Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Mini-Review Article

Developments in Perovskite Materials Based Solar Cells: In Pursuit of Hysteresis Effect, Stability Issues and Lead-Free Based Perovskite Materials

Author(s): Inamul Hasan*, Siddharth Joshi, K. M. Subbaya and Naveen Kumar Elangovan

Volume 12, Issue 3, 2022

Published on: 29 August, 2022

Article ID: e180722206843 Pages: 16

DOI: 10.2174/2210681212666220718125121

Price: $65

Abstract

Over the past few years, significant advances in science and technology have occurred in the field of Perovskite-based Solar Cells (PSC), which has sparked significant interest in nextgeneration photovoltaic technologies. Perovskite solar cells, which have a current certified power conversion efficiency of 25.5 %, are the first solution processed photovoltaic to outperform silicon- based photovoltaic technologies. Perovskite solar cells are comparable to Silicon-based solar cells due to their low-cost fabrication techniques and high efficiency. Nevertheless, the research community is still concerning about future design optimization, series degradation issues, stability, and practical efficiency restrictions. As a result, comprehensive knowledge of the perovskite solar cell's operating mechanism and operating principles is more important than ever before applying these technologies in the real world for future optimization. Recent research findings in the material science of innovative halide perovskites, as well as numerous architectures based on alternative materials for lead-free perovskites, band-gap engineering, impact of materials on various Electron Transport Layers (ETL) and Hole Transport Layers (HTL), the device instability and J-V hysteresis issues of perovskite solar cells are the focus of this study. In order to better understand the potential of perovskite solar cell, factors such as hysteresis-inducing factors, interface engineering, device stability, and a variety of recombination processes are being investigated. For future optimization of perovskite solar cells, the following review findings provide a clear focus for current research needs and future research directions to address issues and understand the working potential of the perovskite solar cell.

Keywords: Lead-free perovskite, double-halide perovskite, hysteresis effect, monovalent substitution, solar energy, fossil-fuel energy.

Graphical Abstract

[1]
Sum, T.C.; Mathews, N. Advancements in perovskite solar cells: Photophysics behind the photovoltaics. Energy Environ. Sci., 2014, 7, 2518-2534.
[http://dx.doi.org/10.1039/C4EE00673A]
[2]
Calais, M.; Agelidis, V.G.; Meinhardt, M. Multilevel converters for single-phase grid connected photovoltaic systems: An overview. Solar Energy, 1999, 66(5), 325-335.
[3]
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131(17), 6050-6051.
[http://dx.doi.org/10.1021/ja809598r] [PMID: 19366264]
[4]
Yang, S.; Fu, W.; Zhang, Z.; Chen, H.; Li, C.Z. Recent advances in perovskite solar cells: Efficiency, stability and lead-free perovskite. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(23), 11462-11482.
[http://dx.doi.org/10.1039/C7TA00366H]
[5]
Lee, M.M.; Teuscher, J.; Miyasaka, T.; Murakami, T.N.; Snaith, H.J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107), 643-647.
[http://dx.doi.org/10.1126/science.1228604] [PMID: 23042296]
[6]
Kim, H.S.; Lee, C.R.; Im, J.H.; Lee, K.B.; Moehl, T.; Marchioro, A.; Moon, S.J.; Humphry-Baker, R.; Yum, J.H.; Moser, J.E.; Grätzel, M.; Park, N.G. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep., 2012, 2, 591.
[http://dx.doi.org/10.1038/srep00591] [PMID: 22912919]
[7]
Burschka, J.; Pellet, N.; Moon, S.J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458), 316-319.
[http://dx.doi.org/10.1038/nature12340] [PMID: 23842493]
[8]
Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A.K.; Liu, B.; Nazeeruddin, M.K.; Grätzel, M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc., 2012, 134(42), 17396-17399.
[http://dx.doi.org/10.1021/ja307789s] [PMID: 23043296]
[9]
Yamada, Y.; Nakamura, T.; Endo, M.; Wakamiya, A.; Kanemitsu, Y. Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. J. Am. Chem. Soc., 2014, 136(33), 11610-11613.
[http://dx.doi.org/10.1021/ja506624n] [PMID: 25075458]
[10]
Wakamiya, A.; Endo, M.; Sasamori, T.; Tokitoh, N.; Ogomi, Y.; Hayase, S.; Murata, Y. Reproducible fabrication of efficient perovskite-based solar cells: X-ray crystallographic studies on the formation of CH3 NH3PbI3 layers. Chem. Lett., 2014, 43(5), 711-713.
[http://dx.doi.org/10.1246/cl.140074]
[11]
Liu, M.; Johnston, M.B.; Snaith, H.J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501(7467), 395-398.
[http://dx.doi.org/10.1038/nature12509] [PMID: 24025775]
[12]
Martin, A. Solar cell efficiency tables (version 58). Prog Photovolt: Res. Appl., 2021, 29(7), 657-667.
[13]
Assadi, M.K.; Bakhoda, S.; Saidur, R.; Hanaei, H. Recent progress in perovskite solar cells. Renew. Sustain. Energy Rev., 2018, 81, 2812-2822.
[http://dx.doi.org/10.1016/j.rser.2017.06.088]
[14]
Zhang, L.; Liu, X.; Su, J.; Li, J. First-principles study of molecular adsorption on lead iodide perovskite surface: A case study of halogen bond passivation for solar cell application. J. Phys. Chem., 2014, 118(34), 19565-19571.
[15]
Green, M.A.; Ho-Baillie, A.; Snaith, H.J. The emergence of perovskite solar cells. Nat. Photonics, 2014, 8(7), 506-514.
[http://dx.doi.org/10.1038/nphoton.2014.134]
[16]
Li, C.; Lu, X.; Ding, W.; Feng, L.; Gao, Y.; Guo, Z. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr. B, 2008, 64(Pt 6), 702-707.
[http://dx.doi.org/10.1107/S0108768108032734] [PMID: 19029699]
[17]
Sun, X.; Asadpour, R.; Nie, W.; Mohite, A.D.; Alam, M.A. A physics-based analytical model for perovskite solar cells. J. Photovolt., 2015, 5(5), 1389-1394.
[http://dx.doi.org/10.1109/JPHOTOV.2015.2451000]
[18]
Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Solar cells. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225), 967-970.
[http://dx.doi.org/10.1126/science.aaa5760] [PMID: 25636799]
[19]
Li, Y.; Sun, W.; Yan, W.; Ye, S.; Rao, H.; Peng, H.; Zhao, Z.; Bian, Z.; Liu, Z.; Zhou, H.; Huang, C. 50% Sn-based planar perovskite solar cell with power conversion efficiency up to 13.6%. Adv. Energy Mater., 2016, 6(24), 1-7.
[http://dx.doi.org/10.1002/aenm.201601353]
[20]
Hoefler, S.F.; Trimmel, G.; Rath, T. Progress on lead-free metal halide perovskites for photovoltaic applications: A review. Monatsh. Chem., 2017, 148(5), 795-826.
[http://dx.doi.org/10.1007/s00706-017-1933-9] [PMID: 28458399]
[21]
Giustino, F.; Snaith, H.J. Toward lead-free perovskite solar cells. ACS Energy Lett., 2016, 1(6), 1233-1240.
[http://dx.doi.org/10.1021/acsenergylett.6b00499]
[22]
Krishnamoorthy, T.; Ding, H.; Yan, C.; Leong, W.L.; Baikie, T.; Zhang, Z.; Sherburne, M.; Li, S.; Asta, M.; Mathews, N.; Mhaisalkar, S.G. Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 23829-23832.
[http://dx.doi.org/10.1039/C5TA05741H]
[23]
Hao, F.; Stoumpos, C.C.; Cao, D.H.; Chang, R.P.H.; Kanatzidis, M.G. Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat. Photonics, 2014, 8(6), 489-494.
[http://dx.doi.org/10.1038/nphoton.2014.82]
[24]
Lee, S.J.; Shin, S.S.; Kim, Y.C.; Kim, D.; Ahn, T.K.; Noh, J.H.; Seo, J.; Seok, S.I. Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF₂-pyrazine complex. J. Am. Chem. Soc., 2016, 138(12), 3974-3977.
[http://dx.doi.org/10.1021/jacs.6b00142] [PMID: 26960020]
[25]
Liao, W.; Zhao, D.; Yu, Y.; Grice, C.R.; Wang, C.; Cimaroli, A.J.; Schulz, P.; Meng, W.; Zhu, K.; Xiong, R.G.; Yan, Y. Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22. Adv. Mater., 2016, 28(42), 9333-9340.
[http://dx.doi.org/10.1002/adma.201602992] [PMID: 27571446]
[26]
Singh, T.; Kulkarni, A.; Ikegami, M.; Miyasaka, T. Effect of electron transporting layer on bismuth-based lead-free perovskite (CH3NH3)3 Bi2I9 for photovoltaic applications. ACS Appl. Mater. Interfaces, 2016, 8(23), 14542-14547.
[http://dx.doi.org/10.1021/acsami.6b02843] [PMID: 27225529]
[27]
Park, B.W.; Philippe, B.; Zhang, X.; Rensmo, H.; Boschloo, G.; Johansson, E.M.J. Bismuth based hybrid perovskites A3Bi2I9 (A: Methylammonium or cesium) for solar cell application. Adv. Mater., 2015, 27(43), 6806-6813.
[http://dx.doi.org/10.1002/adma.201501978] [PMID: 26418187]
[28]
Johansson, M.B.; Zhu, H.; Johansson, E.M.J. Extended photo-conversion spectrum in low-toxic bismuth halide perovskite solar cells. J. Phys. Chem. Lett., 2016, 7(17), 3467-3471.
[http://dx.doi.org/10.1021/acs.jpclett.6b01452] [PMID: 27538852]
[29]
Fengxia, W.; Zeyu, D.; Shijing, S.; Fenghua, Z.; Donald, M.E.; Gregor, K.; Satoshi, T.; Michael, A.C.; Jie, Z.; Paul, D.B.; Anthony, K.C. Synthesis and properties of a lead-free hybrid double perovskite: (CH3NH3)2AgBiBr6. Chem. Mater., 2017, 29(3), 1089-1094.
[http://dx.doi.org/10.1021/acs.chemmater.6b03944]
[30]
Volonakis, G.; Haghighirad, A.A.; Milot, R.L.; Sio, W.H.; Filip, M.R.; Wenger, B.; Johnston, M.B.; Herz, L.M.; Snaith, H.J.; Giustino, F. Cs2InAgCl6: A new lead-free halide double perovskite with direct band gap. J. Phys. Chem. Lett., 2017, 8(4), 772-778.
[http://dx.doi.org/10.1021/acs.jpclett.6b02682] [PMID: 28133967]
[31]
Gonzalez-Pedro, V.; Juarez-Perez, E.J.; Arsyad, W.S.; Barea, E.M.; Fabregat-Santiago, F.; Mora-Sero, I.; Bisquert, J. General working principles of CH3NH3PbX3 perovskite solar cells. Nano Lett., 2014, 14(2), 888-893.
[http://dx.doi.org/10.1021/nl404252e] [PMID: 24397375]
[32]
Arianna, M.; Joel, T.; Dennis, F.; Marinus, K.; Roel Van De, K.; Thomas, M.; Michael, G.; Jacques, E.M. Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nat. Photonics, 2014, 8(3), 250-255.
[http://dx.doi.org/10.1038/nphoton.2013.374]
[33]
Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev., 2007, 107(7), 2891-2959.
[http://dx.doi.org/10.1021/cr0500535] [PMID: 17590053]
[34]
Ma, Y.; Wang, X.; Jia, Y.; Chen, X.; Han, H.; Li, C. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev., 2014, 114(19), 9987-10043.
[http://dx.doi.org/10.1021/cr500008u] [PMID: 25098384]
[35]
Lee, S.W.; Kim, S.; Bae, S.; Cho, K.; Chung, T.; Mundt, L.E.; Lee, S.; Park, S.; Park, H.; Schubert, M.C.; Glunz, S.W.; Ko, Y.; Jun, Y.; Kang, Y.; Lee, H.S.; Kim, D. UV degradation and recovery of perovskite solar cells. Sci. Rep., 2016, 6, 38150.
[http://dx.doi.org/10.1038/srep38150] [PMID: 27909338]
[36]
Saif, M.H.Q.; Mohammed, S.; Al Sobaie, M.A.; Majeed, K.; Idriss, M.B.; Fahhad, H.A.; Mohammad, K.N.; Abdullah, S.A. Band-gap tuning of lead halide perovskite using a single step spin-coating deposition process. Mater. Lett., 2016, 164, 498-501.
[http://dx.doi.org/10.1016/j.matlet.2015.10.135]
[37]
Zhuang, H.; Zhang, Y.; Chu, Z.; Long, J.; An, X.; Zhang, H.; Lin, H.; Zhang, Z.; Wang, X. Synergy of metal and nonmetal dopants for visible-light photocatalysis: A case-study of Sn and N co-doped TiO2. Phys. Chem. Chem. Phys., 2016, 18(14), 9636-9644.
[http://dx.doi.org/10.1039/C6CP00580B] [PMID: 26996319]
[38]
Ahmmad, B.; Kusumoto, Y.; Islam, S. One-step and large-scale synthesis of non- metal doped TiO2 submicrospheres and their photocatalytic activity. Adv. Powder Technol., 2010, 21(3), 292-297.
[http://dx.doi.org/10.1016/j.apt.2009.12.009]
[39]
Islam, S.Z. Synthesis and catalytic applications of non-metal doped mesoporous titania. Inorganics, 2017, 5, 1-43.
[40]
Inoue, I.; Umemura, Y.; Raifuku, I.; Toyoda, K.; Ishikawa, Y.; Ito, S.; Yasueda, H.; Uraoka, Y.; Yamashita, I. Biotemplated synthesis of TiO2-coated gold nanowire for perovskite solar cells. ACS Omega, 2017, 2(9), 5478-5485.
[http://dx.doi.org/10.1021/acsomega.7b00940] [PMID: 31457816]
[41]
Ke, W.; Fang, G.; Wang, J.; Qin, P.; Tao, H.; Lei, H.; Liu, Q.; Dai, X.; Zhao, X. Perovskite solar cell with an efficient TiO2 compact film. ACS Appl. Mater. Interfaces, 2014, 6(18), 15959-15965.
[http://dx.doi.org/10.1021/am503728d] [PMID: 25166513]
[42]
Zhang, W.; Xiong, J.; Jiang, L.; Wang, J.; Mei, T.; Wang, X.; Gu, H.; Daoud, W.A.; Li, J. Thermal stability-enhanced and high-efficiency planar perovskite solar cells with interface passivation. ACS Appl. Mater. Interfaces, 2017, 9(44), 38467-38476.
[http://dx.doi.org/10.1021/acsami.7b10994] [PMID: 29027464]
[43]
Liu, T.; Chen, K.; Hu, Q.; Zhu, R.; Gong, Q. Inverted perovskite solar cells: Progresses and perspectives. Adv. Energy Mater., 2016, 6(17), 1-17.
[http://dx.doi.org/10.1002/aenm.201600457]
[44]
Kim, H.S.; Park, N.G. Parameters affecting I-V hysteresis of CH3NH3PbI3 perovskite solar cells: Effects of perovskite crystal size and mesoporous TiO2 layer. J. Phys. Chem. Lett., 2014, 5(17), 2927-2934.
[http://dx.doi.org/10.1021/jz501392m] [PMID: 26278238]
[45]
Zhang, X.H.; Ye, J.J.; Zhu, L.Z.; Zheng, H.Y.; Liu, X.P.; Pan, X.; Dai, S.Y. High consistency perovskite solar cell with a consecutive compact and mesoporous TiO2 film by one-step spin-coating. ACS Appl. Mater. Interfaces, 2016, 8(51), 35440-35446.
[http://dx.doi.org/10.1021/acsami.6b11860] [PMID: 27976845]
[46]
Li, X.; Dai, S.M.; Zhu, P.; Deng, L.L.; Xie, S.Y.; Cui, Q.; Chen, H.; Wang, N.; Lin, H. Efficient perovskite solar cells depending on TiO2 nanorod arrays. ACS Appl. Mater. Interfaces, 2016, 8(33), 21358-21365.
[http://dx.doi.org/10.1021/acsami.6b05971] [PMID: 27480286]
[47]
Batmunkh, M.; Shearer, C.J.; Bat-Erdene, M.; Biggs, M.J.; Shapter, J.G. Single-walled carbon nanotubes enhance the efficiency and stability of mesoscopic perovskite solar cells. ACS Appl. Mater. Interfaces, 2017, 9(23), 19945-19954.
[http://dx.doi.org/10.1021/acsami.7b04894] [PMID: 28537374]
[48]
Wang, J.T.; Ball, J.M.; Barea, E.M.; Abate, A.; Alexander-Webber, J.A.; Huang, J.; Saliba, M.; Mora-Sero, I.; Bisquert, J.; Snaith, H.J.; Nicholas, R.J. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett., 2014, 14(2), 724-730.
[http://dx.doi.org/10.1021/nl403997a] [PMID: 24341922]
[49]
Liu, D.; Kelly, T.L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics, 2014, 8(2), 133-138.
[http://dx.doi.org/10.1038/nphoton.2013.342]
[50]
Chen, P.Y.; Yang, S.H. Improved efficiency of perovskite solar cells based on Ni doped ZnO nanorod arrays and Li salt-doped P3HT layer for charge collection. Opt. Mater. Express, 2016, 6(11), 3651.
[http://dx.doi.org/10.1364/OME.6.003651]
[51]
Dong, J.; Zhao, Y.; Shi, J.; Wei, H.; Xiao, J.; Xu, X.; Luo, J.; Xu, J.; Li, D.; Luo, Y.; Meng, Q. Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification. Chem. Commun. (Camb.), 2014, 50(87), 13381-13384.
[http://dx.doi.org/10.1039/C4CC04908J] [PMID: 25233329]
[52]
Hu, T.; Xiao, S.; Yang, H.; Chen, L.; Chen, Y. Cerium oxide as an efficient electron extraction layer for p-i-n structured perovskite solar cells. Chem. Commun. (Camb.), 2018, 54(5), 471-474.
[http://dx.doi.org/10.1039/C7CC08657A] [PMID: 29255813]
[53]
Choi, H.; Jo, H.; Paek, S.; Koh, K.; Ko, H.M.; Lee, J.K.; Ko, J. Efficient hole-transporting materials with triazole core for high-efficiency perovskite solar cells. Chem. Asian J., 2016, 11(4), 548-554.
[http://dx.doi.org/10.1002/asia.201501178] [PMID: 26573775]
[54]
Noh, J.H.; Im, S.H.; Heo, J.H.; Mandal, T.N.; Seok, S.I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett., 2013, 13(4), 1764-1769.
[http://dx.doi.org/10.1021/nl400349b] [PMID: 23517331]
[55]
Bing, C.; Yedi, X.; Zhou, Y.; Wen-Hua, Z.; Jieshan, Q. High performance hybrid solar cells sensitized by organolead halide perovskites. Energy Environ. Sci., 2013, 6, 1480-1485.
[http://dx.doi.org/10.1039/c3ee40343b]
[56]
Christians, J.A.; Fung, R.C.M.; Kamat, P.V. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc., 2014, 136(2), 758-764.
[http://dx.doi.org/10.1021/ja411014k] [PMID: 24350620]
[57]
Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y.; Grätzel, M.; Han, H. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345(6194), 295-298.
[http://dx.doi.org/10.1126/science.1254763] [PMID: 25035487]
[58]
Qin, P.; Paek, S.; Dar, M.I.; Pellet, N.; Ko, J.; Grätzel, M.; Nazeeruddin, M.K. Perovskite solar cells with 12.8% efficiency by using conjugated quinolizino acridine based hole transporting material. J. Am. Chem. Soc., 2014, 136(24), 8516-8519.
[http://dx.doi.org/10.1021/ja503272q] [PMID: 24866942]
[59]
Jeon, N.J.; Lee, J.; Noh, J.H.; Nazeeruddin, M.K.; Grätzel, M.; Seok, S.I. Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. J. Am. Chem. Soc., 2013, 135(51), 19087-19090.
[http://dx.doi.org/10.1021/ja410659k] [PMID: 24313292]
[60]
Jeon, N.J.; Lee, H.G.; Kim, Y.C.; Seo, J.; Noh, J.H.; Lee, J.; Seok, S.I. o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. J. Am. Chem. Soc., 2014, 136(22), 7837-7840.
[http://dx.doi.org/10.1021/ja502824c] [PMID: 24835375]
[61]
Habisreutinger, S.N.; Leijtens, T.; Eperon, G.E.; Stranks, S.D.; Nicholas, R.J.; Snaith, H.J. Enhanced hole extraction in perovskite solar cells through carbon nanotubes. J. Phys. Chem. Lett., 2014, 5(23), 4207-4212.
[http://dx.doi.org/10.1021/jz5021795] [PMID: 26278955]
[62]
Subbiah, A.S.; Halder, A.; Ghosh, S.; Mahuli, N.; Hodes, G.; Sarkar, S.K. Inorganic hole conducting layers for perovskite-based solar cells. J. Phys. Chem. Lett., 2014, 5(10), 1748-1753.
[http://dx.doi.org/10.1021/jz500645n] [PMID: 26270378]
[63]
Zhang, R.; Chen, Y.; Xiong, J.; Liu, X. Synergistic carbon-based hole transporting layers for efficient and stable perovskite solar cells. J. Mater. Sci., 2018, 53, 4507-4514.
[http://dx.doi.org/10.1007/s10853-017-1876-x]
[64]
Hong, W.; Arif, D.S.; Quanyou, F.; Feng, L.; Yin, C.; Weili, Y.; Erkki, A.; Chun, M.; Md Azimul, H.; Dong, S.; Zhong-Sheng, W.; Omar, F.M.; Osman, M.B.; Tom, W. Facile synthesis and high performance of a new carbazole-based hole-transporting material for hybrid perovskite solar cells. ACS Photonics, 2015, 2(7), 849-855.
[http://dx.doi.org/10.1021/acsphotonics.5b00283]
[65]
Kim, J.H.; Liang, P.W.; Williams, S.T.; Cho, N.; Chueh, C.C.; Glaz, M.S.; Ginger, D.S.; Jen, A.K. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv. Mater., 2015, 27(4), 695-701.
[http://dx.doi.org/10.1002/adma.201404189] [PMID: 25449020]
[66]
Li, H.; Fu, K.; Hagfeldt, A.; Grätzel, M.; Mhaisalkar, S.G.; Grimsdale, A.C. A simple 3,4-ethylenedioxythiophene based hole-transporting material for perovskite solar cells. Angew. Chem. Int. Ed. Engl., 2014, 53(16), 4085-4088.
[http://dx.doi.org/10.1002/anie.201310877] [PMID: 24634079]
[67]
Bi, D.; Mishra, A.; Gao, P.; Franckevičius, M.; Steck, C.; Zakeeruddin, S.M.; Nazeeruddin, M.K.; Bäuerle, P.; Grätzel, M.; Hagfeldt, A. High-efficiency perovskite solar cells employing a S,N-heteropentacene-based D-A hole-transport material. ChemSusChem, 2016, 9(5), 433-438.
[http://dx.doi.org/10.1002/cssc.201501510] [PMID: 26813331]
[68]
Nia, N.Y.; Matteocci, F.; Cina, L.; Di Carlo, A. High-efficiency perovskite solar cell based on poly(3-hexylthiophene): Influence of molecular weight and mesoscopic scaffold layer. ChemSusChem, 2017, 10(19), 3854-3860.
[http://dx.doi.org/10.1002/cssc.201700635] [PMID: 28556618]
[69]
Chen, B.; Yang, M.; Zheng, X.; Wu, C.; Li, W.; Yan, Y.; Bisquert, J.; Garcia-Belmonte, G.; Zhu, K.; Priya, S. Impact of capacitive effect and ion migration on the hysteretic behavior of perovskite solar cells. J. Phys. Chem. Lett., 2015, 6(23), 4693-4700.
[http://dx.doi.org/10.1021/acs.jpclett.5b02229] [PMID: 26550850]
[70]
George, A.N.; Cristina, B.; Viorica, S.; Daniela, E.D.; Lucia, N.L.; Lucian, P.; Kristinn, T.; Marjan, I.; Andrei, M.; Ioana, P. Normal and inverted hysteresis in perovskite solar cells. J. Phys. Chem., 2017, 121(21), 11207-11214.
[71]
Snaith, H.J.; Abate, A.; Ball, J.M.; Eperon, G.E.; Leijtens, T.; Noel, N.K.; Stranks, S.D.; Wang, J.T.; Wojciechowski, K.; Zhang, W. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett., 2014, 5(9), 1511-1515.
[http://dx.doi.org/10.1021/jz500113x] [PMID: 26270088]
[72]
Van Reenen, S.; Kemerink, M.; Snaith, H.J. Modeling anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett., 2015, 6(19), 3808-3814.
[http://dx.doi.org/10.1021/acs.jpclett.5b01645] [PMID: 26722875]
[73]
Valles-Pelarda, M.; Hames, B.C.; García-Benito, I.; Almora, O.; Molina-Ontoria, A.; Sánchez, R.S.; Garcia-Belmonte, G.; Martín, N.; Mora-Sero, I. Analysis of the hysteresis behavior of perovskite solar cells with interfacial fullerene self-assembled monolayers. J. Phys. Chem. Lett., 2016, 7(22), 4622-4628.
[http://dx.doi.org/10.1021/acs.jpclett.6b02103] [PMID: 27797214]
[74]
Shao, Y.; Xiao, Z.; Bi, C.; Yuan, Y.; Huang, J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun., 2014, 5(5784), 5784.
[http://dx.doi.org/10.1038/ncomms6784] [PMID: 25503258]
[75]
Jin Hyuck, H.; Myoung, S.Y.; Min, H.C.; Wenping, Y.; Tae, K.A.; Sang-Ju, L.; Shi-Joon, S.; Dae, H.K.; Sang, H. Hysteresis-less mesoscopic CH3NH3PbI3 perovskite hybrid solar cells by introduction of Li-treated TiO2 electrode. Nano Energy, 2015, 15, 530-539.
[http://dx.doi.org/10.1016/j.nanoen.2015.05.014]
[76]
Shahbazi, M.; Wang, H. Progress in research on the stability of organometal perovskite solar cells. Sol. Energy, 2016, 123, 74-87.
[http://dx.doi.org/10.1016/j.solener.2015.11.008]
[77]
Li, F.; Liu, M. Recent efficient strategies for improving the moisture stability of perovskite solar cells. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(30), 15447-15459.
[http://dx.doi.org/10.1039/C7TA01325F]
[78]
Leijtens, T.; Eperon, G.E.; Pathak, S.; Abate, A.; Lee, M.M.; Snaith, H.J. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun., 2013, 4, 2885.
[http://dx.doi.org/10.1038/ncomms3885] [PMID: 24301460]
[79]
Lira-Cantu, M. Perovskite solar cells: Stability lies at interfaces. Nat. Energy, 2017, 2(17115), 1-3.
[http://dx.doi.org/10.1038/nenergy.2017.115]
[80]
Taame, A.B.; Wei-Nien, S.; Ching-Hsiang, C.; Chun-Jern, P.; Ju-Hsiang, C.; Hung-Ming, C.; Meng-Che, T.; Liang-Yih, C.; Amare, A.D.; Bing-Joe, H. Organometal halide perovskite solar cells: Degradation and stability. Energy Environ. Sci., 2016, 9(2), 323-356.
[http://dx.doi.org/10.1039/C5EE02733K]
[81]
Popoola, I.K.; Gondal, M.A.; Qahtan, T.F. Recent progress in flexible perovskite solar cells: Materials, mechanical tolerance and stability. Renew. Sustain. Energy Rev., 2018, 82, 3127-3151.
[http://dx.doi.org/10.1016/j.rser.2017.10.028]
[82]
Sivaprakasam, A.; Elangovan, N.K. Effect of CdS thin film on the performance of methylammonium lead iodide perovskite solar cell. J. Mater. Sci. Mater. Electron., 2021, 32(13), 17612-17619.
[http://dx.doi.org/10.1007/s10854-021-06294-7]
[83]
Elangovan, N.K. Chayaver: Indian-traditional dye to modern dye-sensitized solar cells. Mater. Res. Express, 2019, 6(6), 066206.
[http://dx.doi.org/10.1088/2053-1591/ab0cad]
[84]
Elangovan, N.K.; Sivaprakasam, A. Investigation of parameters affecting the performance of perovskite solar cells. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2020, 710(1), 66-73.
[http://dx.doi.org/10.1080/15421406.2020.1829425]
[85]
Suresh Kumar, N. A review on Perovskite Solar Cells (PSCs), materials and applications. J. Mater., 2021, 7(5), 940-956.
[86]
Wang, S.; Yousefi Amin, A.A.; Wu, L.; Cao, M.; Zhang, Q.; Ameri, T. Perovskite nanocrystals: Synthesis, stability, and optoelectronic applications. Small Struct., 2021, 2(3), 2000124.
[http://dx.doi.org/10.1002/sstr.202000124]
[87]
Zhou, D.; Zhou, T.; Tian, X.; Zhu, X.; Tu, Y. Perovskite-based solar cells: Materials, methods, and future perspectives. J. Nanomater., 2018, 8148072.
[88]
Tang, G.; Yan, F. Recent progress of flexible perovskite solar cells. Nano Today, 2021, 39, 101155.
[http://dx.doi.org/10.1016/j.nantod.2021.101155]
[89]
Krishnan, U.; Kaur, M.; Kumar, M.; Kumar, A. Factors affecting the stability of perovskite solar cells: A comprehensive review. J. Photonics Energy, 2019, 9(2), 021001.
[90]
Zhao, P.; Kim, B.J.; Jung, H.S. Passivation in perovskite solar cells: A review. Mater. Today Energy, 2018, 7, 267-286.
[http://dx.doi.org/10.1016/j.mtener.2018.01.004]
[91]
Wu, Y.; Li, X.; Zeng, H. Lead‐free halide double perovskites: Structure, luminescence, and applications. Small Struct., 2021, 2(3), 2000071.
[http://dx.doi.org/10.1002/sstr.202000071]
[92]
Geng, X.; Tian, H.; Ren, T.L. Introductory chapter: Perovskite materials and advanced applications. Intechopen, 2020, 10, 5772.
[93]
Zema, C.; Xinbo, C.; Yang, Z.; Qiufeng, Y.; Ji, J.; Xingwang, Z.; Jingbi, Y. Emerging low‐dimensional crystal structure of metal halide perovskite optoelectronic materials and devices. Small Struct., 2021, 2(6), 2000133.
[http://dx.doi.org/10.1002/sstr.202000133]
[94]
Rahaman, M.Z.; Ge, S.; Lin, C.H.; Cui, Y.; Wu, T. One‐dimensional molecular metal halide materials: Structures, properties, and applications. Small Struct., 2021, 2(4), 2000062.
[http://dx.doi.org/10.1002/sstr.202000062]
[95]
Herman, D.; Gert, H.B.; Sampson, A.; Rene, K.; Bart, J.K.; Giuseppe, P.; Maria, A.L. Unraveling the microstructure of layered metal halide perovskite films. Small Struct., 2020, 1(3), 2000074.
[http://dx.doi.org/10.1002/sstr.202000074]
[96]
Chun-Ki, L.; Hok, L.L.; Jiupeng, C.; Guanqi, T.; Fang, L.; Qi, H.; Xuelei, L.; Feng, Y. High‐performance quasi‐2D perovskite/single‐walled carbon nanotube phototransistors for low‐cost and sensitive broadband photodetection. Small Struct., 2021, 2(2), 2000084.
[http://dx.doi.org/10.1002/sstr.202000084]
[97]
Chen, H.; Chen, Y.; Zhang, T.; Liu, X.; Wang, X.; Zhao, Y. Advances to high‐performance black‐phase FAPbI3 perovskite for efficient and stable photovoltaics. Small Struct., 2021, 2(5), 2000130.
[http://dx.doi.org/10.1002/sstr.202000130]
[98]
Hu, Z.; Lin, Z.; Su, J.; Zhang, J.; Chang, J.; Hao, Y. A review on energy band-gap engineering for perovskite photovoltaics. Sol. RRL, 2019, 3(12), 1-9.
[http://dx.doi.org/10.1002/solr.201970116]
[99]
Chen, Z.; Zhang, H.; Yao, F.; Tao, C.; Fang, G.; Li, G. Room temperature formation of semiconductor grade α-FAPbI3 films for efficient perovskite solar cells. Cell Reports Phys. Sci., 2020, 1(9), 100205.
[http://dx.doi.org/10.1016/j.xcrp.2020.100205]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy