Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Therapeutic Potential of P2X7 Purinergic Receptor Modulation in the Main Organs Affected by the COVID-19 Cytokine Storm

Author(s): Júlia Leão Batista Simões, Leilane Dayane Sobierai, Stefany Maciel Pereira, Miriam Vitória Rodrigues dos Santos and Margarete Dulce Bagatini*

Volume 28, Issue 22, 2022

Published on: 18 July, 2022

Page: [1798 - 1814] Pages: 17

DOI: 10.2174/1381612828666220713115906

Price: $65

Abstract

Defined by the World Health Organization as a global public health pandemic, coronavirus 2019 (COVID-19) has a global impact and has caused the death of thousands of people. The “severe acute respiratory syndrome coronavirus 2” virus (SARS-CoV-2) is the etiologic agent of this disease, which uses the angiotensinconverting enzyme receptor 2 (ACE2) to infect the body, so any organ that expresses the gene ACE2 is a possible target for the new coronavirus. In addition, in severe cases of COVID-19, a cytokine storm occurs, which triggers widespread systemic inflammation due to the uncontrolled release of proinflammatory cytokines. In this perspective, the modulation of purinergic receptors is highlighted in the literature as a possible therapy, considering its application in other viral infections and systemic inflammation. Therefore, this review aims to gather information on the modulation of the P2X7 receptor in the main organs directly affected by the virus and by the cytokine storm: the heart, brain, lung, liver and kidneys. Thus, demonstrating possible therapies for reducing inflammation and the level of morbidity and mortality of COVID-19. In severe cases of COVID-19, SARS-CoV-2 infection is capable of triggering an exacerbated release of cytokines, called a cytokine storm. With this inflammation, or less the direct infection of the virus, the whole organism can be affected. In this way, major and important organs such as the heart, lung, brain, and liver are affected, triggering different pathologies. In this perspective, purinergic signaling is highlighted in the literature for its anti-inflammatory role and has been listed in the pandemic scenario as a potential therapy. Therefore, knowing the expression of the purinergic receptor P2X7 in these tissues, the modulation of its inflammatory activity may be favorable in this severe and systemic condition.

Keywords: COVID-19, P2X7, therapeutic, brain, heart, liver, kidney.

[1]
Baig AM, Sanders EC. Potential neuroinvasive pathways of SARS-CoV-2: Deciphering the spectrum of neurological deficit seen in coronavirus disease-2019 (COVID-19). J Med Virol 2020; 92(10): 1845-57.
[http://dx.doi.org/10.1002/jmv.26105 ] [PMID: 32492193]
[2]
Simões JLB, Basso FH, Kosvoski GC, et al. Targeting purinergic receptors to suppress the cytokine storm induced by SARS-CoV-2 infection in pulmonary tissue. Int Immunopharmacol 2021; 100: 108150.
[http://dx.doi.org/10.1016/j.intimp.2021.108150 ] [PMID: 34537482]
[3]
Nouri-Vaskeh M, Sharifi A, Khalili N, Zand R, Sharifi A. Dyspneic and non-dyspneic (silent) hypoxemia in COVID-19: Possible neurological mechanism. Clin Neurol Neurosurg 2020; 198: 106217.
[http://dx.doi.org/10.1016/j.clineuro.2020.106217 ] [PMID: 32947193]
[4]
Xia H, Lazartigues E. Angiotensin-converting enzyme 2 in the brain: Properties and future directions. J Neurochem 2008; 107(6): 1482-94.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05723.x ] [PMID: 19014390]
[5]
Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev 2020; 53: 25-32.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.003 ] [PMID: 32446778]
[6]
Nile SH, Nile A, Qiu J, Li L, Jia X, Kai G. COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth Factor Rev 2020; 53: 66-70.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.002 ] [PMID: 32418715]
[7]
Soy M, Keser G, Atagündüz P, Tabak F, Atagündüz I, Kayhan S. Cytokine storm in COVID-19: Pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol 2020; 39(7): 2085-94.
[http://dx.doi.org/10.1007/s10067-020-05190-5 ] [PMID: 32474885]
[8]
Jiang L-H, Roger S. Targeting the P2X7 receptor in microglial cells to prevent brain inflammation. Neural Regen Res 2020; 15(7): 1245-6.
[http://dx.doi.org/10.4103/1673-5374.272575 ] [PMID: 31960804]
[9]
Simões JLB, Bagatini MD. Purinergic signaling of ATP in COVID-19 associated guillain-barré syndrome. J Neuroimmune Pharmacol 2021; 16(1): 48-58.
[http://dx.doi.org/10.1007/s11481-020-09980-1 ] [PMID: 33462776]
[10]
Tufan A, Avanoğlu Güler A, Matucci-Cerinic M. COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs. Turk J Med Sci 2020; 50(SI-1): 620-32.
[http://dx.doi.org/10.3906/sag-2004-168 ] [PMID: 32299202]
[11]
Velavan TP, Meyer CG. The COVID-19 epidemic. Trop Med Int Health 2020; 25(3): 278-80.
[http://dx.doi.org/10.1111/tmi.13383 ] [PMID: 32052514]
[12]
Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med 2005; 202(3): 415-24.
[http://dx.doi.org/10.1084/jem.20050828 ] [PMID: 16043521]
[13]
Matthay MA, Zemans RL, Zimmerman GA, et al. Acute respiratory distress syndrome. Nat Rev Dis Primers 2019; 5(1): 18.
[http://dx.doi.org/10.1038/s41572-019-0069-0 ] [PMID: 30872586]
[14]
Wu Y, Xu X, Chen Z, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun 2020; 87: 18-22.
[http://dx.doi.org/10.1016/j.bbi.2020.03.031 ] [PMID: 32240762]
[15]
Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020; 77(6): 683-90.
[http://dx.doi.org/10.1001/jamaneurol.2020.1127 ] [PMID: 32275288]
[16]
Di Virgilio F, Tang Y, Sarti AC, Rossato M. A rationale for targeting the P2X7 receptor in Coronavirus disease 19. Br J Pharmacol 2020; 177(21): 4990-4.
[http://dx.doi.org/10.1111/bph.15138 ] [PMID: 32441783]
[17]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7 ] [PMID: 32015507]
[18]
Pacheco PAF, Faria RX. The potential involvement of P2X7 receptor in COVID-19 pathogenesis: A new therapeutic target? Scand J Immunol 2021; 93(2): e12960.
[http://dx.doi.org/10.1111/sji.12960 ] [PMID: 32797724]
[19]
Wang M, Deng X, Xie Y, Chen Y. Astaxanthin attenuates neuroinflammation in status epilepticus rats by regulating the ATP-P2X7R signal. Drug Des Devel Ther 2020; 14: 1651-62.
[http://dx.doi.org/10.2147/DDDT.S249162 ] [PMID: 32431490]
[20]
Lee BH, Hwang DM, Palaniyar N, Grinstein S, Philpott DJ, Hu J. Activation of P2X(7) receptor by ATP plays an important role in regulating inflammatory responses during acute viral infection. PLoS One 2012; 7(4): e35812.
[http://dx.doi.org/10.1371/journal.pone.0035812 ] [PMID: 22558229]
[21]
da Silva GB, Manica D, da Silva AP, et al. High levels of extracellular ATP lead to different inflammatory responses in COVID-19 patients according to the severity. J Mol Med (Berl) 2022; 100(4): 645-63.
[http://dx.doi.org/10.1007/s00109-022-02185-4 ] [PMID: 35249135]
[22]
Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect 2020; 80(6): 607-13.
[http://dx.doi.org/10.1016/j.jinf.2020.03.037 ] [PMID: 32283152]
[23]
Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID-19 cytokine storm; What we know so far. Front Immunol 2020; 11: 1446.
[http://dx.doi.org/10.3389/fimmu.2020.01446 ] [PMID: 32612617]
[24]
Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-mediated inflammatory responses: From mechanisms to potential therapeutic tools. Virol Sin 2020; 35(3): 266-71.
[http://dx.doi.org/10.1007/s12250-020-00207-4 ] [PMID: 32125642]
[25]
Hu B, Huang S, Yin L. The cytokine storm and COVID-19. J Med Virol 2021; 93(1): 250-6.
[http://dx.doi.org/10.1002/jmv.26232 ] [PMID: 32592501]
[26]
Iwasaki M, Saito J, Zhao H, Sakamoto A, Hirota K, Ma D. Inflammation triggered by SARS-CoV-2 and ACE2 augment drives multiple organ failure of severe COVID-19: Molecular mechanisms and implications. Inflammation 2021; 44(1): 13-34.
[http://dx.doi.org/10.1007/s10753-020-01337-3 ] [PMID: 33029758]
[27]
Catanzaro M, Fagiani F, Racchi M, Corsini E, Govoni S, Lanni C. Immune response in COVID-19: Addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal Transduct Target Ther 2020; 5(1): 84.
[http://dx.doi.org/10.1038/s41392-020-0191-1 ] [PMID: 32467561]
[28]
Bösmüller H, Matter M, Fend F, Tzankov A. The pulmonary pathology of COVID-19. Virchows Arch 2021; 478(1): 137-50.
[http://dx.doi.org/10.1007/s00428-021-03053-1 ] [PMID: 33604758]
[29]
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020; 395(10229): 1054-62.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3 ] [PMID: 32171076]
[30]
Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York city area. JAMA 2020; 323(20): 2052-9.
[http://dx.doi.org/10.1001/jama.2020.6775 ] [PMID: 32320003]
[31]
Pouw N, van de Maat J, Veerman K, et al. Clinical characteristics and outcomes of 952 hospitalized COVID-19 patients in the Netherlands: A retrospective cohort study. PLoS One 2021; 16(3): e0248713.
[http://dx.doi.org/10.1371/journal.pone.0248713 ] [PMID: 33735205]
[32]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052 ] [PMID: 32142651]
[33]
Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004; 203(2): 631-7.
[http://dx.doi.org/10.1002/path.1570 ] [PMID: 15141377]
[34]
Wang Q, Zhang Y, Wu L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 2020; 181(4): 894-904.e9.
[http://dx.doi.org/10.1016/j.cell.2020.03.045 ] [PMID: 32275855]
[35]
Wrapp D, Wang N, Corbett KS, et al. 2020.Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. BioRxiv
[http://dx.doi.org/10.1101/2020.02.11.944462]
[36]
Pinto BGG, Oliveira AER, Singh Y, et al. ACE2 expression is increased in the lungs of patients with comorbidities associated with severe COVID-19. J Infect Dis 2020; 222(4): 556-63.
[http://dx.doi.org/10.1093/infdis/jiaa332 ] [PMID: 32526012]
[37]
Breidenbach JD, Dube P, Ghosh S, et al. Impact of comorbidities on SARS-CoV-2 viral entry-related genes. J Pers Med 2020; 10(4): 1-11.
[http://dx.doi.org/10.3390/jpm10040146 ] [PMID: 32992731]
[38]
Cuervo NZ, Grandvaux N. ACE2: Evidence of role as entry receptor for SARS-CoV-2 and implications in comorbidities. eLife 2020; 9: 1-25.
[http://dx.doi.org/10.7554/eLife.61390 ] [PMID: 33164751]
[39]
Rivellese F, Prediletto E. ACE2 at the centre of COVID-19 from paucisymptomatic infections to severe pneumonia. Autoimmun Rev 2020; 19(6): 102536.
[http://dx.doi.org/10.1016/j.autrev.2020.102536 ] [PMID: 32251718]
[40]
Li Y, Hu Y, Yu J, Ma T. Retrospective analysis of laboratory testing in 54 patients with severe- or critical-type 2019 novel coronavirus pneumonia. Lab Invest 2020; 100(6): 794-800.
[http://dx.doi.org/10.1038/s41374-020-0431-6 ] [PMID: 32341519]
[41]
Wu H, Larsen CP, Hernandez-Arroyo CF, et al. AKI and collapsing glomerulopathy associated with COVID-19 and APOL 1 high-risk genotype. J Am Soc Nephrol 2020; 31(8): 1688-95.
[http://dx.doi.org/10.1681/ASN.2020050558 ] [PMID: 32561682]
[42]
Liu Y, Yang Y, Zhang C, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci 2020; 63(3): 364-74.
[http://dx.doi.org/10.1007/s11427-020-1643-8 ] [PMID: 32048163]
[43]
Borczuk AC, Salvatore SP, Seshan SV, et al. COVID-19 pulmonary pathology: A multi-institutional autopsy cohort from Italy and New York City. Mod Pathol 2020; 33(11): 2156-68.
[http://dx.doi.org/10.1038/s41379-020-00661-1 ] [PMID: 32879413]
[44]
Lee IT, Nakayama T, Wu CT, et al. ACE2 localizes to the respiratory cilia and is not increased by ACE inhibitors or ARBs. Nat Commun 2020; 11(1): 5453.
[http://dx.doi.org/10.1038/s41467-020-19145-6 ] [PMID: 33116139]
[45]
Freeman TL, Swartz TH. Targeting the NLRP3 inflammasome in severe COVID-19. Front Immunol 2020; 11: 1518.
[http://dx.doi.org/10.3389/fimmu.2020.01518 ] [PMID: 32655582]
[46]
Jose RJ, Manuel A. COVID-19 cytokine storm: The interplay between inflammation and coagulation. Lancet Respir Med 2020; 8(6): e46-7.
[http://dx.doi.org/10.1016/S2213-2600(20)30216-2 ] [PMID: 32353251]
[47]
Rodrigues TS, de Sá KSG, Ishimoto AY, et al. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J Exp Med 2021; 218(3): e20201707.
[http://dx.doi.org/10.1084/jem.20201707 ] [PMID: 33231615]
[48]
Ozaki E, Campbell M, Doyle SL. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: Current perspectives. J Inflamm Res 2015; 8: 15-27.
[http://dx.doi.org/10.2147/JIR.S51250 ] [PMID: 25653548]
[49]
Rosli S, Kirby FJ, Lawlor KE, et al. Repurposing drugs targeting the P2X7 receptor to limit hyperinflammation and disease during influenza virus infection. Br J Pharmacol 2019; 176(19): 3834-44.
[http://dx.doi.org/10.1111/bph.14787 ] [PMID: 31271646]
[50]
Leyva-Grado VH, Ermler ME, Schotsaert M, et al. Contribution of the purinergic receptor P2X7 to development of lung immunopathology during influenza virus infection. MBio 2017; 8(2): e00229-17.
[http://dx.doi.org/10.1128/mBio.00229-17 ] [PMID: 28351919]
[51]
Duan L, Hu GH, Li YJ, Zhang CL, Jiang M. P2X7 receptor is involved in lung injuries induced by ischemia-reperfusion in pulmonary arterial hypertension rats. Mol Immunol 2018; 101: 409-18.
[http://dx.doi.org/10.1016/j.molimm.2018.07.027 ] [PMID: 30077925]
[52]
Lucattelli M, Cicko S, Müller T, et al. P2X7 receptor signaling in the pathogenesis of smoke-induced lung inflammation and emphysema. Am J Respir Cell Mol Biol 2011; 44(3): 423-9.
[http://dx.doi.org/10.1165/rcmb.2010-0038OC ] [PMID: 20508069]
[53]
Battagello DS, Dragunas G, Klein MO, Ayub ALP, Velloso FJ, Correa RG. Unpuzzling COVID-19: Tissue-related signaling pathways associated with SARS-CoV-2 infection and transmission. Clin Sci (Lond) 2020; 134(16): 2137-60.
[http://dx.doi.org/10.1042/CS20200904 ] [PMID: 32820801]
[54]
Eltzschig HK, Sitkovsky MV, Robson SC. Purinergic signaling during inflammation. N Engl J Med 2012; 367(24): 2322-33.
[http://dx.doi.org/10.1056/NEJMra1205750 ] [PMID: 23234515]
[55]
Cicko S, Köhler TC, Ayata CK, et al. Extracellular ATP is a danger signal activating P2X7 receptor in a LPS mediated inflammation (ARDS/ALI). Oncotarget 2018; 9(55): 30635-48.
[http://dx.doi.org/10.18632/oncotarget.25761 ] [PMID: 30093975]
[56]
Monção-Ribeiro LC, Cagido VR, Lima-Murad G, et al. Lipopolysaccharide-induced lung injury: Role of P2X7 receptor. Respir Physiol Neurobiol 2011; 179(2-3): 314-25.
[http://dx.doi.org/10.1016/j.resp.2011.09.015 ] [PMID: 21982752]
[57]
Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020; 367(6485): 1444-8.
[http://dx.doi.org/10.1126/science.abb2762 ] [PMID: 32132184]
[58]
Liu J-M, Tan B-H, Wu S, Gui Y, Suo JL, Li YC. Evidence of central nervous system infection and neuroinvasive routes, as well as neurological involvement, in the lethality of SARS-CoV-2 infection. J Med Virol 2021; 93(3): 1304-13.
[http://dx.doi.org/10.1002/jmv.26570 ] [PMID: 33002209]
[59]
Zhou Z, Kang H, Li S, Zhao X. Understanding the neurotropic characteristics of SARS-CoV-2: From neurological manifestations of COVID-19 to potential neurotropic mechanisms. J Neurol 2020; 267(8): 2179-84.
[http://dx.doi.org/10.1007/s00415-020-09929-7 ] [PMID: 32458193]
[60]
Alves VS, Leite-Aguiar R, Silva JPD, Coutinho-Silva R, Savio LEB. Purinergic signaling in infectious diseases of the central nervous system. Brain Behav Immun 2020; 89: 480-90.
[http://dx.doi.org/10.1016/j.bbi.2020.07.026 ] [PMID: 32717399]
[61]
Babapoor-Farrokhran S, Gill D, Walker J, Rasekhi RT, Bozorgnia B, Amanullah A. Myocardial injury and COVID-19: Possible mechanisms. Life Sci 2020; 253: 117723.
[http://dx.doi.org/10.1016/j.lfs.2020.117723 ] [PMID: 32360126]
[62]
Gavriatopoulou M, Korompoki E, Fotiou D, et al. Organ-specific manifestations of COVID-19 infection. Clin Exp Med 2020; 20(4): 493-506.
[http://dx.doi.org/10.1007/s10238-020-00648-x ] [PMID: 32720223]
[63]
Siddiqi HK, Libby P, Ridker PM. COVID-19 - A vascular disease. Trends Cardiovasc Med 2021; 31(1): 1-5.
[http://dx.doi.org/10.1016/j.tcm.2020.10.005 ] [PMID: 33068723]
[64]
Agdamag ACC, Edmiston JB, Charpentier V, et al. Update on COVID-19 myocarditis. Medicina (Kaunas) 2020; 56(12): 678.
[http://dx.doi.org/10.3390/medicina56120678 ] [PMID: 33317101]
[65]
Azevedo RB, Botelho BG, Hollanda JVG, et al. COVID-19 and the cardiovascular system: A comprehensive review. J Hum Hypertens 2021; 35(1): 4-11.
[http://dx.doi.org/10.1038/s41371-020-0387-4 ] [PMID: 32719447]
[66]
Bansal M. Cardiovascular disease and COVID-19. Diabetes Metab Syndr 2020; 14(3): 247-50.
[http://dx.doi.org/10.1016/j.dsx.2020.03.013 ] [PMID: 32247212]
[67]
Tajbakhsh A, Gheibi Hayat SM, Taghizadeh H, et al. COVID-19 and cardiac injury: Clinical manifestations, biomarkers, mechanisms, diagnosis, treatment, and follow up. Expert Rev Anti Infect Ther 2021; 19(3): 345-57.
[http://dx.doi.org/10.1080/14787210.2020.1822737 ] [PMID: 32921216]
[68]
Ribeiro DE, Oliveira-Giacomelli Á, Glaser T, et al. Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Mol Psychiatry 2021; 26(4): 1044-59.
[http://dx.doi.org/10.1038/s41380-020-00965-3 ] [PMID: 33328588]
[69]
Jothimani D, Venugopal R, Abedin MF, Kaliamoorthy I, Rela M. COVID-19 and the liver. J Hepatol 2020; 73(5): 1231-40.
[http://dx.doi.org/10.1016/j.jhep.2020.06.006 ] [PMID: 32553666]
[70]
Gracia-Ramos AE, Jaquez-Quintana JO, Contreras-Omaña R, Auron M. Liver dysfunction and SARS-CoV-2 infection. World J Gastroenterol 2021; 27(26): 3951-70.
[http://dx.doi.org/10.3748/wjg.v27.i26.3951 ] [PMID: 34326607]
[71]
Sun J, Aghemo A, Forner A, Valenti L. COVID-19 and liver disease. Liver Int 2020; 40(6): 1278-81.
[http://dx.doi.org/10.1111/liv.14470 ] [PMID: 32251539]
[72]
Amin M. COVID-19 and the liver: Overview. Eur J Gastroenterol Hepatol 2021; 33(3): 309-11.
[http://dx.doi.org/10.1097/MEG.0000000000001808 ] [PMID: 32558697]
[73]
Xu L, Liu J, Lu M, Yang D, Zheng X. Liver injury during highly pathogenic human coronavirus infections. Liver Int 2020; 40(5): 998-1004.
[http://dx.doi.org/10.1111/liv.14435 ] [PMID: 32170806]
[74]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7 ] [PMID: 32007143]
[75]
Wang X, Lei J, Li Z, Yan L. Potential effects of coronaviruses on the liver: An update. Front Med (Lausanne) 2021; 8: 651658.
[http://dx.doi.org/10.3389/fmed.2021.651658 ] [PMID: 34646834]
[76]
Kubes P, Jenne C. Immune responses in the liver. Annu Rev Immunol 2018; 36: 247-77.
[http://dx.doi.org/10.1146/annurev-immunol-051116-052415 ] [PMID: 29328785]
[77]
Luckheeram RV, Zhou R, Verma AD, Xia B. CD4⁺T cells: Differentiation and functions. Clin Dev Immunol 2012; 2012: 925135.
[http://dx.doi.org/10.1155/2012/925135 ] [PMID: 22474485]
[78]
Ong EZ, Chan YFZ, Leong WY, et al. A dynamic immune response shapes COVID-19 progression. Cell Host Microbe 2020; 27(6): 879-882.e2.
[http://dx.doi.org/10.1016/j.chom.2020.03.021 ] [PMID: 32359396]
[79]
Vaughn BP, Robson SC, Burnstock G. Pathological roles of purinergic signaling in the liver. J Hepatol 2012; 57(4): 916-20.
[http://dx.doi.org/10.1016/j.jhep.2012.06.008 ] [PMID: 22709619]
[80]
Burnstock G, Knight GE. The potential of P2X7 receptors as a therapeutic target, including inflammation and tumour progression. Purinergic Signal 2018; 14(1): 1-18.
[http://dx.doi.org/10.1007/s11302-017-9593-0 ] [PMID: 29164451]
[81]
Li X, Wang L, Yan S, et al. Clinical characteristics of 25 death cases with COVID-19: A retrospective review of medical records in a single medical center, Wuhan, China. Int J Infect Dis 2020; 94: 128-32.
[http://dx.doi.org/10.1016/j.ijid.2020.03.053 ] [PMID: 32251805]
[82]
Jain U. Effect of COVID-19 on the organs. Cureus 2020; 12(8): e9540.
[http://dx.doi.org/10.7759/cureus.9540 ] [PMID: 32905500]
[83]
Chan L, Chaudhary K, Saha A, et al. AKI in hospitalized patients with COVID-19. J Am Soc Nephrol 2021; 32(1): 151-60.
[http://dx.doi.org/10.1681/ASN.2020050615 ] [PMID: 32883700]
[84]
da Costa RL, Sória TC, Salles EF, et al. Acute kidney injury in patients with COVID-19 in a Brazilian ICU: Incidence, predictors and in-hospital mortality. Brazilian J Nephrol 2021; 43: 349-58.
[85]
Nogueira SÁR, Oliveira SCS, Carvalho AFM, et al. Renal changes and acute kidney injury in COVID-19: A systematic review. Rev Assoc Med Bras 2020; 66(66)(Suppl. 2): 112-7.
[http://dx.doi.org/10.1590/1806-9282.66.s2.112 ] [PMID: 32965368]
[86]
Kellum JA, van Till JWO, Mulligan G. Targeting acute kidney injury in COVID-19. Nephrol Dial Transplant 2020; 35(10): 1652-62.
[http://dx.doi.org/10.1093/ndt/gfaa231 ] [PMID: 33022712]
[87]
Su H, Yang M, Wan C, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int 2020; 98(1): 219-27.
[http://dx.doi.org/10.1016/j.kint.2020.04.003 ] [PMID: 32327202]
[88]
Koitka A, Cooper ME, Thomas MC, Tikellis C. Angiotensin converting enzyme 2 in the kidney. Clin Exp Pharmacol Physiol 2008; 35(4): 420-5.
[http://dx.doi.org/10.1111/j.1440-1681.2008.04889.x ] [PMID: 18307733]
[89]
Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 2020; 11(1): 1620.
[http://dx.doi.org/10.1038/s41467-020-15562-9 ] [PMID: 32221306]
[90]
Fan C, Lu W, Li K, Ding Y, Wang J. ACE2 expression in kidney and testis may cause kidney and testis infection in COVID-19 patients. Front Med (Lausanne) 2021; 7: 563893.
[http://dx.doi.org/10.3389/fmed.2020.563893 ] [PMID: 33521006]
[91]
Pan XW, Xu D, Zhang H, et al. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: A study based on single-cell transcriptome analysis. Intensive Care Med 2020; 46: 1114-6.
[http://dx.doi.org/10.1007/s00134-020-06026-1]
[92]
Menon R, Otto EA, Sealfon R, et al. SARS-CoV-2 receptor networks in diabetic and COVID-19-associated kidney disease. Kidney Int 2020; 98(6): 1502-18.
[http://dx.doi.org/10.1016/j.kint.2020.09.015 ] [PMID: 33038424]
[93]
Ertuğlu LA, Kanbay A, Afşar B, Elsürer Afşar R, Kanbay M. COVID-19 and acute kidney injury. Tuberk Toraks 2020; 68(4): 407-18.
[http://dx.doi.org/10.5578/tt.70010 ] [PMID: 33448738]
[94]
Kurts C, Panzer U, Anders HJ, Rees AJ. The immune system and kidney disease: Basic concepts and clinical implications. Nat Rev Immunol 2013; 13(10): 738-53.
[http://dx.doi.org/10.1038/nri3523 ] [PMID: 24037418]
[95]
Rabb H, Griffin MD, McKay DB, et al. Inflammation in AKI: Current understanding, key questions, and knowledge gaps. J Am Soc Nephrol 2016; 27(2): 371-9.
[http://dx.doi.org/10.1681/ASN.2015030261 ] [PMID: 26561643]
[96]
Tecklenborg J, Clayton D, Siebert S, Coley SM. The role of the immune system in kidney disease. Clin Exp Immunol 2018; 192(2): 142-50.
[http://dx.doi.org/10.1111/cei.13119 ] [PMID: 29453850]
[97]
Cheng Y, Luo R, Wang K, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int 2020; 97(5): 829-38.
[http://dx.doi.org/10.1016/j.kint.2020.03.005 ] [PMID: 32247631]
[98]
Ng JH, Hirsch JS, Wanchoo R, et al. Outcomes of patients with end-stage kidney disease hospitalized with COVID-19. Kidney Int 2020; 98(6): 1530-9.
[http://dx.doi.org/10.1016/j.kint.2020.07.030 ] [PMID: 32810523]
[99]
Gao YD, Ding M, Dong X. Risk factors for severe and critically ill COVID-19 patients. A review Allergy 2021; 76: 428-55.
[http://dx.doi.org/10.1111/all.14657]
[100]
Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir Med 2020; 8(5): 475-81.
[http://dx.doi.org/10.1016/S2213-2600(20)30079-5 ] [PMID: 32105632]
[101]
Leon-Abarca JA, Memon RS, Rehan B, Iftikhar M, Chatterjee A. The impact of COVID-19 in diabetic kidney disease and chronic kidney disease: A population-based study. Acta Biomed 2020; 91(4): e2020161.
[http://dx.doi.org/10.1101/2020.09.12.20193235 ] [PMID: 33525210]
[102]
Antonioli L, Blandizzi C, Pacher P, Haskó G. The purinergic system as a pharmacological target for the treatment of immune-mediated inflammatory diseases. Pharmacol Rev 2019; 71(3): 345-82.
[http://dx.doi.org/10.1124/pr.117.014878 ] [PMID: 31235653]
[103]
Zhao J, Wang H, Dai C, et al. P2X7 blockade attenuates murine lupus nephritis by inhibiting activation of the NLRP3/ASC/caspase 1 pathway. Arthritis Rheum 2013; 65(12): 3176-85.
[http://dx.doi.org/10.1002/art.38174 ] [PMID: 24022661]
[104]
Ji X, Naito Y, Weng H, Endo K, Ma X, Iwai N. P2X7 deficiency attenuates hypertension and renal injury in deoxycorticosterone acetate-salt hypertension. Am J Physiol Renal Physiol 2012; 303(8): F1207-15.
[http://dx.doi.org/10.1152/ajprenal.00051.2012 ] [PMID: 22859404]
[105]
Gonçalves RG, Gabrich L, Rosário A Jr, et al. The role of purinergic P2X7 receptors in the inflammation and fibrosis of unilateral ureteral obstruction in mice. Kidney Int 2006; 70(9): 1599-606.
[http://dx.doi.org/10.1038/sj.ki.5001804 ] [PMID: 16969386]
[106]
Yan Y, Bai J, Zhou X, et al. P2X7 receptor inhibition protects against ischemic acute kidney injury in mice. Am J Physiol Cell Physiol 2015; 308(6): C463-72.
[http://dx.doi.org/10.1152/ajpcell.00245.2014 ] [PMID: 25588875]
[107]
Qian Y, Qian C, Xie K, et al. P2X7 receptor signaling promotes inflammation in renal parenchymal cells suffering from ischemia-reperfusion injury. Cell Death Dis 2021; 12(1): 132.
[http://dx.doi.org/10.1038/s41419-020-03384-y ] [PMID: 33504771]
[108]
Ponnusamy M, Ma L, Gong R, Pang M, Chin YE, Zhuang S. P2X7 receptors mediate deleterious renal epithelial-fibroblast cross talk. Am J Physiol Renal Physiol 2011; 300(1): F62-70.
[http://dx.doi.org/10.1152/ajprenal.00473.2010 ] [PMID: 20861083]
[109]
Siamantouras E, Price GW, Potter JA, Hills CE, Squires PE. Purinergic receptor (P2X7) activation reduces cell-cell adhesion between tubular epithelial cells of the proximal kidney. Nanomedicine 2019; 22: 102108.
[http://dx.doi.org/10.1016/j.nano.2019.102108 ] [PMID: 31655201]
[110]
Menzies RI, Booth JWR, Mullins JJ, et al. Hyperglycemia-induced renal P2X7 receptor activation enhances diabetes-related injury. EBioMedicine 2017; 19: 73-83.
[http://dx.doi.org/10.1016/j.ebiom.2017.04.011 ] [PMID: 28434946]
[111]
Gregg LP, Tio MC, Li X, Adams-Huet B, de Lemos JA, Hedayati SS. Association of monocyte chemoattractant protein-1 with death and atherosclerotic events in chronic kidney disease. Am J Nephrol 2018; 47(6): 395-405.
[http://dx.doi.org/10.1159/000488806 ] [PMID: 29874658]
[112]
Haller H, Bertram A, Nadrowitz F, Menne J. Monocyte chemoattractant protein-1 and the kidney. Curr Opin Nephrol Hypertens 2016; 25(1): 42-9.
[http://dx.doi.org/10.1097/MNH.0000000000000186 ] [PMID: 26625862]
[113]
Koo TY, Lee JG, Yan JJ, et al. The P2X7 receptor antagonist, oxidized adenosine triphosphate, ameliorates renal ischemia-reperfusion injury by expansion of regulatory T cells. Kidney Int 2017; 92(2): 415-31.
[http://dx.doi.org/10.1016/j.kint.2017.01.031 ] [PMID: 28396117]
[114]
Menzies RI, Howarth AR, Unwin RJ, Tam FW, Mullins JJ, Bailey MA. Inhibition of the purinergic P2X7 receptor improves renal perfusion in angiotensin-II-infused rats. Kidney Int 2015; 88(5): 1079-87.
[http://dx.doi.org/10.1038/ki.2015.182 ] [PMID: 26108066]
[115]
Xie Y, Williams CD, McGill MR, Lebofsky M, Ramachandran A, Jaeschke H. Purinergic receptor antagonist A438079 protects against acetaminophen-induced liver injury by inhibiting p450 isoenzymes, not by inflammasome activation. Toxicol Sci 2013; 131(1): 325-35.
[http://dx.doi.org/10.1093/toxsci/kfs283 ] [PMID: 22986947]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy