-Cussó, R.; Ortega-Moreno, M.; García-Iglesias, J.J.; Romero, A.; Ruiz-Frutos, C.; Gómez-Salgado, J. Implications of lifestyle and occupational factors on the risk of breast cancer in shiftwork nurses. Healthcare (Basel), 2021, 9(6), 649.
[http://dx.doi.org/10.3390/healthcare9060649] [PMID: 34070908]
[65]
Gray, J. M.; Rasanayagam, S.; Engel, C.; Rizzo, J. State of the evidence 2017: An update on the connection between breast cancer and the environment. Environ. Heal., 2017, 16(1), 1-61.
[http://dx.doi.org/10.1186/s12940-017-0287-4]
[66]
Ullah, A.; Munir, S.; Badshah, S. L.; Khan, N.; Ghani, L.; Poulson, B. G.; Emwas, A. H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Mol., 2020, 25(22), 5243.
[http://dx.doi.org/10.3390/molecules25225243]
[67]
Xie, J.; Xiong, J.; Ding, L.S.; Chen, L.; Zhou, H.; Liu, L.; Zhang, Z.F.; Hu, X.M.; Luo, P.; Qing, L.S. A efficient method to identify cardioprotective components of Astragali Radix using a combination of molecularly imprinted polymers-based knockout extract and activity evaluation. J. Chromatogr. A, 2018, 1576, 10-18.
[http://dx.doi.org/10.1016/j.chroma.2018.09.027] [PMID: 30245072]
[68]
Faggio, C.; Sureda, A.; Morabito, S.; Sanches-Silva, A.; Mocan, A.; Nabavi, S.F.; Nabavi, S.M. Flavonoids and platelet aggregation: A brief review. Eur. J. Pharmacol., 2017, 807, 91-101.
[http://dx.doi.org/10.1016/j.ejphar.2017.04.009] [PMID: 28412372]
[69]
Fan, X.; Fan, Z.; Yang, Z.; Huang, T.; Tong, Y.; Yang, D.; Mao, X.; Yang, M. Natural gifts to promote health and longevity. Int. J. Mol. Sci., 2022, 23(4), 2176.
[http://dx.doi.org/10.3390/ijms23042176]
[70]
Bakhtiari, M.; Panahi, Y.; Ameli, J.; Darvishi, B. Protective effects of flavonoids against Alzheimer’s disease-related neural dysfunctions. Biomed. Pharmacother., 2017, 93, 218-229.
[http://dx.doi.org/10.1016/j.biopha.2017.06.010] [PMID: 28641164]
[71]
Magalingam, K.B.; Radhakrishnan, A.K.; Haleagrahara, N. Protective mechanisms of flavonoids in Parkinson’s disease. Oxid. Med. Cell. Longev., 2015, 2015, 314560.
[http://dx.doi.org/10.1155/2015/314560] [PMID: 26576219]
[72]
Orhan, I.E.; Daglia, M.; Nabavi, S.F.; Loizzo, M.R.; Sobarzo-Sánchez, E.; Nabavi, S.M. Flavonoids and dementia: An update. Curr. Med. Chem., 2015, 22(8), 1004-1015.
[http://dx.doi.org/10.2174/0929867322666141212122352] [PMID: 25515512]
[73]
Ramezani, M.; Meymand, A.Z.; Khodagholi, F.; Kamsorkh, H.M.; Asadi, E.; Noori, M.; Rahimian, K.; Shahrbabaki, A.S.; Talebi, A.; Parsaiyan, H.; Shiravand, S.; Darbandi, N. A role for flavonoids in the prevention and/or treatment of cognitive dysfunction, learning, and memory deficits: A review of preclinical and clinical studies. Nutr. Neurosci., 2022.
[http://dx.doi.org/10.1080/1028415X.2022.2028058] [PMID: 35152858]
[74]
Narenjkar, J.; Roghani, M.; Alambeygi, H.; Sedaghati, F. The effect of the flavonoid quercetin on pain sensation in diabetic rats - Basic and clinical neuroscience. Available from: https://bcn.iums.ac.ir/article-1-146-en.html (Accessed on: Mar 28, 2022).
[75]
Shahid, M.; Subhan, F.; Ahmad, N.; Sewell, R.D.E. The flavonoid 6-methoxyflavone allays cisplatin-induced neuropathic allodynia and hypoalgesia. Biomed. Pharmacother., 2017, 95, 1725-1733.
[http://dx.doi.org/10.1016/j.biopha.2017.09.108] [PMID: 28962077]
[76]
Rodríguez-Vera, D.; Abad-García, A.; Vargas-Mendoza, N.; Pinto-Almazán, R.; Farfán-García, E.D.; Morales-González, J.A.; Soriano-Ursúa, M.A. Polyphenols as potential enhancers of stem cell therapy against neurodegeneration. Neural Regen. Res., 2022, 17(10), 2093-2101.
[http://dx.doi.org/10.4103/1673-5374.335826] [PMID: 35259814]
[77]
Sivakumar, P.M.; Prabhakar, P.K.; Cetinel, S.; R, N.; Prabhawathi, V. Molecular insights on the therapeutic effect of selected flavonoids on diabetic neuropathy. Mini Rev. Med. Chem., 2022, 22(14), 1828-1846.
[http://dx.doi.org/10.2174/1389557522666220309140855] [PMID: 35264089]
[78]
Blumberg, J.B.; Camesano, T.A.; Cassidy, A.; Kris-Etherton, P.; Howell, A.; Manach, C.; Ostertag, L.M.; Sies, H.; Skulas-Ray, A.; Vita, J.A. Cranberries and their bioactive constituents in human health. Adv. Nutr., 2013, 4(6), 618-632.
[http://dx.doi.org/10.3945/an.113.004473] [PMID: 24228191]
[79]
Shahwan, M.; Alhumaydhi, F.; Ashraf, G.M.; Hasan, P.M.Z.; Shamsi, A. Role of polyphenols in combating Type 2 Diabetes and insulin resistance. Int. J. Biol. Macromol., 2022, 206, 567-579.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.03.004] [PMID: 35247420]
[80]
Akhtar, S.; Rauf, A.; Imran, M.; Qamar, M.; Riaz, M.; Mubarak, M.S. Black carrot (Daucus carota L.), dietary and health promoting perspectives of its polyphenols: A review. Trends Food Sci. Technol., 2017, 66, 36-47.
[http://dx.doi.org/10.1016/j.tifs.2017.05.004]
[81]
Bhagani, H.; Nasser, S. A.; Dakroub, A.; El-Yazbi, A. F.; Eid, A. A.; Kobeissy, F.; Pintus, G.; Eid, A. H. The mitochondria: A target of polyphenols in the treatment of diabetic cardiomyopathy. Int. J. Mol. Sci., 2020, 21(14), 4962.
[http://dx.doi.org/10.3390/ijms21144962]
[82]
Fardoun, M.M.; Maaliki, D.; Halabi, N.; Iratni, R.; Bitto, A.; Baydoun, E.; Eid, A.H. Flavonoids in adipose tissue inflammation and atherosclerosis: One arrow, two targets. Clin. Sci. (Lond.), 2020, 134(12), 1403-1432.
[http://dx.doi.org/10.1042/CS20200356] [PMID: 32556180]
[83]
Rodrigues, A.M.G.; Marcilio, Fdos.S.; Frazão Muzitano, M.; Giraldi-Guimarães, A. Therapeutic potential of treatment with the flavonoid rutin after cortical focal ischemia in rats. Brain Res., 2013, 1503, 53-61.
[http://dx.doi.org/10.1016/j.brainres.2013.01.039] [PMID: 23370003]
[84]
Wang, J.; Huang, L.; Cheng, C.; Li, G.; Xie, J.; Shen, M.; Chen, Q.; Li, W.; He, W.; Qiu, P.; Wu, J. Design, synthesis and biological evaluation of chalcone analogues with novel dual antioxidant mechanisms as potential anti-ischemic stroke agents. Acta Pharm. Sin. B, 2019, 9(2), 335-350.
[http://dx.doi.org/10.1016/j.apsb.2019.01.003] [PMID: 30972281]
[85]
Maaliki, D.; Shaito, A.A.; Pintus, G.; El-Yazbi, A.; Eid, A.H. Flavonoids in hypertension: A brief review of the underlying mechanisms. Curr. Opin. Pharmacol., 2019, 45, 57-65.
[http://dx.doi.org/10.1016/j.coph.2019.04.014] [PMID: 31102958]
[86]
Syahputra, R.A.; Harahap, U.; Dalimunthe, A.; Nasution, M.P.; Satria, D. The role of flavonoids as a cardioprotective strategy against doxorubicin-induced cardiotoxicity: A review. Molecules, 2022, 27(4), 1320.
[http://dx.doi.org/10.3390/molecules27041320] [PMID: 35209107]
[87]
Chiow, K.H.; Phoon, M.C.; Putti, T.; Tan, B.K.H.; Chow, V.T. Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pac. J. Trop. Med., 2016, 9(1), 1-7.
[http://dx.doi.org/10.1016/j.apjtm.2015.12.002] [PMID: 26851778]
[88]
Brodowska, K.; Brodowska, K.M. Natural flavonoids: Classification, potential role, and application of flavonoid analogues. Eur. J. Biol. Res., 2017, 7(2), 108-123.
[89]
Gramza-Michałowska, A.; Sidor, A.; Kulczyński, B. Berries as a potential anti-influenza factor – A review. J. Funct. Foods, 2017, 37, 116-137.
[http://dx.doi.org/10.1016/j.jff.2017.07.050]
[90]
Villa, T.G.; Feijoo-Siota, L.; Rama, J.L.R.; Ageitos, J.M. Antivirals against animal viruses. Biochem. Pharmacol., 2017, 133, 97-116.
[http://dx.doi.org/10.1016/j.bcp.2016.09.029] [PMID: 27697545]
[91]
Lani, R.; Hassandarvish, P.; Shu, M.H.; Phoon, W.H.; Chu, J.J.H.; Higgs, S.; Vanlandingham, D.; Abu Bakar, S.; Zandi, K. Antiviral activity of selected flavonoids against Chikungunya virus. Antiviral Res., 2016, 133, 50-61.
[http://dx.doi.org/10.1016/j.antiviral.2016.07.009] [PMID: 27460167]
[92]
Alzaabi, M.M.; Hamdy, R.; Ashmawy, N.S.; Hamoda, A.M.; Alkhayat, F.; Khademi, N.N.; Al Joud, S.M.A.; El-Keblawy, A.A.; Soliman, S.S.M. Flavonoids are promising safe therapy against COVID-19. Phytochem. Rev., 2022, 21(1), 291-312.
[http://dx.doi.org/10.1007/s11101-021-09759-z] [PMID: 34054380]
[93]
Yao, J.; Zhang, Y.; Wang, X-Z.; Zhao, J.; Yang, Z-J.; Lin, Y-P.; Sun, L.; Lu, Q-Y.; Fan, G-J. Flavonoids for treating viral acute respiratory tract infections: A systematic review and meta-analysis of 30 randomized controlled trials. Front. Public Health, 2022, 10, 814669.
[http://dx.doi.org/10.3389/fpubh.2022.814669] [PMID: 35252093]
[94]
Seo, D.J.; Jeon, S.B.; Oh, H.; Lee, B.H.; Lee, S.Y.; Oh, S.H.; Jung, J.Y.; Choi, C. Comparison of the antiviral activity of flavonoids against murine norovirus and feline calicivirus. Food Control, 2016, 60, 25-30.
[http://dx.doi.org/10.1016/j.foodcont.2015.07.023]
[95]
Kim, N.; Park, S.; Nhiem, N.X.; Song, J.H.; Ko, H.J.; Kim, S.H. Cycloartane-type triterpenoid derivatives and a flavonoid glycoside from the burs of Castanea crenata. Phytochemistry, 2019, 158, 135-141.
[http://dx.doi.org/10.1016/j.phytochem.2018.11.001] [PMID: 30529974]
[96]
Slika, H.; Mansour, H.; Wehbe, N.; Nasser, S.A.; Iratni, R.; Nasrallah, G.; Shaito, A.; Ghaddar, T.; Kobeissy, F.; Eid, A.H. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed. Pharmacother., 2022, 146, 112442.
[http://dx.doi.org/10.1016/j.biopha.2021.112442] [PMID: 35062053]
[97]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J., 2013, 2013, 162750.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[98]
Procházková, D.; Boušová, I.; Wilhelmová, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 2011, 82(4), 513-523.
[http://dx.doi.org/10.1016/j.fitote.2011.01.018] [PMID: 21277359]
[99]
Romano, A.; Martel, F. The role of EGCG in breast cancer prevention and therapy. Mini Rev. Med. Chem., 2021, 21(7), 883-898.
[http://dx.doi.org/10.2174/1389557520999201211194445] [PMID: 33319659]
[100]
Okagu, I.U.; Ndefo, J.C.; Aham, E.C.; Udenigwe, C.C. Zanthoxylum species: A review of traditional uses, phytochemistry and pharmacology in relation to cancer, infectious diseases and sickle cell anemia. Front. Pharmacol., 2021, 12, 713090.
[http://dx.doi.org/10.3389/fphar.2021.713090] [PMID: 34603027]
[101]
Fraga, C.G.; Galleano, M.; Verstraeten, S.V.; Oteiza, P.I. Basic biochemical mechanisms behind the health benefits of polyphenols. Mol. Aspects Med., 2010, 31(6), 435-445.
[http://dx.doi.org/10.1016/j.mam.2010.09.006] [PMID: 20854840]
[102]
Hanasaki, Y.; Ogawa, S.; Fukui, S. The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radic. Biol. Med., 1994, 16(6), 845-850.
[http://dx.doi.org/10.1016/0891-5849(94)90202-X] [PMID: 8070690]
[103]
Ursini, F.; Maiorino, M.; Morazzoni, P.; Roveri, A.; Pifferi, G. A novel antioxidant flavonoid (IdB 1031) affecting molecular mechanisms of cellular activation. Free Radic. Biol. Med., 1994, 16(5), 547-553.
[http://dx.doi.org/10.1016/0891-5849(94)90054-X] [PMID: 8026797]
[104]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(1), 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[105]
Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod., 2000, 63(7), 1035-1042.
[http://dx.doi.org/10.1021/np9904509] [PMID: 10924197]
[106]
Pérez-Cano, F.J.; Castell, M. Flavonoids, inflammation and immune system. Nutrients, 2016, 8(10), E659.
[http://dx.doi.org/10.3390/nu8100659] [PMID: 27775647]
[107]
Chirumbolo, S.; Bjørklund, G.; Lysiuk, R.; Vella, A.; Lenchyk, L.; Upyr, T. Targeting cancer with phytochemicals via their fine tuning of the cell survival signaling pathways. Int. J. Mol. Sci., 2018, 19(11), E3568.
[http://dx.doi.org/10.3390/ijms19113568] [PMID: 30424557]
[108]
Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients, 2018, 10(11), E1618.
[http://dx.doi.org/10.3390/nu10111618] [PMID: 30400131]
[109]
Kicinska, A.; Jarmuszkiewicz, W.; Donato, P.; Di Silvestri, B. Flavonoids and mitochondria: Activation of cytoprotective pathways? Mol., 2020, 25(13), 13.
[http://dx.doi.org/10.3390/molecules25133060]
[110]
Dorta, D.J.; Pigoso, A.A.; Mingatto, F.E.; Rodrigues, T.; Prado, I.M.R.; Helena, A.F.C.; Uyemura, S.A.; Santos, A.C.; Curti, C. The interaction of flavonoids with mitochondria: Effects on energetic processes. Chem. Biol. Interact., 2005, 152(2-3), 67-78.
[http://dx.doi.org/10.1016/j.cbi.2005.02.004] [PMID: 15840381]
[111]
Guha, N.; Kwan, M.L.; Quesenberry, C.P., Jr.; Weltzien, E.K.; Castillo, A.L.; Caan, B.J. Soy isoflavones and risk of cancer recurrence in a cohort of breast cancer survivors: The Life After Cancer Epidemiology study. Breast Cancer Res. Treat., 2009, 118(2), 395-405.
[http://dx.doi.org/10.1007/s10549-009-0321-5] [PMID: 19221874]
[112]
Shu, X.O.; Zheng, Y.; Cai, H.; Gu, K.; Chen, Z.; Zheng, W.; Lu, W. Soy food intake and breast cancer survival. JAMA, 2009, 302(22), 2437-2443.
[http://dx.doi.org/10.1001/jama.2009.1783] [PMID: 19996398]
[113]
Iwasaki, M.; Inoue, M.; Otani, T.; Sasazuki, S.; Kurahashi, N.; Miura, T.; Yamamoto, S.; Tsugane, S. Plasma isoflavone level and subsequent risk of breast cancer among Japanese women: A nested case-control study from the Japan Public Health Center-based prospective study group. J. Clin. Oncol., 2008, 26(10), 1677-1683.
[http://dx.doi.org/10.1200/JCO.2007.13.9964] [PMID: 18316793]
[114]
Wu, A.H.; Koh, W.P.; Wang, R.; Lee, H.P.; Yu, M.C. Soy intake and breast cancer risk in Singapore Chinese Health Study. Br. J. Cancer, 2008, 99(1), 196-200.
[http://dx.doi.org/10.1038/sj.bjc.6604448] [PMID: 18594543]
[115]
Travis, R.C.; Allen, N.E.; Appleby, P.N.; Spencer, E.A.; Roddam, A.W.; Key, T.J. A prospective study of vegetarianism and isoflavone intake in relation to breast cancer risk in British women. Int. J. Cancer, 2008, 122(3), 705-710.
[http://dx.doi.org/10.1002/ijc.23141] [PMID: 17943732]
[116]
Touillaud, M.; Thiébaut, A.; Niravong, M.; Touillaud, M. S.; Thiébaut, A. C.; Boutron-Ruault, M.-C.; Clavel-Chapelon, F. No association between dietary phytoestrogens and risk of premenopausal breast cancer in a French cohort study. Cancer Epidemiol. Biomarkers Prev., 2006, 15(12), 2574-2576.
[http://dx.doi.org/10.1158/1055-9965.EPI-06-0543]
[117]
Keinan-Boker, L.; van Der Schouw, Y.T.; Grobbee, D.E.; Peeters, P.H.M. Dietary phytoestrogens and breast cancer risk. Am. J. Clin. Nutr., 2004, 79(2), 282-288.
[http://dx.doi.org/10.1093/ajcn/79.2.282] [PMID: 14749235]
[118]
Ward, H.; Chapelais, G.; Kuhnle, G.G.C.; Luben, R.; Khaw, K.T.; Bingham, S. Breast cancer risk in relation to urinary and serum biomarkers of phytoestrogen exposure in the European Prospective into Cancer-Norfolk cohort study. Breast Cancer Res., 2008, 10(2), R32.
[http://dx.doi.org/10.1186/bcr1995] [PMID: 18419813]
[119]
Negri, A.; Naponelli, V.; Rizzi, F.; Bettuzzi, S. Molecular targets of Epigallocatechin-Gallate (EGCG): A special focus on signal transduction and cancer. Nutrients, 2018, 10(12), E1936.
[http://dx.doi.org/10.3390/nu10121936] [PMID: 30563268]
[120]
Samavat, H.; Ursin, G.; Emory, T.H.; Lee, E.; Wang, R.; Torkelson, C.J.; Dostal, A.M.; Swenson, K.; Le, C.T.; Yang, C.S.; Yu, M.C.; Yee, D.; Wu, A.H.; Yuan, J.M.; Kurzer, M.S. A randomized controlled trial of green tea extract supplementation and mammographic density in postmenopausal women at increased risk of breast cancer. Cancer Prev. Res. (Phila.), 2017, 10(12), 710-718.
[http://dx.doi.org/10.1158/1940-6207.CAPR-17-0187] [PMID: 28904061]
[121]
Braal, C.L.; Hussaarts, K.G.A.M.; Seuren, L.; Oomen-de Hoop, E.; de Bruijn, P.; Buck, S.A.J.; Bos, M.E.M.M.; Thijs-Visser, M.F.; Zuetenhorst, H.J.M.; Mathijssen-van Stein, D.; Vastbinder, M.B.; van Leeuwen, R.W.F.; van Gelder, T.; Koolen, S.L.W.; Jager, A.; Mathijssen, R.H.J. Influence of green tea consumption on endoxifen steady-state concentration in breast cancer patients treated with tamoxifen. Breast Cancer Res. Treat., 2020, 184(1), 107-113.
[http://dx.doi.org/10.1007/s10549-020-05829-6] [PMID: 32803636]
[122]
Dong, J.Y.; Qin, L.Q. Soy isoflavones consumption and risk of breast cancer incidence or recurrence: A meta-analysis of prospective studies. Breast Cancer Res. Treat., 2011, 125(2), 315-323.
[http://dx.doi.org/10.1007/s10549-010-1270-8] [PMID: 21113655]
[123]
Romagnolo, D.F.; Selmin, O.I. Flavonoids and cancer prevention: A review of the evidence. J. Nutr. Gerontol. Geriatr., 2012, 31(3), 206-238.
[http://dx.doi.org/10.1080/21551197.2012.702534] [PMID: 22888839]
[124]
Bozorgi, A.; Khazaei, S.; Khademi, A.; Khazaei, M. Natural and herbal compounds targeting breast cancer, a review based on cancer stem cells. Iran. J. Basic Med. Sci., 2020, 23(8), 970-983.
[http://dx.doi.org/10.22038/IJBMS.2020.43745.10270] [PMID: 32952942]
[125]
Dostal, A.M.; Samavat, H.; Bedell, S.; Torkelson, C.; Wang, R.; Swenson, K.; Le, C.; Wu, A.H.; Ursin, G.; Yuan, J.M.; Kurzer, M.S. The safety of green tea extract supplementation in postmenopausal women at risk for breast cancer: Results of the Minnesota Green Tea Trial. Food Chem. Toxicol., 2015, 83, 26-35.
[http://dx.doi.org/10.1016/j.fct.2015.05.019] [PMID: 26051348]
[126]
Samavat, H.; Newman, A.R.; Wang, R.; Yuan, J-M.; Wu, A.H.; Kurzer, M.S. Effects of green tea catechin extract on serum lipids in postmenopausal women: A randomized, placebo-controlled clinical trial. Am. J. Clin. Nutr., 2016, 104(6), 1671-1682.
[http://dx.doi.org/10.3945/ajcn.116.137075] [PMID: 27806972]
[127]
Khurshid, Z.; Zafar, M.S.; Zohaib, S.; Najeeb, S.; Naseem, M. Green tea (Camellia sinensis): Chemistry and oral health. Open Dent. J., 2016, 10(1), 166-173.
[http://dx.doi.org/10.2174/1874210601610010166] [PMID: 27386001]
[128]
Dekant, W.; Fujii, K.; Shibata, E.; Morita, O.; Shimotoyodome, A. Safety assessment of green tea based beverages and dried green tea extracts as nutritional supplements. Toxicol. Lett., 2017, 277, 104-108.
[http://dx.doi.org/10.1016/j.toxlet.2017.06.008] [PMID: 28655517]
[129]
Basu, A.; Sanchez, K.; Leyva, M.J.; Wu, M.; Betts, N.M.; Aston, C.E.; Lyons, T.J. Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome. J. Am. Coll. Nutr., 2010, 29(1), 31-40.
[http://dx.doi.org/10.1080/07315724.2010.10719814] [PMID: 20595643]
[130]
EFSA. EFSA. Evaluation of Di-Calcium Malate, used as a novel food ingredient and as a source of Calcium in foods for the general population, food supplements, total diet replacement for weight control and food for special medical purposes. Eur. Food Saf. Auth., 2018, 16(6), 5291.
[http://dx.doi.org/10.2903/j.efsa.2018.5291]
[131]
Du, G.J.; Zhang, Z.; Wen, X.D.; Yu, C.; Calway, T.; Yuan, C.S.; Wang, C.Z. Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients, 2012, 4(11), 1679-1691.
[http://dx.doi.org/10.3390/nu4111679] [PMID: 23201840]
[132]
Kaihatsu, K.; Yamabe, M.; Ebara, Y. Antiviral mechanism of action of Epigallocatechin-3-O-gallate and its fatty acid esters. Molecules, 2018, 23(10), E2475.
[http://dx.doi.org/10.3390/molecules23102475] [PMID: 30262731]
[133]
Noor Mohammadi, T.; Maung, A.T.; Sato, J.; Sonoda, T.; Masuda, Y.; Honjoh, K.; Miyamoto, T. Mechanism for antibacterial action of epigallocatechin gallate and theaflavin-3,3′-digallate on Clostridium perfringens. J. Appl. Microbiol., 2019, 126(2), 633-640.
[http://dx.doi.org/10.1111/jam.14134] [PMID: 30353941]
[134]
Chakrawarti, L.; Agrawal, R.; Dang, S.; Gupta, S.; Gabrani, R. Therapeutic effects of EGCG: A patent review. Expert Opin. Ther. Pat., 2016, 26(8), 907-916.
[http://dx.doi.org/10.1080/13543776.2016.1203419] [PMID: 27338088]
[135]
Fujiki, H.; Watanabe, T.; Sueoka, E.; Rawangkan, A.; Suganuma, M. Cancer prevention with green tea and its principal constituent, EGCG: From early investigations to current focus on human cancer stem cells. Mol. Cells, 2018, 41(2), 73-82.
[http://dx.doi.org/10.14348/molcells.2018.2227] [PMID: 29429153]
[136]
Ferrero-Miliani, L.; Nielsen, O.H.; Andersen, P.S.; Girardin, S.E. Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1β generation. Clin. Exp. Immunol., 2007, 147(2), 227-235.
[http://dx.doi.org/10.1111/j.1365-2249.2006.03261.x] [PMID: 17223962]
[137]
Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature, 2002, 420(6917), 860-867.
[http://dx.doi.org/10.1038/nature01322] [PMID: 12490959]
[138]
Saeki, K.; Hayakawa, S.; Nakano, S.; Ito, S.; Oishi, Y.; Suzuki, Y.; Isemura, M. In vitro and in silico studies of the molecular interactions of epigallocatechin-3-O-gallate (EGCG) with proteins that explain the health benefits of green tea. Molecules, 2018, 23(6), E1295.
[http://dx.doi.org/10.3390/molecules23061295] [PMID: 29843451]
[139]
Turner, M.D.; Nedjai, B.; Hurst, T.; Pennington, D.J. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta, 2014, 1843(11), 2563-2582.
[http://dx.doi.org/10.1016/j.bbamcr.2014.05.014] [PMID: 24892271]
[140]
Dryden, G.W.; Tucker, W.W.; Qazzaz, H.H. W1249 EGCG, a green tea catechin, Reduces pro-inflammatory cytokine production By CD14+ Macrophages, CD4+Cd45+RO+ T cells, and mixed macrophage/T cell populations from IBD patients and controls. Gastroenterology, 2009, 136(5), A-687.
[http://dx.doi.org/10.1016/S0016-5085(09)63162-0]
[141]
He, L.; Zhang, E.; Shi, J.; Li, X.; Zhou, K.; Zhang, Q.; Le, A.D.; Tang, X. (-)-Epigallocatechin-3-gallate inhibits human papillomavirus (HPV)-16 oncoprotein-induced angiogenesis in non-small cell lung cancer cells by targeting HIF-1α. Cancer Chemother. Pharmacol., 2013, 71(3), 713-725.
[http://dx.doi.org/10.1007/s00280-012-2063-z] [PMID: 23292117]
[142]
Ogawa, K.; Hara, T.; Shimizu, M.; Nagano, J.; Ohno, T.; Hoshi, M.; Ito, H.; Tsurumi, H.; Saito, K.; Seishima, M.; Moriwaki, H. (-)-Epigallocatechin gallate inhibits the expression of indoleamine 2,3-dioxygenase in human colorectal cancer cells. Oncol. Lett., 2012, 4(3), 546-550.
[http://dx.doi.org/10.3892/ol.2012.761] [PMID: 23741252]
[143]
Lee, I.T.; Lin, C.C.; Lee, C.Y.; Hsieh, P.W.; Yang, C.M. Protective effects of (-)-epigallocatechin-3-gallate against TNF-α-induced lung inflammation via ROS-dependent ICAM-1 inhibition. J. Nutr. Biochem., 2013, 24(1), 124-136.
[http://dx.doi.org/10.1016/j.jnutbio.2012.03.009] [PMID: 22819551]
[144]
Yun, J.M.; Jialal, I.; Devaraj, S. Effects of epigallocatechin gallate on regulatory T cell number and function in obese vs. lean volunteers. Br. J. Nutr., 2010, 103(12), 1771-1777.
[http://dx.doi.org/10.1017/S000711451000005X] [PMID: 20175943]
[145]
Hussain, T.; Gupta, S.; Adhami, V.M.; Mukhtar, H. Green tea constituent epigallocatechin-3-gallate selectively inhibits COX-2 without affecting COX-1 expression in human prostate carcinoma cells. Int. J. Cancer, 2005, 113(4), 660-669.
[http://dx.doi.org/10.1002/ijc.20629] [PMID: 15455372]
[146]
Jang, J.Y.; Lee, J.K.; Jeon, Y.K.; Kim, C.W. Exosome derived from epigallocatechin gallate treated breast cancer cells suppresses tumor growth by inhibiting tumor-associated macrophage infiltration and M2 polarization. BMC Cancer, 2013, 13, 421.
[http://dx.doi.org/10.1186/1471-2407-13-421] [PMID: 24044575]
[147]
Farooqi, A. A.; Pinheiro, M.; Granja, A.; Farabegoli, F.; Reis, S.; Attar, R.; Uteuliyev, Y. S.; Xu, B.; Ahmad, A. EGCG mediated targeting of deregulated signaling pathways and non-coding RNAs in different cancers: Focus on JAK/STAT, Wnt/β-Catenin, TGF/SMAD, NOTCH, SHH/GLI, and TRAIL mediated signaling pathways. Cancers, 2020, 12(4), 951.
[http://dx.doi.org/10.3390/cancers12040951]
[148]
Khan, M.A.; Hussain, A.; Sundaram, M.K.; Alalami, U.; Gunasekera, D.; Ramesh, L.; Hamza, A.; Quraishi, U. (-)-Epigallocatechin-3-gallate reverses the expression of various tumor-suppressor genes by inhibiting DNA methyltransferases and histone deacetylases in human cervical cancer cells. Oncol. Rep., 2015, 33(4), 1976-1984.
[http://dx.doi.org/10.3892/or.2015.3802] [PMID: 25682960]
[149]
Cheng, C.W.; Shieh, P.C.; Lin, Y.C.; Chen, Y.J.; Lin, Y.H.; Kuo, D.H.; Liu, J.Y.; Kao, J.Y.; Kao, M.C.; Way, T.D. Indoleamine 2,3-dioxygenase, an immunomodulatory protein, is suppressed by (-)-epigallocatechin-3-gallate via blocking of gamma-interferon-induced JAK-PKC-delta-STAT1 signaling in human oral cancer cells. J. Agric. Food Chem., 2010, 58(2), 887-894.
[http://dx.doi.org/10.1021/jf903377e] [PMID: 19928918]
[150]
Kuhn, D.J.; Burns, A.C.; Kazi, A.; Dou, Q.P. Direct inhibition of the ubiquitin-proteasome pathway by ester bond-containing green tea polyphenols is associated with increased expression of sterol regulatory element-binding protein 2 and LDL receptor. Biochim. Biophys. Acta, 2004, 1682(1-3), 1-10.
[http://dx.doi.org/10.1016/j.bbalip.2003.12.006] [PMID: 15158750]
[151]
Singh, B.N.; Shankar, S.; Srivastava, R.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem. Pharmacol., 2011, 82(12), 1807-1821.
[http://dx.doi.org/10.1016/j.bcp.2011.07.093] [PMID: 21827739]
[152]
Schramm, L. Going green: The role of the green tea component EGCG in chemoprevention. J. Carcinog. Mutagen., 2013, 4(142), 1000142.
[http://dx.doi.org/10.4172/2157-2518.1000142] [PMID: 24077764]
[153]
Harper, C.E.; Patel, B.B.; Wang, J.; Eltoum, I.A.; Lamartiniere, C.A. Epigallocatechin-3-Gallate suppresses early stage, but not late stage prostate cancer in TRAMP mice: Mechanisms of action. Prostate, 2007, 67(14), 1576-1589.
[http://dx.doi.org/10.1002/pros.20643] [PMID: 17705241]
[154]
Sen, T.; Dutta, A.; Chatterjee, A. Epigallocatechin-3-gallate (EGCG) downregulates gelatinase-B (MMP-9) by involvement of FAK/ERK/NFkappaB and AP-1 in the human breast cancer cell line MDA-MB-231. Anticancer Drugs, 2010, 21(6), 632-644.
[http://dx.doi.org/10.1097/CAD.0b013e32833a4385] [PMID: 20527725]
[155]
Shankar, S.; Suthakar, G.; Srivastava, R.K. Epigallocatechin-3-gallate inhibits cell cycle and induces apoptosis in pancreatic cancer. Front. Biosci., 2007, 12(13), 5039-5051.
[http://dx.doi.org/10.2741/2446] [PMID: 17569628]
[156]
Hagen, R.M.; Chedea, V.S.; Mintoff, C.P.; Bowler, E.; Morse, H.R.; Ladomery, M.R. Epigallocatechin-3-gallate promotes apoptosis and expression of the caspase 9a splice variant in PC3 prostate cancer cells. Int. J. Oncol., 2013, 43(1), 194-200.
[http://dx.doi.org/10.3892/ijo.2013.1920] [PMID: 23615977]
[157]
Tang, Y.; Zhao, D.Y.; Elliott, S.; Zhao, W.; Curiel, T.J.; Beckman, B.S.; Burow, M.E. Epigallocatechin-3 gallate induces growth inhibition and apoptosis in human breast cancer cells through survivin suppression. Int. J. Oncol., 2007, 31(4), 705-711.
[http://dx.doi.org/10.3892/ijo.31.4.705] [PMID: 17786300]
[158]
Basu, A.; Haldar, S. Combinatorial effect of epigallocatechin-3-gallate and TRAIL on pancreatic cancer cell death. Int. J. Oncol., 2009, 34(1), 281-286.
[http://dx.doi.org/10.3892/IJO_00000150/HTML] [PMID: 19082499]
[159]
Thangapazham, R.L.; Passi, N.; Maheshwari, R.K. Green tea polyphenol and epigallocatechin gallate induce apoptosis and inhibit invasion in human breast cancer cells. Cancer Biol. Ther., 2007, 6(12), 1938-1943.
[http://dx.doi.org/10.4161/cbt.6.12.4974] [PMID: 18059161]
[160]
Hu, Q.; Chang, X.; Yan, R.; Rong, C.; Yang, C.; Cheng, S.; Gu, X.; Yao, H.; Hou, X.; Mo, Y.; Zhao, L.; Chen, Y.; Dinlin, X.; Wang, Q.; Fang, S. (-)-Epigallocatechin-3-gallate induces cancer cell apoptosis via acetylation of amyloid precursor protein. Med. Oncol., 2015, 32(1), 390.
[http://dx.doi.org/10.1007/s12032-014-0390-0] [PMID: 25452172]
[161]
Lee, W.J.; Shim, J.Y.; Zhu, B.T. Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol. Pharmacol., 2005, 68(4), 1018-1030.
[http://dx.doi.org/10.1124/mol.104.008367] [PMID: 16037419]
[162]
Wu, P.P.; Kuo, S.C.; Huang, W.W.; Yang, J.S.; Lai, K.C.; Chen, H.J.; Lin, K.L.; Chiu, Y.J.; Huang, L.J.; Chung, J.G.; Wu, P.-P. (-)-Epigallocatechin gallate induced apoptosis in human adrenal cancer NCI-H295 cells through caspase-dependent and caspase-independent pathway. Anticancer Res., 2009, 29(4), 1435-1442.
[PMID: 19414399]
[163]
Khan, N.; Afaq, F.; Saleem, M.; Ahmad, N.; Mukhtar, H. Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Res., 2006, 66(5), 2500-2505.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3636] [PMID: 16510563]
[164]
Min, K.J.; Kwon, T.K. Anticancer effects and molecular mechanisms of epigallocatechin-3-gallate. Integr. Med. Res., 2014, 3(1), 16-24.
[http://dx.doi.org/10.1016/j.imr.2013.12.001] [PMID: 28664074]
[165]
Moseley, V.R.; Morris, J.; Knackstedt, R.W.; Wargovich, M.J. Green tea polyphenol epigallocatechin 3-gallate, contributes to the degradation of DNMT3A and HDAC3 in HCT 116 human colon cancer cells. Anticancer Res., 2013, 33(12), 5325-5333.
[PMID: 24324066]
[166]
Li-Weber, M. Targeting apoptosis pathways in cancer by Chinese medicine. Cancer Lett., 2013, 332(2), 304-312.
[http://dx.doi.org/10.1016/j.canlet.2010.07.015] [PMID: 20685036]
[167]
Ma, J.; Shi, M.; Li, G.; Wang, N.; Wei, J.; Wang, T.; Ma, J.; Wang, Y. Regulation of Id1 expression by epigallocatechin-3-gallate and its effect on the proliferation and apoptosis of poorly differentiated AGS gastric cancer cells. Int. J. Oncol., 2013, 43(4), 1052-1058.
[http://dx.doi.org/10.3892/ijo.2013.2043] [PMID: 23900621]
[168]
Shi, J.; Liu, F.; Zhang, W.; Liu, X.; Lin, B.; Tang, X. Epigallocatechin-3-gallate inhibits nicotine-induced migration and invasion by the suppression of angiogenesis and epithelial-mesenchymal transition in non-small cell lung cancer cells. Oncol. Rep., 2015, 33(6), 2972-2980.
[http://dx.doi.org/10.3892/or.2015.3889] [PMID: 25845434]
[169]
Takahashi, A.; Watanabe, T.; Mondal, A.; Suzuki, K.; Kurusu-Kanno, M.; Li, Z.; Yamazaki, T.; Fujiki, H.; Suganuma, M. Mechanism-based inhibition of cancer metastasis with (-)-epigallocatechin gallate. Biochem. Biophys. Res. Commun., 2014, 443(1), 1-6.
[http://dx.doi.org/10.1016/j.bbrc.2013.10.094] [PMID: 24269590]
[170]
Zhu, B.H.; Zhan, W.H.; Li, Z.R.; Wang, Z.; He, Y.L.; Peng, J.S.; Cai, S.R.; Ma, J.P.; Zhang, C.H. (-)-Epigallocatechin-3-gallate inhibits growth of gastric cancer by reducing VEGF production and angiogenesis. World J. Gastroenterol., 2007, 13(8), 1162-1169.
[http://dx.doi.org/10.3748/wjg.v13.i8.1162] [PMID: 17451194]
[171]
Maity, G.; Choudhury, P.R.; Sen, T.; Ganguly, K.K.; Sil, H.; Chatterjee, A. Culture of human breast cancer cell line (MDA-MB-231) on fibronectin-coated surface induces pro-matrix metalloproteinase-9 expression and activity. Tumour Biol., 2011, 32(1), 129-138.
[http://dx.doi.org/10.1007/s13277-010-0106-9] [PMID: 20821288]
[172]
Sakamoto, Y.; Terashita, N.; Muraguchi, T.; Fukusato, T.; Kubota, S. Effects of epigallocatechin-3-gallate (EGCG) on A549 lung cancer tumor growth and angiogenesis. Biosci. Biotechnol. Biochem., 2013, 77(9), 1799-1803.
[http://dx.doi.org/10.1271/bbb.120882] [PMID: 24018658]
[173]
Chen, L.; Zhang, H.Y. Cancer preventive mechanisms of the green tea polyphenol (-)-epigallocatechin-3-gallate. Molecules, 2007, 12(5), 946-957.
[http://dx.doi.org/10.3390/12050946] [PMID: 17873830]
[174]
Farabegoli, F.; Barbi, C.; Lambertini, E.; Piva, R. (-)-Epigallocatechin-3-gallate downregulates estrogen receptor alpha function in MCF-7 breast carcinoma cells. Cancer Detect. Prev., 2007, 31(6), 499-504.
[http://dx.doi.org/10.1016/j.cdp.2007.10.018] [PMID: 18061364]
[175]
Bimonte, S.; Cascella, M.; Barbieri, A.; Arra, C.; Cuomo, A. Shining a light on the effects of the combination of (−)-Epigallocatechin-3-gallate and tapentadol on the growth of human triple-negative breast cancer cells. In Vivo (Brooklyn), 2019, 33(5), 1463.
[http://dx.doi.org/10.21873/invivo.11625]
[176]
Braicu, C.; Gherman, C.D.; Irimie, A.; Berindan-Neagoe, I. Epigallocatechin-3-Gallate (EGCG) inhibits cell proliferation and migratory behaviour of triple negative breast cancer cells. J. Nanosci. Nanotechnol., 2013, 13(1), 632-637.
[http://dx.doi.org/10.1166/jnn.2013.6882] [PMID: 23646788]
[177]
Hong, O.Y.; Noh, E.M.; Jang, H.Y.; Lee, Y.R.; Lee, B.K.; Jung, S.H.; Kim, J.S.; Youn, H.J. Epigallocatechin gallate inhibits the growth of MDA-MB-231 breast cancer cells via inactivation of the β-catenin signaling pathway. Oncol. Lett., 2017, 14(1), 441-446.
[http://dx.doi.org/10.3892/ol.2017.6108] [PMID: 28693189]
[178]
Gu, J.W.; Makey, K.L.; Tucker, K.B.; Chinchar, E.; Mao, X.; Pei, I.; Thomas, E.Y.; Miele, L. EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression. Vasc. Cell, 2013, 5(1), 9.
[http://dx.doi.org/10.1186/2045-824X-5-9] [PMID: 23638734]
[179]
Juskowiak, B.; Bogacz, A.; Wolek, M.; Kamiński, A.; Uzar, I.; Seremak-Mrozikiewicz, A.; Czerny, B. Expression profiling of genes modulated by rosmarinic acid (RA) in MCF-7 breast cancer cells. Ginekol. Pol., 2018, 89(10), 541-545.
[http://dx.doi.org/10.5603/GP.a2018.0092] [PMID: 30393841]
[180]
Bogacz, A.; Wolek, M.; Juskowiak, B.; Karasiewicz, M.; Kamiński, A.; Uzar, I.; Polaszewska, A.; Kostrzewa, Z.; Czerny, B. Expression of genes modulated by Epigallocatechin-3-Gallate in breast cancer cells. Herba Pol., 2018, 64(3), 31-37.
[http://dx.doi.org/10.2478/hepo-2018-0016]
[181]
Gianfredi, V.; Nucci, D.; Vannini, S.; Villarini, M.; Moretti, M. In vitro biological effects of sulforaphane (SFN), epigallocatechin-3-gallate (EGCG), and curcumin on breast cancer cells: A systematic review of the literature. Nutr. Cancer, 2017, 69(7), 969-978.
[http://dx.doi.org/10.1080/01635581.2017.1359322] [PMID: 28872903]
[182]
Ranzato, E.; Magnelli, V.; Martinotti, S.; Waheed, Z.; Cain, S.M.; Snutch, T.P.; Marchetti, C.; Burlando, B. Epigallocatechin-3-gallate elicits Ca2+ spike in MCF-7 breast cancer cells: Essential role of Cav3.2 channels. Cell Calcium, 2014, 56(4), 285-295.
[http://dx.doi.org/10.1016/j.ceca.2014.09.002] [PMID: 25260713]
[183]
Young, E.; Miele, L.; Tucker, K.B.; Huang, M.; Wells, J.; Gu, J.W. SU11248, a selective tyrosine kinases inhibitor suppresses breast tumor angiogenesis and growth via targeting both tumor vasculature and breast cancer cells. Cancer Biol. Ther., 2010, 10(7), 703-711.
[http://dx.doi.org/10.4161/cbt.10.7.12904] [PMID: 20686367]
[184]
Luo, H.-Q.; Xu, M.; Zhong, W.T.; Cui, Z.-Y.; Liu, F.-M.; Zhou, K.-Y.; Li, X.-Y. EGCG decreases the expression of HIF-1α and VEGF and cell growth in MCF-7 breast cancer cells.
[185]
Das, A.; Haque, I.; Ray, P.; Ghosh, A.; Dutta, D.; Quadir, M.; De, A.; Gunewardena, S.; Chatterjee, I.; Banerjee, S.; Weir, S.; Banerjee, S.K. CCN5 activation by free or encapsulated EGCG is required to render triple-negative breast cancer cell viability and tumor progression. Pharmacol. Res. Perspect., 2021, 9(2), e00753.
[http://dx.doi.org/10.1002/prp2.753] [PMID: 33745223]
[186]
Farabegoli, F.; Papi, A.; Orlandi, M. (-)-Epigallocatechin-3-gallate down-regulates EGFR, MMP-2, MMP-9 and EMMPRIN and inhibits the invasion of MCF-7 tamoxifen-resistant cells. Biosci. Rep., 2011, 31(2), 99-108.
[http://dx.doi.org/10.1042/BSR20090143] [PMID: 20446926]
[187]
Sen, T.; Moulik, S.; Dutta, A.; Choudhury, P.R.; Banerji, A.; Das, S.; Roy, M.; Chatterjee, A. Multifunctional effect of epigallocatechin-3-gallate (EGCG) in downregulation of gelatinase-A (MMP-2) in human breast cancer cell line MCF-7. Life Sci., 2009, 84(7-8), 194-204.
[http://dx.doi.org/10.1016/j.lfs.2008.11.018] [PMID: 19105967]
[188]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[189]
Landis-Piwowar, K.R.; Huo, C.; Chen, D.; Milacic, V.; Shi, G.; Chan, T.H.; Dou, Q.P. A novel prodrug of the green tea polyphenol (-)-epigallocatechin-3-gallate as a potential anticancer agent. Cancer Res., 2007, 67(9), 4303-4310.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4699] [PMID: 17483343]
[190]
Kim, H-S.; Quon, M.J.; Kim, J-A. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol., 2014, 2, 187-195.
[http://dx.doi.org/10.1016/j.redox.2013.12.022] [PMID: 24494192]
[191]
Xu, P.; Yan, F.; Zhao, Y.; Chen, X.; Sun, S.; Wang, Y.; Ying, L. Green tea polyphenol EGCG attenuates MDSCs-mediated immunosuppression through Canonical and Non-Canonical Pathways in a 4T1 Murine Breast Cancer Model. Nutrients, 2020, 12(4), E1042.
[http://dx.doi.org/10.3390/nu12041042] [PMID: 32290071]
[192]
Ohishi, T.; Goto, S.; Monira, P.; Isemura, M.; Nakamura, Y. Anti-inflammatory Action of Green Tea. Antiinflamm. Antiallergy Agents Med. Chem., 2016, 15(2), 74-90.
[http://dx.doi.org/10.2174/1871523015666160915154443] [PMID: 27634207]
[193]
Pan, X.; Zhao, B.; Song, Z.; Han, S.; Wang, M. Estrogen receptor-α36 is involved in epigallocatechin-3-gallate induced growth inhibition of ER-negative breast cancer stem/progenitor cells. J. Pharmacol. Sci., 2016, 130(2), 85-93.
[http://dx.doi.org/10.1016/j.jphs.2015.12.003] [PMID: 26810571]
[194]
Orrenius, S.; Zhivotovsky, B.; Nicotera, P. Regulation of cell death: The calcium–apoptosis link. Nat. Rev. Mol. Cell Biol., 2003, 4(7), 552-565.
[http://dx.doi.org/10.1038/nrm1150]
[195]
Zhang, B.; Pan, X.; Cobb, G.P.; Anderson, T.A. microRNAs as oncogenes and tumor suppressors. Dev. Biol., 2007, 302(1), 1-12.
[http://dx.doi.org/10.1016/j.ydbio.2006.08.028] [PMID: 16989803]
[196]
Younas, M.; Hano, C.; Giglioli-Guivarc’h, N.; Abbasi, B.H. Mechanistic evaluation of phytochemicals in breast cancer remedy: Current understanding and future perspectives. RSC Advances, 2018, 8(52), 29714-29744.
[http://dx.doi.org/10.1039/C8RA04879G] [PMID: 35547279]
[197]
de Pace, R.C.C.; Liu, X.; Sun, M.; Nie, S.; Zhang, J.; Cai, Q.; Gao, W.; Pan, X.; Fan, Z.; Wang, S. Anticancer activities of (-)-epigallocatechin-3-gallate encapsulated nanoliposomes in MCF7 breast cancer cells. J. Liposome Res., 2013, 23(3), 187-196.
[http://dx.doi.org/10.3109/08982104.2013.788023] [PMID: 23600473]
[198]
Esmaeili, M.A. Combination of siRNA-directed gene silencing with epigallocatechin-3-gallate (EGCG) reverses drug resistance in human breast cancer cells. J. Chem. Biol., 2015, 9(1), 41-52.
[http://dx.doi.org/10.1007/s12154-015-0144-2] [PMID: 26855680]
[199]
Zhu, W.; Jia, L.; Chen, G.; Zhao, H.; Sun, X.; Meng, X.; Zhao, X.; Xing, L.; Yu, J.; Zheng, M. Epigallocatechin-3-gallate ameliorates radiation-induced acute skin damage in breast cancer patients undergoing adjuvant radiotherapy. Oncotarget, 2016, 7(30), 48607-48613.
[http://dx.doi.org/10.18632/oncotarget.9495] [PMID: 27224910]
[200]
Zhang, D.; Nichols, H.B.; Troester, M.; Cai, J.; Bensen, J.T.; Sandler, D.P. Tea consumption and breast cancer risk in a cohort of women with family history of breast cancer. Int. J. Cancer, 2020, 147(3), 876-886.
[http://dx.doi.org/10.1002/ijc.32824] [PMID: 31837003]
[201]
Pan, M-H.; Chiou, Y-S.; Wang, Y-J.; Ho, C-T.; Lin, J-K. Multistage carcinogenesis process as molecular targets in cancer chemoprevention by epicatechin-3-gallate. Food Funct., 2011, 2(2), 101-110.
[http://dx.doi.org/10.1039/c0fo00174k] [PMID: 21779554]
[202]
Ullah, N.; Ahmad, M.; Aslam, H.; Tahir, M.A.; Aftab, M.; Bibi, N.; Ahmad, S. Green tea phytocompounds as anticancer: A review. Asian Pac. J. Trop. Dis., 2016, 6(4), 330-336.
[http://dx.doi.org/10.1016/S2222-1808(15)61040-4]
[203]
Gianfredi, V.; Nucci, D.; Abalsamo, A.; Acito, M.; Villarini, M.; Moretti, M.; Realdon, S. Green tea consumption and risk of breast cancer and recurrence-a systematic review and meta-analysis of observational studies. Nutrients, 2018, 10(12), E1886.
[http://dx.doi.org/10.3390/nu10121886] [PMID: 30513889]
[204]
Thawonsuwan, J.; Kiron, V.; Satoh, S.; Panigrahi, A.; Verlhac, V. Epigallocatechin-3-gallate (EGCG) affects the antioxidant and immune defense of the rainbow trout, Oncorhynchus mykiss. Fish Physiol. Biochem., 2010, 36(3), 687-697.
[http://dx.doi.org/10.1007/s10695-009-9344-4] [PMID: 19680766]
[205]
Cheng, Z.; Zhang, Z.; Han, Y.; Wang, J.; Wang, Y.; Chen, X.; Shao, Y.; Cheng, Y.; Zhou, W.; Lu, X.; Wu, Z. A review on anti-cancer effect of green tea catechins. J. Funct. Foods, 2020, 74, 104172.
[http://dx.doi.org/10.1016/j.jff.2020.104172]
[206]
Sartippour, M.R.; Shao, Z.M.; Heber, D.; Beatty, P.; Zhang, L.; Liu, C.; Ellis, L.; Liu, W.; Go, V.L.; Brooks, M.N. Green tea inhibits vascular endothelial growth factor (VEGF) induction in human breast cancer cells. J. Nutr., 2002, 132(8), 2307-2311.
[http://dx.doi.org/10.1093/jn/132.8.2307] [PMID: 12163680]
[207]
Belguise, K.; Guo, S.; Sonenshein, G.E. Activation of FOXO3a by the green tea polyphenol epigallocatechin-3-gallate induces estrogen receptor alpha expression reversing invasive phenotype of breast cancer cells. Cancer Res., 2007, 67(12), 5763-5770.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4327] [PMID: 17575143]
[208]
Carlson, J.R.; Bauer, B.A.; Vincent, A.; Limburg, P.J.; Wilson, T. Reading the tea leaves: Anticarcinogenic properties of (-)-epigallocatechin-3-gallate. Mayo Clin. Proc., 2007, 82(6), 725-732.
[http://dx.doi.org/10.1016/S0025-6196(11)61193-2] [PMID: 17550753]
[209]
Mukhtar, H.; Ahmad, N. Tea polyphenols: Prevention of cancer and optimizing health. Am. J. Clin. Nutr., 2000, 71(6), 1698S-1702S.
[http://dx.doi.org/10.1093/ajcn/71.6.1698S] [PMID: 10837321]
[210]
Sen, T.; Chatterjee, A. Epigallocatechin-3-gallate (EGCG) downregulates EGF-induced MMP-9 in breast cancer cells: Involvement of integrin receptor α5β1 in the process. Eur. J. Nutr., 2011, 50(6), 465-478.
[http://dx.doi.org/10.1007/s00394-010-0158-z] [PMID: 21170718]
[211]
Zaveri, N. T. Green tea and its polyphenolic catechins: Medicinal uses in cancer and noncancer applications. Life Sci., 2006, 78(18), 2073-2080.
[http://dx.doi.org/10.1016/j.lfs.2005.12.006]
[212]
Rady, I.; Mohamed, H.; Rady, M.; Siddiqui, I.A.; Mukhtar, H. Cancer preventive and therapeutic effects of EGCG, the major polyphenol in green tea. Egypt J. Basic Appl. Sci., 2018, 5(1), 1-23.
[http://dx.doi.org/10.1016/j.ejbas.2017.12.001]
[213]
Kapiszewska, M.; Merklinger-Gruchala, A.; Jasienska, G. The modulating influence of tea polyphenols on estrogen metabolism in Asian and Caucasian populations: Breast cancer prevention. In: Tea in Health and Disease Prevention; Academic Press: USA, 2013; pp. 551-562.
[http://dx.doi.org/10.1016/B978-0-12-384937-3.00046-X]
[214]
Wei, R.; Mao, L.; Xu, P.; Zheng, X.; Hackman, R.M.; Mackenzie, G.G.; Wang, Y. Suppressing glucose metabolism with epigallocatechin-3-gallate (EGCG) reduces breast cancer cell growth in preclinical models. Food Funct., 2018, 9(11), 5682-5696.
[http://dx.doi.org/10.1039/C8FO01397G] [PMID: 30310905]
[215]
Bimonte, S.; Cascella, M.; Barbieri, A.; Arra, C.; Cuomo, A. Current shreds of evidence on the anticancer role of EGCG in triple negative breast cancer: An update of the current state of knowledge. Infect. Agent. Cancer, 2020, 15(1), 2.
[http://dx.doi.org/10.1186/s13027-020-0270-5] [PMID: 31938038]
[216]
Almatroodi, S.A.; Almatroudi, A.; Khan, A.A.; Alhumaydhi, F.A.; Alsahli, M.A.; Rahmani, A.H. Potential therapeutic targets of Epigallocatechin Gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer. Molecules, 2020, 25(14), E3146.
[http://dx.doi.org/10.3390/molecules25143146] [PMID: 32660101]
[217]
Gan, R.Y.; Li, H.B.; Sui, Z.Q.; Corke, H. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. Crit. Rev. Food Sci. Nutr., 2018, 58(6), 924-941.
[http://dx.doi.org/10.1080/10408398.2016.1231168] [PMID: 27645804]
[218]
Lambert, J.D.; Yang, C.S. Cancer chemopreventive activity and bioavailability of tea and tea polyphenols. Mutat. Res., 2003, 523-524, 201-208.
[http://dx.doi.org/10.1016/S0027-5107(02)00336-6] [PMID: 12628518]
[219]
Schönthal, A.H. Adverse effects of concentrated green tea extracts. Mol. Nutr. Food Res., 2011, 55(6), 874-885.
[http://dx.doi.org/10.1002/mnfr.201000644] [PMID: 21538851]
[220]
Tachibana, H. Molecular basis for cancer chemoprevention by green tea polyphenol EGCG. Forum Nutr., 2009, 61, 156-169.
[http://dx.doi.org/10.1159/000212748] [PMID: 19367120]
[221]
Klinski, E.; Semov, A.; Yan, X.; Alakhov, V.; Muyzhnek, E.; Kiselev, V. Block copolymer based composition of epigallocatechin-3-gallate with improved oral bioavailability as a way to increase its therapeutic activity. J. Nanomed. Biother. Discov., 2013, 3, 2.
[http://dx.doi.org/10.4172/2155-983X.1000117]
[222]
Catterall, F.; King, L.J.; Clifford, M.N.; Ioannides, C. Bioavailability of dietary doses of 3H-labelled tea antioxidants (+)-catechin and (-)-epicatechin in rat. Xenobiotica, 2003, 33(7), 743-753.
[http://dx.doi.org/10.1080/0049825031000108315] [PMID: 12893523]
[223]
Mereles, D.; Hunstein, W. Epigallocatechin-3-gallate (EGCG) for clinical trials: More pitfalls than promises? Int. J. Mol. Sci., 2011, 12(9), 5592-5603.
[http://dx.doi.org/10.3390/ijms12095592] [PMID: 22016611]
[224]
Sang, S.; Lee, M.J.; Hou, Z.; Ho, C.T.; Yang, C.S. Stability of tea polyphenol (-)-epigallocatechin-3-gallate and formation of dimers and epimers under common experimental conditions. J. Agric. Food Chem., 2005, 53(24), 9478-9484.
[http://dx.doi.org/10.1021/jf0519055] [PMID: 16302765]
[225]
Xie, L.; Yi, J.; Song, Y.; Zhao, M.; Fan, L.; Zhao, L. Suppression of GOLM1 by EGCG through HGF/HGFR/AKT/GSK-3β/β-catenin/c-Myc signaling pathway inhibits cell migration of MDA-MB-231. Food Chem. Toxicol., 2021, 157, 112574.
[http://dx.doi.org/10.1016/j.fct.2021.112574] [PMID: 34536514]
[226]
Ding, F.; Yang, S. Epigallocatechin-3-gallate inhibits proliferation and triggers apoptosis in colon cancer via the hedgehog/phosphoinositide 3-kinase pathways. Can. J. Physiol. Pharmacol., 2021, 99(9), 910-920.
[http://dx.doi.org/10.1139/cjpp-2020-0588]
[227]
Burguin, A.; Diorio, C.; Durocher, F. Breast cancer treatments: Updates and new challenges. J. Pers. Med., 2021, 11(8), 808.
[http://dx.doi.org/10.3390/jpm11080808]
[228]
Moo, T.A.; Sanford, R.; Dang, C.; Morrow, M. Overview of breast cancer therapy. PET Clin., 2018, 13(3), 339-354.
[http://dx.doi.org/10.1016/j.cpet.2018.02.006] [PMID: 30100074]
[229]
Huang, Y. J.; Wang, K. L.; Chen, H. Y.; Chiang, Y. F.; Hsia, S. M. Protective effects of epigallocatechin gallate (EGCG) on endometrial, breast, and ovarian cancers. Biomolecules, 2020, 10(11), 1-19.
[http://dx.doi.org/10.3390/biom10111481] [PMID: 33113766]
[230]
Tyagi, T.; Treas, J.N.; Mahalingaiah, P.K.S.; Singh, K.P. Potentiation of growth inhibition and epigenetic modulation by combination of green tea polyphenol and 5-aza-2′-deoxycytidine in human breast cancer cells. Breast Cancer Res. Treat., 2015, 149(3), 655-668.
[http://dx.doi.org/10.1007/s10549-015-3295-5] [PMID: 25663548]
[231]
Stuart, E.C.; Rosengren, R.J. The combination of raloxifene and epigallocatechin gallate suppresses growth and induces apoptosis in MDA-MB-231 cells. Life Sci., 2008, 82(17-18), 943-948.
[http://dx.doi.org/10.1016/j.lfs.2008.02.009] [PMID: 18371987]
[232]
Xiang, L.P.; Wang, A.; Ye, J.H.; Zheng, X.Q.; Polito, C.A.; Lu, J.L.; Li, Q.S.; Liang, Y.R. Suppressive effects of tea catechins on breast cancer. Nutrients, 2016, 8(8), E458.
[http://dx.doi.org/10.3390/nu8080458] [PMID: 27483305]
[233]
Lorenz, M.; Paul, F.; Moobed, M.; Baumann, G.; Zimmermann, B.F.; Stangl, K.; Stangl, V. The activity of catechol-O-methyltransferase (COMT) is not impaired by high doses of epigallocatechin-3-gallate (EGCG) in vivo. Eur. J. Pharmacol., 2014, 740, 645-651.
[http://dx.doi.org/10.1016/j.ejphar.2014.06.014] [PMID: 24972245]
[234]
Ávila-Gálvez, M. Á.; Giménez-Bastida, J. A.; Espín, J. C.; González-Sarrías, A. Dietary phenolics against breast cancer. A critical evidence-based review and future perspectives. Int. J. Mol. Sci., 2020, 21(16), 5718.
[http://dx.doi.org/10.3390/ijms21165718]
[235]
Zhao, H.; Zhu, W.; Jia, L.; Sun, X.; Chen, G.; Zhao, X.; Li, X.; Meng, X.; Kong, L.; Xing, L.; Yu, J.; Phase, I. Phase I study of topical epigallocatechin-3-gallate (EGCG) in patients with breast cancer receiving adjuvant radiotherapy. Br. J. Radiol., 2016, 89(1058), 20150665.
[http://dx.doi.org/10.1259/bjr.20150665] [PMID: 26607642]
[236]
Ravo, V.; Calvanese, M.G.; Di Franco, R.; Crisci, V.; Murino, P.; Manzo, R.; Morra, A.; Cammarota, F.; Muto, P. Prevention of cutaneous damages induced by radiotherapy in breast cancer: An institutional experience. Tumori, 2011, 97(6), 732-736.
[http://dx.doi.org/10.1177/030089161109700609] [PMID: 22322839]
[237]
Gontero, P.; Marra, G.; Soria, F.; Oderda, M.; Zitella, A.; Baratta, F.; Chiorino, G.; Gregnanin, I.; Daniele, L.; Cattel, L.; Frea, B.; Brusa, P. A randomized double-blind placebo controlled phase I-II study on clinical and molecular effects of dietary supplements in men with precancerous prostatic lesions. Chemoprevention or “chemopromotion”? Prostate, 2015, 75(11), 1177-1186.
[http://dx.doi.org/10.1002/pros.22999] [PMID: 25893930]
[238]
Kumar, N.B.; Pow-Sang, J.; Egan, K.M.; Spiess, P.E.; Dickinson, S.; Salup, R.; Helal, M.; McLarty, J.; Williams, C.R.; Schreiber, F.; Parnes, H.L.; Sebti, S.; Kazi, A.; Kang, L.; Quinn, G.; Smith, T.; Yue, B.; Diaz, K.; Chornokur, G.; Crocker, T.; Schell, M.J. Randomized, placebo-controlled trial of green tea catechins for prostate cancer prevention. Cancer Prev. Res. (Phila.), 2015, 8(10), 879-887.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0324] [PMID: 25873370]
[239]
Sinicrope, F.A.; Viggiano, T.R.; Buttar, N.S.; Song, L.M.W.K.; Schroeder, K.W.; Kraichely, R.E.; Larson, M.V.; Sedlack, R.E.; Kisiel, J.B.; Gostout, C.J.; Kalaiger, A.M.; Patai, Á.V.; Della’Zanna, G.; Umar, A.; Limburg, P.J.; Meyers, J.P.; Foster, N.R.; Yang, C.S.; Sontag, S. Randomized Phase II Trial of Polyphenon E versus placebo in patients at high risk of recurrent colonic neoplasia. Cancer Prev. Res. (Phila.), 2021, 14(5), 573-580.
[http://dx.doi.org/10.1158/1940-6207.CAPR-20-0598] [PMID: 33648940]
[240]
Lane, J.A.; Er, V.; Avery, K.N.L.; Horwood, J.; Cantwell, M.; Caro, G.P.; Crozier, A.; Smith, G.D.; Donovan, J.L.; Down, L.; Hamdy, F.C.; Gillatt, D.; Holly, J.; Macefield, R.; Moody, H.; Neal, D.E.; Walsh, E.; Martin, R.M.; Metcalfe, C. ProDiet: A Phase II Randomized Placebo-controlled trial of green tea catechins and lycopene in men at increased risk of prostate cancer. Cancer Prev. Res. (Phila.), 2018, 11(11), 687-696.
[http://dx.doi.org/10.1158/1940-6207.CAPR-18-0147] [PMID: 30309839]
[241]
Nguyen, M.M.; Ahmann, F.R.; Nagle, R.B.; Hsu, C.H.; Tangrea, J.A.; Parnes, H.L.; Sokoloff, M.H.; Gretzer, M.B.; Chow, H.H. Randomized, double-blind, placebo-controlled trial of polyphenon E in prostate cancer patients before prostatectomy: Evaluation of potential chemopreventive activities. Cancer Prev. Res. (Phila.), 2012, 5(2), 290-298.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0306] [PMID: 22044694]
[242]
Bettuzzi, S.; Brausi, M.; Rizzi, F.; Castagnetti, G.; Peracchia, G.; Corti, A. Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: A preliminary report from a one-year proof-of-principle study. Cancer Res., 2006, 66(2), 1234-1240.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1145] [PMID: 16424063]
[243]
Luo, H.; Tang, L.; Tang, M.; Billam, M.; Huang, T.; Yu, J.; Wei, Z.; Liang, Y.; Wang, K.; Zhang, Z.Q.; Zhang, L.; Wang, J.S. Phase IIa chemoprevention trial of green tea polyphenols in high-risk individuals of liver cancer: Modulation of urinary excretion of green tea polyphenols and 8-hydroxydeoxyguanosine. Carcinogenesis, 2006, 27(2), 262- 268.
[http://dx.doi.org/10.1093/carcin/bgi147] [PMID: 15930028]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy