Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Analysis of the Molecular Mechanism of Huangqi Herb Treating COVID- 19 with Myocardial Injury by Pharmacological Tools, Programming Software and Molecular Docking

Author(s): Yan Zhou*, Yuguang Chu*, Jingjing Shi and Yuanhui Hu

Volume 26, Issue 5, 2023

Published on: 10 August, 2022

Page: [1015 - 1029] Pages: 15

DOI: 10.2174/1386207325666220713092756

Price: $65

Abstract

Background: Huangqi with the capacity to resist virus and preserve myocardium is a potential herb for treating patients with COVID-19 and related myocardial injury.

Methods: We applied network pharmacology method and programming software including R and Perl to explore the probable mechanism of Huangqi fighting against the disease. Ingredients and target gene names of Huangqi were obtained from TCMSP database. Disease-associated genes were mined by searching GeneCards database. Venny online software was applied to draw Venn diagram of intersection genes. Cytoscape software was used to set up the network of disease, drug, compounds and targets. STRING database was applied to set up protein protein interaction (PPI) network. With intersection genes imported into WEBGESALT database, gene ontology (GO) analysis was completed. An R script basing on Kyoto Encyclopedia of Genes and Genomes (KEGG) database was applied to obtain KEGG pathways. Finally, we used AutoDockTools 1.5.6 software for molecular docking and PyMOL to visualize the docking details.

Results: We obtained 20 active components and 18 potential target genes to construct a network, and found out quercetin and kaempferol were core ingredients. Key targets included EGFR, MAPK8, IL6, CASP3, RELA and PPARG. Huangqi showed its potential to reduce inflammatory response to prevent cytokine storm by inhibiting EGFR, IL6 and MAPK and protect myocardium by inhibiting apoptosis and oxidant stress. Huangqi may also work by adjusting ubiquitin and regulating multiple viral pathways.

Conclusions: Huangqi may play a therapeutic role in treating COVID-19 with myocardial injury by the effects of resisting virus and protecting myocardium concurrently.

Keywords: COVID-19, Huangqi, viral myocarditis, traditional chinese herb, pharmacology, molecular docking.

Graphical Abstract

[1]
Turner, A.J.; Hiscox, J.A.; Hooper, N.M. ACE2: From vasopeptidase to SARS virus receptor. Trends Pharmacol. Sci., 2004, 25(6), 291-294.
[http://dx.doi.org/10.1016/j.tips.2004.04.001] [PMID: 15165741]
[2]
Aghagoli, G.; Gallo Marin, B.; Soliman, L.B.; Sellke, F.W. Cardiac involvement in COVID-19 patients: Risk factors, predictors, and complications: A review. J. Card. Surg., 2020, 35(6), 1302-1305.
[http://dx.doi.org/10.1111/jocs.14538] [PMID: 32306491]
[3]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[4]
Shi, S.; Qin, M.; Shen, B.; Cai, Y.; Liu, T.; Yang, F.; Gong, W.; Liu, X.; Liang, J.; Zhao, Q.; Huang, H.; Yang, B.; Huang, C. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020.
[5]
Tajbakhsh, A.; Gheibi Hayat, S.M.; Taghizadeh, H.; Akbari, A.; Inabadi, M.; Savardashtaki, A.; Johnston, T.P.; Sahebkar, A. COVID-19 and cardiac injury: Clinical manifestations, biomarkers, mechanisms, diagnosis, treatment, and follow up. Expert Rev. Anti Infect. Ther., 2021, 19(3), 345-357.
[http://dx.doi.org/10.1080/14787210.2020.1822737] [PMID: 32921216]
[6]
Oudit, G.Y.; Kassiri, Z.; Jiang, C.; Liu, P.P.; Poutanen, S.M.; Penninger, J.M.; Butany, J. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur. J. Clin. Invest., 2009, 39(7), 618-625.
[http://dx.doi.org/10.1111/j.1365-2362.2009.02153.x] [PMID: 19453650]
[7]
Alhogbani, T. Acute myocarditis associated with novel Middle east respiratory syndrome coronavirus. Ann. Saudi Med., 2016, 36(1), 78-80.
[http://dx.doi.org/10.5144/0256-4947.2016.78] [PMID: 26922692]
[8]
Barghash, R.F.; Fawzy, I.M.; Chandrasekar, V.; Singh, A.V.; Katha, U.; Mandour, A.A. In Silico modeling as a perspective in developing potential vaccine candidates and therapeutics for COVID-19. Coatings, 2021, 11(11), 1273.
[http://dx.doi.org/10.3390/coatings11111273]
[9]
Varga, Z.V.; Ferdinandy, P.; Liaudet, L.; Pacher, P. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am. J. Physiol. Heart Circ. Physiol., 2015, 309(9), H1453-H1467.
[http://dx.doi.org/10.1152/ajpheart.00554.2015] [PMID: 26386112]
[10]
Luo, H.; Tang, Q.L.; Shang, Y.X.; Liang, S.B.; Yang, M.; Robinson, N.; Liu, J.P. Can chinese medicine be used for prevention of corona virus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chin. J. Integr. Med., 2020, 26(4), 243-250.
[http://dx.doi.org/10.1007/s11655-020-3192-6] [PMID: 32065348]
[11]
Liang, Y.; Zhang, Q.; Zhang, L.; Wang, R.; Xu, X.; Hu, X. Astragalus membranaceus treatment protects Raw264.7 cells from influenza virus by regulating G1 phase and the TLR3-Mediated signaling pathway. Evid. Based Complement. Alternat. Med., 2019, 2019, 2971604.
[http://dx.doi.org/10.1155/2019/2971604] [PMID: 31975996]
[12]
Song, X.; Liu, Z.; Wang, H.; Xin, Y.; Wang, X.; Chen, J.; Shi, Y.; Zhang, C.; Hui, R. QiHong prevents death in coxsackievirus B3 induced murine myocarditis through inhibition of virus attachment and penetration. Exp. Biol. Med. (Maywood), 2007, 232(11), 1441-1448.
[http://dx.doi.org/10.3181/0704-RM-110] [PMID: 18040068]
[13]
Liu, W.J.; Liu, B.; Guo, Q.L.; Zhang, Y.C.; Yuan, Y.J.; Fu, X.D.; Deng, Z.H.; Lin, J. Influence of ganciclovir and astragalus membranaceus on proliferation of hematopoietic progenitor cells of cord blood after cytomegalovirus infection in vitro. Zhonghua Er Ke Za Zhi, 2004, 42(7), 490-494.
[PMID: 15324563]
[14]
Guo, Q.; Sun, X.; Zhang, Z.; Zhang, L.; Yao, G.; Li, F.; Yang, X.; Song, L.; Jiang, G. The effect of astragalus polysaccharide on the epstein-barr virus lytic cycle. Acta Virol., 2014, 58(1), 76-80.
[http://dx.doi.org/10.4149/av_2014_01_76] [PMID: 24717032]
[15]
Mao, S.P.; Cheng, K.L.; Zhou, Y.F. Modulatory effect of Astragalus membranaceus on Th1/Th2 cytokine in patients with herpes simplex keratitis. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih, 2004, 24(2), 121-123.
[PMID: 15015443]
[16]
Fang, M.Z.; Yan, D. A study of inhibiting effect of flos lonicerae-radix astragali solution on varicella-zoster virus Qilu Yi Xue Za Zhi., 2003, (02), 156-157.
[17]
Dang, S.S.; Jia, X.L.; Song, P.; Cheng, Y.A.; Zhang, X.; Sun, M.Z.; Liu, E.Q. Inhibitory effect of emodin and Astragalus polysaccharide on the replication of HBV. World J. Gastroenterol., 2009, 15(45), 5669-5673.
[http://dx.doi.org/10.3748/wjg.15.5669] [PMID: 19960563]
[18]
Ritter, J.T.; Tang-Feldman, Y.J.; Lochhead, G.R.; Estrada, M.; Lochhead, S.; Yu, C.; Ashton-Sager, A.; Tuteja, D.; Leutenegger, C.; Pomeroy, C. In vivo characterization of cytokine profiles and viral load during murine cytomegalovirus-induced acute myocarditis. Cardiovasc. Pathol., 2010, 19(2), 83-93.
[http://dx.doi.org/10.1016/j.carpath.2008.12.001] [PMID: 19217318]
[19]
Xiao, Y.; Liu, T.; Liu, X.; Zheng, L.; Yu, D.; Zhang, Y.; Qian, X.; Liu, X. Total Astragalus saponins attenuates CVB3-induced viral myocarditis through inhibiting expression of tumor necrosis factor α and Fas ligand. Cardiovasc. Diagn. Ther., 2019, 9(4), 337-345.
[http://dx.doi.org/10.21037/cdt.2019.07.11] [PMID: 31555538]
[20]
Chen, G.R.; Liu, Y.; Mao, S.Z.; Li, J.M.; Zhen, C.F. The effect of Astragalus membranaceus (Fisch) bge. on lipid peroxidation and NO level of myocardium from rats with diabetic nephropathy]. Chung Kuo Ying Yung Sheng Li Hsueh Tsa Chih, 2001, 17(2), 186-188.
[PMID: 21171416]
[21]
Liu, Z.H.; Liu, H.B.; Wang, J. Astragaloside IV protects against the pathological cardiac hypertrophy in mice. Biomed. Pharmacother., 2018, 97, 1468-1478.
[http://dx.doi.org/10.1016/j.biopha.2017.09.092] [PMID: 29793309]
[22]
Chen, W.; Ju, J.; Yang, Y.; Wang, H.; Chen, W.; Zhao, X.; Ye, H.; Zhang, Y. Astragalus polysaccharides protect cardiac stem and progenitor cells by the inhibition of oxidative stress-mediated apoptosis in diabetic hearts. Drug Des. Devel. Ther., 2018, 12, 943-954.
[http://dx.doi.org/10.2147/DDDT.S155686] [PMID: 29719380]
[23]
Cao, Y.; Shen, T.; Huang, X.; Lin, Y.; Chen, B.; Pang, J.; Li, G.; Wang, Q.; Zohrabian, S.; Duan, C.; Ruan, Y.; Man, Y.; Wang, S.; Li, J. Astragalus polysaccharide restores autophagic flux and improves cardiomyocyte function in doxorubicin-induced cardiotoxicity. Oncotarget, 2017, 8(3), 4837-4848.
[http://dx.doi.org/10.18632/oncotarget.13596] [PMID: 27902477]
[24]
Zhang, C.; Wang, X.H.; Zhong, M.F.; Liu, R.H.; Li, H.L.; Zhang, W.D.; Chen, H. Mechanisms underlying vasorelaxant action of astragaloside IV in isolated rat aortic rings. Clin. Exp. Pharmacol. Physiol., 2007, 34(5-6), 387-392.
[http://dx.doi.org/10.1111/j.1440-1681.2007.04564.x] [PMID: 17439405]
[25]
Zhang, D.Q.; Zhang, J.J.; Wang, J.X.; Hu, S.M.; Li, W.; Ou, L.N.; Chen, S.H.; Gao, X.M. Effects of Qilan Tangzhining capsule on glucose and lipid metabolism in rats with diabetes mellitus and hyperlipemia. Zhongguo Zhongyao Zazhi, 2005, 30(10), 773-777.
[PMID: 16075719]
[26]
Zhang, Z.; Zhang, L.; Xu, H. Effect of Astragalus polysaccharide in treatment of diabetes mellitus: A narrative review. J. Tradit. Chin. Med., 2019, 39(1), 133-138.
[PMID: 32186034]
[27]
Pandey, A.T.; Pandey, I.; Zamboni, P.; Gemmati, D.; Kanase, A.; Singh, A.V.; Singh, M.P. Traditional herbal remedies with a multifunctional therapeutic approach as an implication in covid-19 associated co-infections. Coatings, 2020, 10(8), 761.
[28]
Lee, D.Y.W.; Li, Q.Y.; Liu, J.; Efferth, T. Traditional Chinese herbal medicine at the forefront battle against COVID-19: Clinical experience and scientific basis. Phytomedicine, 2021, 80, 153337.
[http://dx.doi.org/10.1016/j.phymed.2020.153337] [PMID: 33221457]
[29]
Li, S.; Zhang, B. Traditional Chinese medicine network pharmacology: Theory, methodology and application. Chin. J. Nat. Med., 2013, 11(2), 110-120.
[http://dx.doi.org/10.1016/S1875-5364(13)60037-0] [PMID: 23787177]
[30]
Chan, B.K.C. Data analysis using r programming. Adv. Exp. Med. Biol., 2018, 1082, 47-122.
[http://dx.doi.org/10.1007/978-3-319-93791-5_2] [PMID: 30357717]
[31]
Geldenhuys, W.J.; Gaasch, K.E.; Watson, M.; Allen, D.D.; Van der Schyf, C.J. Optimizing the use of open-source software applications in drug discovery. Drug Discov. Today, 2006, 11(3-4), 127-132.
[http://dx.doi.org/10.1016/S1359-6446(05)03692-5] [PMID: 16533710]
[32]
Wang, F.; Yuan, C.; Wu, H.Z.; Liu, B.; Yang, Y.F. Bioinformatics, molecular docking and experiments in vitro analyze the prognostic value of CXC chemokines in breast cancer. Front. Oncol., 2021, 11, 665080.
[http://dx.doi.org/10.3389/fonc.2021.665080] [PMID: 34123826]
[33]
Pilipović, A.; Mitrović, D.; Obradović, S.; Poša, M. Docking-based analysis and modeling of the activity of bile acids and their synthetic analogues on large conductance Ca2+ activated K channels in smooth muscle cells. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(23), 7501-7507.
[PMID: 34919252]
[34]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[35]
Li, J.; Zhao, P.; Li, Y.; Tian, Y.; Wang, Y. Systems pharmacology-based dissection of mechanisms of Chinese medicinal formula Bufei Yishen as an effective treatment for chronic obstructive pulmonary disease. Sci. Rep., 2015, 5(1), 15290.
[http://dx.doi.org/10.1038/srep15290] [PMID: 26469778]
[36]
Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; Kaplan, S.; Dahary, D.; Warshawsky, D.; Guan-Golan, Y.; Kohn, A.; Rappaport, N.; Safran, M.; Lancet, D. The genecards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics, 2016, 54, 30-33.
[37]
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C.V. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[38]
Singh, A.V.; Maharjan, R.S.; Kanase, A.; Siewert, K.; Rosenkranz, D.; Singh, R.; Laux, P.; Luch, A. Machine-Learning-Based approach to decode the influence of nanomaterial properties on their interaction with cells. ACS Appl. Mater. Interfaces, 2021, 13(1), 1943-1955.
[http://dx.doi.org/10.1021/acsami.0c18470] [PMID: 33373205]
[39]
Deng, Q.; Hu, B.; Zhang, Y.; Wang, H.; Zhou, X.; Hu, W.; Cheng, Y.; Yan, J.; Ping, H.; Zhou, Q. Suspected myocardial injury in patients with COVID-19: Evidence from front-line clinical observation in Wuhan, China. Int. J. Cardiol., 2020, 311, 116-121.
[http://dx.doi.org/10.1016/j.ijcard.2020.03.087] [PMID: 32291207]
[40]
Bavishi, C.; Bonow, R.O.; Trivedi, V.; Abbott, J.D.; Messerli, F.H.; Bhatt, D.L. Special Article - Acute myocardial injury in patients hospitalized with COVID-19 infection: A review. Prog. Cardiovasc. Dis., 2020, 63(5), 682-689.
[http://dx.doi.org/10.1016/j.pcad.2020.05.013] [PMID: 32512122]
[41]
Chow, L.H.; Gauntt, C.J.; McManus, B.M. Differential effects of myocarditic variants of Coxsackievirus B3 in inbred mice. A pathologic characterization of heart tissue damage. Lab. Invest., 1991, 64(1), 55-64.
[PMID: 1990209]
[42]
Badorff, C.; Lee, G.H.; Lamphear, B.J.; Martone, M.E.; Campbell, K.P.; Rhoads, R.E.; Knowlton, K.U. Enteroviral protease 2A cleaves dystrophin: Evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat. Med., 1999, 5(3), 320-326.
[http://dx.doi.org/10.1038/6543] [PMID: 10086389]
[43]
Lauer, D.; Slavic, S.; Sommerfeld, M.; Thöne-Reineke, C.; Sharkovska, Y.; Hallberg, A.; Dahlöf, B.; Kintscher, U.; Unger, T.; Steckelings, U.M.; Kaschina, E. Angiotensin type 2 receptor stimulation ameliorates left ventricular fibrosis and dysfunction via regulation of tissue inhibitor of matrix metalloproteinase 1/matrix metalloproteinase 9 axis and transforming growth factor β1 in the rat heart. Hypertension, 2014, 63(3), e60-e67.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.02522] [PMID: 24379181]
[44]
Fung, G.; Luo, H.; Qiu, Y.; Yang, D.; McManus, B. Myocarditis. Circ. Res., 2016, 118(3), 496-514.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306573] [PMID: 26846643]
[45]
Kühl, U.; Schultheiss, H.P. Viral myocarditis. Swiss Med. Wkly., 2014, 144, w14010.
[PMID: 25275335]
[46]
Singh, A.V.; Romeo, A.; Scott, K.; Wagener, S.; Leibrock, L.; Laux, P.; Luch, A.; Kerkar, P.; Balakrishnan, S.; Dakua, S.P.; Park, B.W. Emerging technologies for In Vitro inhalation toxicology. Adv. Healthc. Mater., 2021, 10(18), e2100633.
[http://dx.doi.org/10.1002/adhm.202100633] [PMID: 34292676]
[47]
Singh, A.V.; Maharjan, R.S.; Jungnickel, H.; Romanowski, H.; Hachenberger, Y.U.; Reichardt, P.; Bierkandt, F.; Siewert, K.; Gadicherla, A.; Laux, P.; Luch, A. Evaluating particle emissions and toxicity of 3D pen printed filaments with metal nanoparticles as additives: In vitro and in silico discriminant function analysis. ACS Sustain. Chem.& Eng., 2021, 9(35), 11724-11737.
[http://dx.doi.org/10.1021/acssuschemeng.1c02589]
[48]
Ye, Q.; Wang, B.; Mao, J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect., 2020, 80(6), 607-613.
[http://dx.doi.org/10.1016/j.jinf.2020.03.037] [PMID: 32283152]
[49]
Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; Tai, Y.; Bai, C.; Gao, T.; Song, J.; Xia, P.; Dong, J.; Zhao, J.; Wang, F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med., 2020, 8(4), 420-422.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[50]
Zhang, D.; Zhuang, Y.; Pan, J.; Wang, H.; Li, H.; Yu, Y.; Wang, D. Investigation of effects and mechanisms of total flavonoids of Astragalus and calycosin on human erythroleukemia cells. Oxid. Med. Cell. Longev., 2012, 2012, 209843.
[http://dx.doi.org/10.1155/2012/209843] [PMID: 22848779]
[51]
Wu, W.; Wages, P.A.; Devlin, R.B.; Diaz-Sanchez, D.; Peden, D.B.; Samet, J.M. SRC-mediated EGF receptor activation regulates ozone-induced interleukin 8 expression in human bronchial epithelial cells. Environ. Health Perspect., 2015, 123(3), 231-236.
[http://dx.doi.org/10.1289/ehp.1307379] [PMID: 25303742]
[52]
Le, F.J.; Wei, D.W.; Li, J.D.; Peng, H.; Pei, P.F. Role of EGF receptor in ozone-induced lung inflammation in mice. J. Zhengzhou Univ. Med. Sci., 2016, 51(04), 450-454.
[53]
Henry, B.M.; de Oliveira, M.H.S.; Benoit, S.; Plebani, M.; Lippi, G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin. Chem. Lab. Med., 2020, 58(7), 1021-1028.
[http://dx.doi.org/10.1515/cclm-2020-0369] [PMID: 32286245]
[54]
Ajibade, T.O.; Oyagbemi, A.A.; Omobowale, T.O.; Asenuga, E.R.; Adigun, K.O. Quercetin and Vitamin C mitigate cobalt chloride-induced hypertension through reduction in oxidative stress and nuclear factor kappa beta (NF-Kb) expression in experimental rat model. Biol. Trace Elem. Res., 2017, 175(2), 347-359.
[http://dx.doi.org/10.1007/s12011-016-0773-5] [PMID: 27283837]
[55]
Bostancieri, N.; Elbe, H.; Esrefoglu, M.; Vardi, N. Cardioprotective potential of melatonin, quercetin and resveratrol in an experimental model of diabetes. Biotech. Histochem., 2022, 97(2), 152-157.
[PMID: 33906539]
[56]
Jin, Y.; Yin, X.; Li, Z.; Xu, J. Mechanism of baihe decoction in the treatment of coronary heart disease based on network pharmacology and molecular docking. Ann. Palliat. Med., 2021, 10(3), 3205-3218.
[http://dx.doi.org/10.21037/apm-21-543] [PMID: 33849106]
[57]
Chen, X.; Peng, X.; Luo, Y.; You, J.; Yin, D.; Xu, Q.; He, H.; He, M. Quercetin protects cardiomyocytes against doxorubicin-induced toxicity by suppressing oxidative stress and improving mitochondrial function via 14-3-3γ. Toxicol. Mech. Methods, 2019, 29(5), 344-354.
[http://dx.doi.org/10.1080/15376516.2018.1564948] [PMID: 30636491]
[58]
Behl, S.; Adem, A.; Hussain, A.; Singh, J. Effect of the anti-retroviral drug, rilpivirine, on human subcutaneous adipose cells and its nutritional management using quercetin. Mol. Cell. Biochem., 2020, 471(1-2), 1-13.
[http://dx.doi.org/10.1007/s11010-020-03744-4] [PMID: 32533464]
[59]
Singh, A.V.; Jahnke, T.; Kishore, V.; Park, B.W.; Batuwangala, M.; Bill, J.; Sitti, M. Cancer cells biomineralize ionic gold into nanoparticles-microplates via secreting defense proteins with specific gold-binding peptides. Acta Biomater., 2018, 71, 61-71.
[http://dx.doi.org/10.1016/j.actbio.2018.02.022] [PMID: 29499399]
[60]
Huang, C.H.; Jan, R.L.; Kuo, C.H.; Chu, Y.T.; Wang, W.L.; Lee, M.S.; Chen, H.N.; Hung, C.H. Natural flavone kaempferol suppresses chemokines expression in human monocyte THP-1 cells through MAPK pathways. J. Food Sci., 2010, 75(8), H254-H259.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01812.x] [PMID: 21535503]
[61]
Zhang, R.; Ai, X.; Duan, Y.; Xue, M.; He, W.; Wang, C.; Xu, T.; Xu, M.; Liu, B.; Li, C.; Wang, Z.; Zhang, R.; Wang, G.; Tian, S.; Liu, H. Kaempferol ameliorates H9N2 swine influenza virus-induced acute lung injury by inactivation of TLR4/MyD88-mediated NF-κB and MAPK signaling pathways. Biomed. Pharmacother., 2017, 89, 660-672.
[http://dx.doi.org/10.1016/j.biopha.2017.02.081] [PMID: 28262619]
[62]
Sharma, S.; Sharma, M.; Rana, A.K.; Joshi, R.; Swarnkar, M.K.; Acharya, V.; Singh, D. Deciphering key regulators involved in epilepsy-induced cardiac damage through whole transcriptome and proteome analysis in a rat model. Epilepsia, 2021, 62(2), 504-516.
[http://dx.doi.org/10.1111/epi.16794] [PMID: 33341939]
[63]
Imran, M.; Rauf, A.; Shah, Z.A.; Saeed, F.; Imran, A.; Arshad, M.U.; Ahmad, B.; Bawazeer, S.; Atif, M.; Peters, D.G.; Mubarak, M.S. Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review. Phytother. Res., 2019, 33(2), 263-275.
[http://dx.doi.org/10.1002/ptr.6227] [PMID: 30402931]
[64]
Onouchi, Y.; Ozaki, K.; Buns, J.C.; Shimizu, C.; Hamada, H.; Honda, T.; Terai, M.; Honda, A.; Takeuchi, T.; Shibuta, S.; Suenaga, T.; Suzuki, H.; Higashi, K.; Yasukawa, K.; Suzuki, Y.; Sasago, K.; Kemmotsu, Y.; Takatsuki, S.; Saji, T.; Yoshikawa, T.; Nagai, T.; Hamamoto, K.; Kishi, F.; Ouchi, K.; Sato, Y.; Newburger, J.W.; Baker, A.L.; Shulman, S.T.; Rowley, A.H.; Yashiro, M.; Nakamura, Y.; Wakui, K.; Fukushima, Y.; Fujino, A.; Tsunoda, T.; Kawasaki, T.; Hata, A.; Nakamura, Y.; Tanaka, T. Common variants in CASP3 confer susceptibility to Kawasaki disease. Hum. Mol. Genet., 2010, 19(14), 2898-2906.
[http://dx.doi.org/10.1093/hmg/ddq176] [PMID: 20423928]
[65]
Fan, T.J.; Han, L.H.; Cong, R.S.; Liang, J. Caspase family proteases and apoptosis. Acta Biochim. Biophys. Sin. (Shanghai), 2005, 37(11), 719-727.
[http://dx.doi.org/10.1111/j.1745-7270.2005.00108.x] [PMID: 16270150]
[66]
Promraksa, B.; Daduang, J.; Khampitak, T.; Tavichakorntrakool, R.; Koraneekit, A.; Palasap, A.; Tangrassameeprasert, R.; Boonsiri, P. Anticancer potential of cratoxylum formosum subsp. Pruniflorum (Kurz.) gogel extracts against cervical cancer cell lines. Asian Pac. J. Cancer Prev., 2015, 16(14), 6117-6121.
[http://dx.doi.org/10.7314/APJCP.2015.16.14.6117] [PMID: 26320505]
[67]
Wang, J.; Zhai, Y.; Ou, M.; Bian, Y.; Tang, C.; Zhang, W.; Cheng, Y.; Li, G. Protective effect of lemon peel extract on oxidative stress in H9c2 rat heart cell injury. Drug Des. Devel. Ther., 2021, 15, 2047-2058.
[http://dx.doi.org/10.2147/DDDT.S304624] [PMID: 34017169]
[68]
Qin, Y.; Cui, W.; Yang, X.; Tong, B. Kaempferol inhibits the growth and metastasis of cholangiocarcinoma in vitro and in vivo. Acta Biochim. Biophys. Sin. (Shanghai), 2016, 48(3), 238-245.
[http://dx.doi.org/10.1093/abbs/gmv133] [PMID: 26883800]
[69]
Lin, J.G.; Yao, K.W.; Wang, Q.Q.; Hua, X. Mechanism of Xuefu Zhuyu Decoction in treatment of myocardial infarction based on network pharmacology and molecular docking. Zhongguo Zhongyao Zazhi, 2021, 46(4), 885-893.
[PMID: 33645093]
[70]
Kim, Y. Allen, E.; Baird, L.A.; Symer, E.M.; Korkmaz, F.T.; Na, E.; Odom, C.V.; Jones, M.R.; Mizgerd, J.P.; Traber, K.E.; Quinton, L.J. NF-κB rela is required for hepatoprotection during pneumonia and sepsis. Infect. Immun., 2019, 87(8), e00132-e19.
[http://dx.doi.org/10.1128/IAI.00132-19] [PMID: 31160364]
[71]
Xia, S.; Zhong, Z.; Gao, B.; Vong, C.T.; Lin, X.; Cai, J.; Gao, H.; Chan, G.; Li, C. The important herbal pair for the treatment of COVID-19 and its possible mechanisms. Chin. Med., 2021, 16(1), 25.
[http://dx.doi.org/10.1186/s13020-021-00427-0] [PMID: 33658066]
[72]
Zhuang, Z.; Zhong, X.; Zhang, H.; Chen, H.; Huang, B.; Lin, D.; Wen, J. Exploring the potential mechanism of shufeng jiedu capsule for treating COVID-19 by comprehensive network pharmacological approaches and molecular docking validation. Comb. Chem. High Throughput Screen., 2021, 24(9), 1377-1394.
[http://dx.doi.org/10.2174/1386207323999201029122301] [PMID: 33135607]
[73]
Zeng, X.C.; Li, X.S.; Wen, H. Telmisartan protects against microvascular dysfunction during myocardial ischemia/reperfusion injury by activation of peroxisome proliferator-activated receptor γ. BMC Cardiovasc. Disord., 2013, 13(1), 39.
[http://dx.doi.org/10.1186/1471-2261-13-39] [PMID: 23738781]
[74]
Nakamura, N. Ubiquitin system. Int. J. Mol. Sci., 2018, 19(4), E1080.
[http://dx.doi.org/10.3390/ijms19041080] [PMID: 29617326]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy