Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

Probing the Ubiquitination-Mediated Function of Epithelial Sodium Channel in A549 Cells

Author(s): Waheed Shabbir, Keun-Hang Susan Yang, Afzal M. Dogar, Dmytro Isaev and Murat Oz*

Volume 16, Issue 3, 2023

Published on: 03 October, 2022

Article ID: e260722207014 Pages: 8

DOI: 10.2174/1874467215666220726112002

open_access

Abstract

Background: The activity of the amiloride-sensitive epithelial sodium channel (ENaC) in the tight epithelia of the lung is regulated by proteolytic activation and ubiquitination. Pathophysiology of lung diseases is directly related to changes in one or both of these mechanisms.

Methods: In this study, we investigated the impact of ubiquitination and cathepsin-mediated proteolytic activation mechanisms on the functional regulation of ENaC in lung cancer A549 cells using the patch-clamp technique.

Results: Our findings suggest that inhibiting the proteasome (polyubiquitination) with MG132 improves ENaC activity, whereas altering the pH of the lysosome (monoubiquitination inhibition) with NH4Cl has no effect on ENaC activity. In A549 cells, inhibition of cathepsin B (CSTB) decreased the ENaC current, open probabilities (NPo and Po), and the number of active channels.

Conclusion: These findings delineate novel modes of ENaC degradation and proteolytic activation of functional channels in A549 cells. Our findings indicate that both proteolytic activation and ubiquitination of ENaC significantly affect channel function and add new insights into the endogenous ENaC processing which might help to further understand the pathophysiology of the lung disease.

Keywords: Epithelial sodium channel (ENaC), lysosomal degradation, proteasome degradation, ubiquitin, homeostasis, alveolar cells.

[1]
Kleyman, T.R.; Eaton, D.C. Regulating ENaC’s gate. Am. J. Physiol. Cell Physiol., 2020, 318(1), C150-C162.
[http://dx.doi.org/10.1152/ajpcell.00418.2019] [PMID: 31721612]
[2]
Kerem, E.; Bistritzer, T.; Hanukoglu, A.; Hofmann, T.; Zhou, Z.; Bennett, W.; MacLaughlin, E.; Barker, P.; Nash, M.; Quittell, L.; Boucher, R.; Knowles, M.R. Pulmonary epithelial sodium-channel dysfunction and excess airway liquid in pseudohypoaldosteronism. N. Engl. J. Med., 1999, 341(3), 156-162.
[http://dx.doi.org/10.1056/NEJM199907153410304] [PMID: 10403853]
[3]
Gründer, S.; Firsov, D.; Chang, S.S.; Jaeger, N.F.; Gautschi, I.; Schild, L.; Lifton, R.P.; Rossier, B.C. A mutation causing pseudohypoaldosteronism type 1 identifies a conserved glycine that is involved in the gating of the epithelial sodium channel. EMBO J., 1997, 16(5), 899-907.
[http://dx.doi.org/10.1093/emboj/16.5.899] [PMID: 9118951]
[4]
Chang, S.S.; Grunder, S.; Hanukoglu, A.; Rösler, A.; Mathew, P.M.; Hanukoglu, I.; Schild, L.; Lu, Y.; Shimkets, R.A.; Nelson-Williams, C.; Rossier, B.C.; Lifton, R.P. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat. Genet., 1996, 12(3), 248-253.
[http://dx.doi.org/10.1038/ng0396-248] [PMID: 8589714]
[5]
Edelheit, O.; Hanukoglu, I.; Gizewska, M.; Kandemir, N.; Tenenbaum-Rakover, Y.; Yurdakök, M.; Zajaczek, S.; Hanukoglu, A. Novel mutations in epithelial sodium channel (ENaC) subunit genes and phenotypic expression of multisystem pseudohypoaldosteronism. Clin. Endocrinol. (Oxf.), 2005, 62(5), 547-553.
[http://dx.doi.org/10.1111/j.1365-2265.2005.02255.x] [PMID: 15853823]
[6]
Rauh, R.; Diakov, A.; Tzschoppe, A.; Korbmacher, J.; Azad, A.K.; Cuppens, H.; Cassiman, J.J.; Dötsch, J.; Sticht, H.; Korbmacher, C. A mutation of the epithelial sodium channel associated with atypical cystic fibrosis increases channel open probability and reduces Na+ self inhibition. J. Physiol., 2010, 588(Pt 8), 1211-1225.
[http://dx.doi.org/10.1113/jphysiol.2009.180224] [PMID: 20194130]
[7]
Kleyman, T.R.; Kashlan, O.B.; Hughey, R.P. Epithelial Na+ channel regulation by extracellular and intracellular factors. Annu. Rev. Physiol., 2018, 80(1), 263-281.
[http://dx.doi.org/10.1146/annurev-physiol-021317-121143] [PMID: 29120692]
[8]
Wynne, B.M.; Zou, L.; Linck, V.; Hoover, R.S.; Ma, H.P.; Eaton, D.C. Regulation of lung epithelial sodium channels by cytokines and chemokines. Front. Immunol., 2017, 8, 766.
[http://dx.doi.org/10.3389/fimmu.2017.00766] [PMID: 28791006]
[9]
Shabbir, W.; Topcagic, N.; Aufy, M.; Oz, M. CRISPR/Cas9 mediated knock down of δ-ENaC blunted the TNF-induced activation of ENaC in A549 cells. Int. J. Mol. Sci., 2021, 22(4), 1858.
[http://dx.doi.org/10.3390/ijms22041858] [PMID: 33673381]
[10]
Hughey, R.P.; Bruns, J.B.; Kinlough, C.L.; Harkleroad, K.L.; Tong, Q.; Carattino, M.D.; Johnson, J.P.; Stockand, J.D.; Kleyman, T.R. Epithelial sodium channels are activated by furin-dependent proteolysis. J. Biol. Chem., 2004, 279(18), 18111-18114.
[http://dx.doi.org/10.1074/jbc.C400080200] [PMID: 15007080]
[11]
Hughey, R.P.; Bruns, J.B.; Kinlough, C.L.; Kleyman, T.R. Distinct pools of epithelial sodium channels are expressed at the plasma membrane. J. Biol. Chem., 2004, 279(47), 48491-48494.
[http://dx.doi.org/10.1074/jbc.C400460200] [PMID: 15466477]
[12]
Patel, A.B.; Chao, J.; Palmer, L.G. Tissue kallikrein activation of the epithelial Na channel. Am. J. Physiol. Renal Physiol., 2012, 303(4), F540-F550.
[http://dx.doi.org/10.1152/ajprenal.00133.2012] [PMID: 22622459]
[13]
Vallet, V.; Chraibi, A.; Gaeggeler, H.P.; Horisberger, J.D.; Rossier, B.C. An epithelial serine protease activates the amiloride-sensitive sodium channel. Nature, 1997, 389(6651), 607-610.
[http://dx.doi.org/10.1038/39329] [PMID: 9335501]
[14]
Abriel, H.; Loffing, J.; Rebhun, J.F.; Pratt, J.H.; Schild, L.; Horisberger, J.D.; Rotin, D.; Staub, O. Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle’s syndrome. J. Clin. Invest., 1999, 103(5), 667-673.
[http://dx.doi.org/10.1172/JCI5713] [PMID: 10074483]
[15]
Knight, K.K.; Olson, D.R.; Zhou, R.; Snyder, P.M. Liddle’s syndrome mutations increase Na+ transport through dual effects on epithelial Na+ channel surface expression and proteolytic cleavage. Proc. Natl. Acad. Sci. USA, 2006, 103(8), 2805-2808.
[http://dx.doi.org/10.1073/pnas.0511184103] [PMID: 16477034]
[16]
Kamynina, E.; Debonneville, C.; Hirt, R.P.; Staub, O. Liddle’s syndrome: A novel mouse Nedd4 isoform regulates the activity of the epithelial Na(+) channel. Kidney Int., 2001, 60(2), 466-471.
[http://dx.doi.org/10.1046/j.1523-1755.2001.060002466.x] [PMID: 11473628]
[17]
Boase, N.A.; Rychkov, G.Y.; Townley, S.L.; Dinudom, A.; Candi, E.; Voss, A.K.; Tsoutsman, T.; Semsarian, C.; Melino, G.; Koentgen, F.; Cook, D.I.; Kumar, S. Respiratory distress and perinatal lethality in Nedd4-2-deficient mice. Nat. Commun., 2011, 2(1), 287.
[http://dx.doi.org/10.1038/ncomms1284] [PMID: 21505443]
[18]
Eaton, D.C.; Malik, B.; Bao, H.F.; Yu, L.; Jain, L. Regulation of epithelial sodium channel trafficking by ubiquitination. Proc. Am. Thorac. Soc., 2010, 7(1), 54-64.
[http://dx.doi.org/10.1513/pats.200909-096JS] [PMID: 20160149]
[19]
Staub, O.; Gautschi, I.; Ishikawa, T.; Breitschopf, K.; Ciechanover, A.; Schild, L.; Rotin, D. Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination. EMBO J., 1997, 16(21), 6325-6336.
[http://dx.doi.org/10.1093/emboj/16.21.6325] [PMID: 9351815]
[20]
Malik, B.; Schlanger, L.; Al-Khalili, O.; Bao, H.F.; Yue, G.; Price, S.R.; Mitch, W.E.; Eaton, D.C. Enac degradation in A6 cells by the ubiquitin-proteosome proteolytic pathway. J. Biol. Chem., 2001, 276(16), 12903-12910.
[http://dx.doi.org/10.1074/jbc.M010626200] [PMID: 11278712]
[21]
Faria, D.; Lentze, N.; Almaça, J.; Luz, S.; Alessio, L.; Tian, Y.; Martins, J.P.; Cruz, P.; Schreiber, R.; Rezwan, M.; Farinha, C.M.; Auerbach, D.; Amaral, M.D.; Kunzelmann, K. Regulation of ENaC biogenesis by the stress response protein SERP1. Pflugers Arch., 2012, 463(6), 819-827.
[http://dx.doi.org/10.1007/s00424-012-1091-1] [PMID: 22526458]
[22]
Hazemi, P.; Tzotzos, S.J.; Fischer, B.; Andavan, G.S.; Fischer, H.; Pietschmann, H.; Lucas, R.; Lemmens-Gruber, R. Essential structural features of TNF-α lectin-like domain derived peptides for activation of amiloride-sensitive sodium current in A549 cells. J. Med. Chem., 2010, 53(22), 8021-8029.
[http://dx.doi.org/10.1021/jm100767p] [PMID: 20979368]
[23]
Lazrak, A.; Samanta, A.; Matalon, S. Biophysical properties and molecular characterization of amiloride-sensitive sodium channels in A549 cells. Am. J. Physiol. Lung Cell. Mol. Physiol., 2000, 278(4), L848-L857.
[http://dx.doi.org/10.1152/ajplung.2000.278.4.L848] [PMID: 10749763]
[24]
Shabbir, W.; Scherbaum-Hazemi, P.; Tzotzos, S.; Fischer, B.; Fischer, H.; Pietschmann, H.; Lucas, R.; Lemmens-Gruber, R. Mechanism of action of novel lung edema therapeutic AP301 by activation of the epithelial sodium channel. Mol. Pharmacol., 2013, 84(6), 899-910.
[http://dx.doi.org/10.1124/mol.113.089409] [PMID: 24077967]
[25]
Repnik, U.; Stoka, V.; Turk, V.; Turk, B. Lysosomes and lysosomal cathepsins in cell death. Biochim. Biophys. Acta, 2012, 1824(1), 22-33.
[http://dx.doi.org/10.1016/j.bbapap.2011.08.016] [PMID: 21914490]
[26]
Larionov, A.; Dahlke, E.; Kunke, M.; Zanon Rodriguez, L.; Schiessl, I.M.; Magnin, J.L.; Kern, U.; Alli, A.A.; Mollet, G.; Schilling, O.; Castrop, H.; Theilig, F. Cathepsin B increases ENaC activity leading to hypertension early in nephrotic syndrome. J. Cell. Mol. Med., 2019, 23(10), 6543-6553.
[http://dx.doi.org/10.1111/jcmm.14387] [PMID: 31368174]
[27]
Alli, A.A.; Song, J.Z.; Al-Khalili, O.; Bao, H.F.; Ma, H.P.; Alli, A.A.; Eaton, D.C. Cathepsin B is secreted apically from Xenopus 2F3 cells and cleaves the epithelial sodium channel (ENaC) to increase its activity. J. Biol. Chem., 2012, 287(36), 30073-30083.
[http://dx.doi.org/10.1074/jbc.M111.338574] [PMID: 22782900]
[28]
Shi, S.; Montalbetti, N.; Wang, X.; Rush, B.M.; Marciszyn, A.L.; Baty, C.J.; Tan, R.J.; Carattino, M.D.; Kleyman, T.R. Paraoxonase 3 functions as a chaperone to decrease functional expression of the epithelial sodium channel. J. Biol. Chem., 2020, 295(15), 4950-4962.
[http://dx.doi.org/10.1074/jbc.RA119.011789] [PMID: 32079677]
[29]
Tan, C.D.; Hobbs, C.; Sameni, M.; Sloane, B.F.; Stutts, M.J.; Tarran, R. Cathepsin B contributes to Na+ hyperabsorption in cystic fibrosis airway epithelial cultures. J. Physiol., 2014, 592(23), 5251-5268.
[http://dx.doi.org/10.1113/jphysiol.2013.267286] [PMID: 25260629]
[30]
Quinton, R.J.; DiDomizio, A.; Vittoria, M.A.; Kotýnková, K.; Ticas, C.J.; Patel, S.; Koga, Y.; Vakhshoorzadeh, J.; Hermance, N.; Kuroda, T.S.; Parulekar, N.; Taylor, A.M.; Manning, A.L.; Campbell, J.D.; Ganem, N.J. Whole-genome doubling confers unique genetic vulnerabilities on tumour cells. Nature, 2021, 590(7846), 492-497.
[http://dx.doi.org/10.1038/s41586-020-03133-3] [PMID: 33505027]
[31]
Raikwar, N.S.; Thomas, C.P. Nedd4-2 isoforms ubiquitinate individual epithelial sodium channel subunits and reduce surface expression and function of the epithelial sodium channel. Am. J. Physiol. Renal Physiol., 2008, 294(5), F1157-F1165.
[http://dx.doi.org/10.1152/ajprenal.00339.2007] [PMID: 18322022]
[32]
Butterworth, M.B.; Edinger, R.S.; Frizzell, R.A.; Johnson, J.P. Regulation of the epithelial sodium channel by membrane trafficking. Am. J. Physiol. Renal Physiol., 2009, 296(1), F10-F24.
[http://dx.doi.org/10.1152/ajprenal.90248.2008] [PMID: 18508877]
[33]
Mansley, M.K.; Korbmacher, C.; Bertog, M. Inhibitors of the proteasome stimulate the epithelial sodium channel (ENaC) through SGK1 and mimic the effect of aldosterone. Pflugers Arch., 2018, 470(2), 295-304.
[http://dx.doi.org/10.1007/s00424-017-2060-5] [PMID: 28861610]

© 2024 Bentham Science Publishers | Privacy Policy