Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Natural Flavonoids in the Prevention and Treatment of Lung Cancer: A Pharmacological Aspect

Author(s): Rajat Nath, Chandrima Das, Sibashish Kityania, Deepa Nath, Subrata Das, Manabendra Dutta Choudhury, Jayanta Kumar Patra and Anupam Das Talukdar*

Volume 26, Issue 5, 2023

Published on: 02 September, 2022

Page: [863 - 879] Pages: 17

DOI: 10.2174/1386207325666220701121537

Price: $65

Abstract

Deadly disease cancer has many types; among them, lung cancer is responsible for the highest number of cancer mortality. Existing therapies as well as drugs for treating lung cancer are not effective and are often associated with innumerable side effects and toxicities. For these reasons, researchers have been working on developing novel anti-cancer medicines from plants and other natural sources that have a high safety profile. Natural flavonoids are a polyphenolic group of phytochemicals extracted from plants and other plant-derived compounds. Natural flavonoids are gaining popularity due to their unique and priceless medicinal properties, including anticancer properties. Several researchers have already declared that flavonoids possess the ability to treat different cancers, particularly lung cancer. The bioactivity of natural flavonoids is mainly due to their structural diversity. Natural flavonoids fight against lung cancer by regulating redox homeostasis, upregulating apoptosis, pro-apoptotic factors, and survival genes, arresting cell cycle progression, autophagy, reducing cell proliferation and invasiveness, maintaining inflammation response, downregulating anti-apoptotic factors, and targeting lung cancer signaling pathways. Flavonoids can act alone or synergistically with other agents to treat lung cancer. Due to these reasons, it is possible to use natural flavonoids as pharmaceutical leads to prevent and treat lung cancer.

Keywords: Cancer, lung cancer, natural products, flavonoids, pharmacology, phytochemicals.

[1]
Lotha, R.; Sivasubramanian, A. Flavonoids nutraceuticals in prevention and treatment of cancer: A review. Asian J. Pharm. Clin. Res., 2018, 11(1), 42-47.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i1.23410]
[2]
Ramchandani, S.; Naz, I.; Lee, J.H.; Khan, M.R.; Ahn, K.S. An overview of the potential antineoplastic effects of casticin. Molecules, 2020, 25(6), 1287.
[http://dx.doi.org/10.3390/molecules25061287] [PMID: 32178324]
[3]
Lavanya, V.; Ganapathy, D.; Visalakshi, R. Flavonoids used in the treatment of malignancy-A review. Drug Invention Today, 2019, 12(5), 1082-1085.
[4]
Rodríguez-García, C.; Sánchez-Quesada, C.; J. Gaforio, J. Dietary flavonoids as cancer chemopreventive agents: An updated review of human studies. Antioxidants, 2019, 8(5), 137.
[http://dx.doi.org/10.3390/antiox8050137] [PMID: 31109072]
[5]
Zanoaga, O.; Braicu, C.; Jurj, A.; Rusu, A.; Buiga, R.; Berindan-Neagoe, I. Progress in research on the role of flavonoids in lung cancer. Int. J. Mol. Sci., 2019, 20(17), 4291.
[http://dx.doi.org/10.3390/ijms20174291] [PMID: 31480720]
[6]
Batra, P.; Sharma, A. K. Anti-cancer potential of flavonoids: Recent trends and future perspectives. 3 Biotech 2013, 3(6), 439-459.
[7]
Rupasinghe, H.P.V. Special Issue “flavonoids and their disease prevention and treatment potential”: Recent advances and future perspectives. Molecules, 2020, 25(20), 4746.
[http://dx.doi.org/10.3390/molecules25204746] [PMID: 33081132]
[8]
Brodowska, K.M. Natural flavonoids: Classification, potential role, and application of flavonoid analogues. Eur. J. Biol. Res., 2017, 7(2), 108-123.
[9]
Costea, T.; Vlad, O.C.; Miclea, L-C.; Ganea, C. Szöllősi, J.; Mocanu, M-M. Alleviation of multidrug resistance by flavonoid and non-flavonoid compounds in breast, lung, colorectal and prostate cancer. Int. J. Mol. Sci., 2020, 21(2), 401.
[http://dx.doi.org/10.3390/ijms21020401] [PMID: 31936346]
[10]
Surien, O.; Ghazali, A.R.; Masre, S.F. Lung cancers and the roles of natural compounds as potential chemotherapeutic and chemopreventive agents. Biomed. Pharmacol. J., 2019, 12(1), 85-98.
[http://dx.doi.org/10.13005/bpj/1617]
[11]
Berk, Ş.; Kaya, S.; Akkol, E.K.; Bardakçı, H. A comprehensive and current review on the role of flavonoids in lung cancer-Experimental and theoretical approaches. Phytomedicine, 2022, 98, 153938.
[http://dx.doi.org/10.1016/j.phymed.2022.153938] [PMID: 35123170]
[12]
Ettinger, D.S.; Wood, D.E.; Aisner, D.L.; Akerley, W.; Bauman, J.R.; Bharat, A.; Bruno, D.S.; Chang, J.Y.; Chirieac, L.R.; D’Amico, T.A.; Dilling, T.J.; Dowell, J.; Gettinger, S.; Gubens, M.A.; Hegde, A.; Hennon, M.; Lackner, R.P.; Lanuti, M.; Leal, T.A.; Lin, J.; Loo, B.W., Jr; Lovly, C.M.; Martins, R.G.; Massarelli, E.; Morgensztern, D.; Ng, T.; Otterson, G.A.; Patel, S.P.; Riely, G.J.; Schild, S.E.; Shapiro, T.A.; Singh, A.P.; Stevenson, J.; Tam, A.; Yanagawa, J.; Yang, S.C.; Gregory, K.M.; Hughes, M. NCCN guidelines insights: Non–small cell lung cancer, version 2.2021: Featured updates to the NCCN guidelines. J. Natl. Compr. Canc. Netw., 2021, 19(3), 254-266.
[http://dx.doi.org/10.6004/jnccn.2021.0013] [PMID: 33668021]
[13]
Zhang, W.L.; Zhao, Y.N.; Shi, Z.Z.; Cong, D.; Bai, Y.S. Lutein inhibits cell growth and activates apoptosis via the PI3K/AKT/mTOR signaling pathway in A549 human non-small-cell lung cancer cells. J. Environ. Pathol. Toxicol. Oncol., 2018, 37(4), 341-350.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2018027418] [PMID: 30806240]
[14]
Zhou, Z.; Tang, M.; Liu, Y.; Zhang, Z.; Lu, R.; Lu, J. Apigenin inhibits cell proliferation, migration, and invasion by targeting Akt in the A549 human lung cancer cell line. Anticancer Drugs, 2017, 28(4), 446-456.
[http://dx.doi.org/10.1097/CAD.0000000000000479] [PMID: 28125432]
[15]
Chang, H.L.; Chang, Y.M.; Lai, S.C.; Chen, K.M.; Wang, K.C.; Chiu, T.T.; Chang, F.H.; Hsu, L.S. Naringenin inhibits migration of lung cancer cells via the inhibition of matrix metalloproteinases-2 and -9. Exp. Ther. Med., 2017, 13(2), 739-744.
[http://dx.doi.org/10.3892/etm.2016.3994] [PMID: 28352360]
[16]
Sonoki, H.; Tanimae, A.; Endo, S.; Matsunaga, T.; Furuta, T.; Ichihara, K.; Ikari, A. Kaempherol and luteolin decrease claudin-2 expression mediated by inhibition of STAT3 in lung adenocarcinoma A549 cells. Nutrients, 2017, 9(6), E597.
[http://dx.doi.org/10.3390/nu9060597] [PMID: 28608828]
[17]
Cao, P.; Liu, B.; Du, F.; Li, D.; Wang, Y.; Yan, X.; Li, X.; Li, Y. Scutellarin suppresses proliferation and promotes apoptosis in A549 lung adenocarcinoma cells via AKT/mTOR/4EBP1 and STAT3 pathways. Thorac. Cancer, 2019, 10(3), 492-500.
[http://dx.doi.org/10.1111/1759-7714.12962] [PMID: 30666790]
[18]
Zhang, Y.; Zhang, R.; Ni, H. Eriodictyol exerts potent anticancer activity against A549 human lung cancer cell line by inducing mitochondrial-mediated apoptosis, G2/M cell cycle arrest and inhibition of m-TOR/PI3K/Akt signalling pathway. Arch. Med. Sci., 2019, 16(2), 446-452.
[http://dx.doi.org/10.5114/aoms.2019.85152] [PMID: 32190156]
[19]
Chang, J.H.; Cheng, C.W.; Yang, Y.C.; Chen, W.S.; Hung, W.Y.; Chow, J.M.; Chen, P.S.; Hsiao, M.; Lee, W.J.; Chien, M.H. Downregulating CD26/DPPIV by apigenin modulates the interplay between Akt and Snail/Slug signaling to restrain metastasis of lung cancer with multiple EGFR statuses. J. Exp. Clin. Cancer Res., 2018, 37(1), 199.
[http://dx.doi.org/10.1186/s13046-018-0869-1] [PMID: 30134935]
[20]
Su, G.; Chen, H.; Sun, X. Baicalein suppresses non small cell lung cancer cell proliferation, invasion and Notch signaling pathway. Cancer Biomark., 2018, 22(1), 13-18.
[http://dx.doi.org/10.3233/CBM-170673] [PMID: 29614624]
[21]
Bhardwaj, V.; Mandal, A.K.A. Next-generation sequencing reveals the role of epigallocatechin-3-gallate in regulating putative novel and known micrornas which target the MAPK pathway in non-small-cell lung cancer A549 cells. Molecules, 2019, 24(2), E368.
[http://dx.doi.org/10.3390/molecules24020368] [PMID: 30669618]
[22]
Lu, C.; Wang, H.; Chen, S.; Yang, R.; Li, H.; Zhang, G. Baicalein inhibits cell growth and increases cisplatin sensitivity of A549 and H460 cells via miR-424-3p and targeting PTEN/PI3K/Akt pathway. J. Cell. Mol. Med., 2018, 22(4), 2478-2487.
[http://dx.doi.org/10.1111/jcmm.13556] [PMID: 29392841]
[23]
Han, X.; Liu, C.F.; Gao, N.; Zhao, J.; Xu, J. RETRACTED: Kaempferol suppresses proliferation but increases apoptosis and autophagy by up-regulating microRNA-340 in human lung cancer cells. Biomed. Pharmacother., 2018, 108, 809-816.
[http://dx.doi.org/10.1016/j.biopha.2018.09.087] [PMID: 30253373]
[24]
Chen, M.; Peng, W.; Hu, S.; Deng, J. miR-126/VCAM-1 regulation by naringin suppresses cell growth of human non-small cell lung cancer. Oncol. Lett., 2018, 16(4), 4754-4760.
[http://dx.doi.org/10.3892/ol.2018.9204] [PMID: 30197681]
[25]
Ren, Z.; Tong, H.; Chen, L.; Yao, Y.; Huang, S.; Zhu, F.; Liu, W. miR-211 and miR-429 are involved in emodin’s anti-proliferative effects on lung cancer. Int. J. Clin. Exp. Med., 2016, 9(2)
[26]
Singh, T.; Prasad, R.; Katiyar, S.K. Therapeutic intervention of silymarin on the migration of non-small cell lung cancer cells is associated with the axis of multiple molecular targets including class 1 HDACs, ZEB1 expression, and restoration of miR-203 and E-cadherin expression. Am. J. Cancer Res., 2016, 6(6), 1287-1301.
[PMID: 27429844]
[27]
Hazafa, A.; Rehman, K.U.; Jahan, N.; Jabeen, Z. The role of polyphenol (Flavonoids) compounds in the treatment of cancer cells. Nutr. Cancer, 2020, 72(3), 386-397.
[http://dx.doi.org/10.1080/01635581.2019.1637006] [PMID: 31287738]
[28]
Abotaleb, M.; Samuel, S.M.; Varghese, E.; Varghese, S.; Kubatka, P.; Liskova, A.; Büsselberg, D. Flavonoids in cancer and apoptosis. Cancers (Basel), 2018, 11(1), E28.
[http://dx.doi.org/10.3390/cancers11010028] [PMID: 30597838]
[29]
Mutha, R.E.; Tatiya, A.U.; Surana, S.J. Flavonoids as natural phenolic compounds and their role in therapeutics: An overview. Futur. J. Pharm. Sci., 2021, 7(1), 25.
[http://dx.doi.org/10.1186/s43094-020-00161-8] [PMID: 33495733]
[30]
Kma, T.J.B.L. Flavonoids and radiation response of cancer cells: A therapeutic prospective. NEHU J., 2019, 17(1), 22-29.
[31]
Sheikh, I.; Sharma, V.; Tuli, H.S.; Aggarwal, D.; Sankhyan, A.; Vyas, P.; Sharma, A.K.; Bishayee, A. Cancer chemoprevention by flavonoids, dietary polyphenols and terpenoids. Biointerface Res. Appl. Chem., 2020, 11(1), 8502-8537.
[http://dx.doi.org/10.33263/BRIAC111.85028537]
[32]
Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as anticancer agents. Nutrients, 2020, 12(2), E457.
[http://dx.doi.org/10.3390/nu12020457] [PMID: 32059369]
[33]
Gibellini, L.; Pinti, M.; Nasi, M.; Montagna, J.P.; De Biasi, S.; Roat, E.; Bertoncelli, L.; Cooper, E.L.; Cossarizza, A. Quercetin and cancer chemoprevention. Evid. Based Complement. Alternat. Med., 2011, 2011, 591356.
[http://dx.doi.org/10.1093/ecam/neq053] [PMID: 21792362]
[34]
Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.T.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients, 2016, 8(3), 167.
[http://dx.doi.org/10.3390/nu8030167] [PMID: 26999194]
[35]
Rizeq, B.; Gupta, I.; Ilesanmi, J.; AlSafran, M.; Rahman, M.M.; Ouhtit, A. The power of phytochemicals combination in cancer chemoprevention. J. Cancer, 2020, 11(15), 4521-4533.
[http://dx.doi.org/10.7150/jca.34374] [PMID: 32489469]
[36]
Hussain, Y.; Mirzaei, S.; Ashrafizadeh, M.; Zarrabi, A.; Hushmandi, K.; Khan, H.; Daglia, M. Quercetin and its nano-scale delivery systems in prostate cancer therapy: Paving the way for cancer elimination and reversing chemoresistance. Cancers (Basel), 2021, 13(7), 1602.
[http://dx.doi.org/10.3390/cancers13071602] [PMID: 33807174]
[37]
Jeong, J.H.; An, J.Y.; Kwon, Y.T.; Rhee, J.G.; Lee, Y.J. Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression. J. Cell. Biochem., 2009, 106(1), 73-82.
[http://dx.doi.org/10.1002/jcb.21977] [PMID: 19009557]
[38]
Xingyu, Z.; Peijie, M.; Dan, P.; Youg, W.; Daojun, W.; Xinzheng, C.; Xijun, Z.; Yangrong, S. Quercetin suppresses lung cancer growth by targeting Aurora B kinase. Cancer Med., 2016, 5(11), 3156-3165.
[http://dx.doi.org/10.1002/cam4.891] [PMID: 27704720]
[39]
Sonoki, H.; Sato, T.; Endo, S.; Matsunaga, T.; Yamaguchi, M.; Yamazaki, Y.; Sugatani, J.; Ikari, A. Quercetin decreases claudin-2 expression mediated by up-regulation of microRNA miR-16 in lung adenocarcinoma A549 cells. Nutrients, 2015, 7(6), 4578-4592.
[http://dx.doi.org/10.3390/nu7064578] [PMID: 26061016]
[40]
Guo, H.; Ding, H.; Tang, X.; Liang, M.; Li, S.; Zhang, J.; Cao, J. Quercetin induces pro-apoptotic autophagy via SIRT1/AMPK signaling pathway in human lung cancer cell lines A549 and H1299 in vitro. Thorac. Cancer, 2021, 12(9), 1415-1422.
[http://dx.doi.org/10.1111/1759-7714.13925] [PMID: 33709560]
[41]
Kashyap, D.; Garg, V.K.; Tuli, H.S.; Yerer, M.B.; Sak, K.; Sharma, A.K.; Kumar, M.; Aggarwal, V.; Sandhu, S.S. Fisetin and quercetin: Promising flavonoids with chemopreventive potential. Biomolecules, 2019, 9(5), E174.
[http://dx.doi.org/10.3390/biom9050174] [PMID: 31064104]
[42]
Dong, Y.; Yang, J.; Yang, L.; Li, P. Quercetin inhibits the proliferation and metastasis of human non-small cell lung cancer cell line: The key role of src-mediated fibroblast growth factor-inducible 14 (Fn14)/nuclear factor kappa B (NF-κB) pathway. Med. Sci. Monit., 2020, 26, e920537.
[http://dx.doi.org/10.12659/MSM.920537] [PMID: 32225128]
[43]
Yousuf, M.; Khan, P.; Shamsi, A.; Shahbaaz, M.; Hasan, G.M.; Haque, Q.M.R.; Christoffels, A.; Islam, A.; Hassan, M.I. Inhibiting CDK6 activity by quercetin is an attractive strategy for cancer therapy. ACS Omega, 2020, 5(42), 27480-27491.
[http://dx.doi.org/10.1021/acsomega.0c03975] [PMID: 33134711]
[44]
Sun, X.; Li, Y.; Xu, L.; Shi, X.; Xu, M.; Tao, X.; Yang, G. Heparin coated meta-organic framework co-delivering doxorubicin and quercetin for effective chemotherapy of lung carcinoma. J. Int. Med. Res., 2020, 48(2), 300060519897185.
[http://dx.doi.org/10.1177/0300060519897185] [PMID: 32054349]
[45]
Sak, K.; Lust, H.; Kase, M.; Jaal, J. Cytotoxic action of methylquercetins in human lung adenocarcinoma cells. Oncol. Lett., 2018, 15(2), 1973-1978.
[PMID: 29399199]
[46]
Pratheeshkumar, P.; Son, Y.O.; Divya, S.P.; Wang, L.; Turcios, L.; Roy, R.V.; Hitron, J.A.; Kim, D.; Dai, J.; Asha, P.; Zhang, Z.; Shi, X. Quercetin inhibits Cr(VI)-induced malignant cell transformation by targeting miR-21-PDCD4 signaling pathway. Oncotarget, 2016, 8(32), 52118-52131.
[http://dx.doi.org/10.18632/oncotarget.10130] [PMID: 28881718]
[47]
Hung, T.W.; Chen, P.N.; Wu, H.C.; Wu, S.W.; Tsai, P.Y.; Hsieh, Y.S.; Chang, H.R. Kaempferol inhibits the invasion and migration of renal cancer cells through the downregulation of AKT and FAK pathways. Int. J. Med. Sci., 2017, 14(10), 984-993.
[http://dx.doi.org/10.7150/ijms.20336] [PMID: 28924370]
[48]
Cid-Ortega, S.; Monroy-Rivera, J.A. Extraction of kaempferol and its glycosides using supercritical fluids from plant sources: A review. Food Technol. Biotechnol., 2018, 56(4), 480-493.
[http://dx.doi.org/10.17113/ftb.56.04.18.5870] [PMID: 30923445]
[49]
Hang, M.; Zhao, F.; Chen, S-B.; Sun, Q.; Zhang, C-X. Kaempferol modulates the metastasis of human non-small cell lung cancer cells by inhibiting epithelial-mesenchymal transition. Bangladesh J. Pharmacol., 2015, 10(2), 267-270.
[http://dx.doi.org/10.3329/bjp.v10i2.21739]
[50]
Jo, E.; Park, S.J.; Choi, Y.S.; Jeon, W-K.; Kim, B-C. Kaempferol suppresses transforming growth factor-β1-induced epithelial-to-mesenchymal transition and migration of A549 lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at threonine-179. Neoplasia, 2015, 17(7), 525-537.
[http://dx.doi.org/10.1016/j.neo.2015.06.004] [PMID: 26297431]
[51]
Leung, H.W-C.; Lin, C-J.; Hour, M-J.; Yang, W-H.; Wang, M-Y.; Lee, H-Z. Kaempferol induces apoptosis in human lung non-small carcinoma cells accompanied by an induction of antioxidant enzymes. Food Chem. Toxicol., 2007, 45(10), 2005-2013.
[http://dx.doi.org/10.1016/j.fct.2007.04.023] [PMID: 17583406]
[52]
Shi, B.; Wang, L-F.; Meng, W-S.; Chen, L.; Meng, Z-L. Carnosic acid and fisetin combination therapy enhances inhibition of lung cancer through apoptosis induction. Int. J. Oncol., 2017, 50(6), 2123-2135.
[http://dx.doi.org/10.3892/ijo.2017.3970] [PMID: 28440400]
[53]
Imran, M.; Saeed, F.; Gilani, S.A.; Shariati, M.A.; Imran, A.; Afzaal, M.; Atif, M.; Tufail, T.; Anjum, F.M. Fisetin: An anticancer perspective. Food Sci. Nutr., 2020, 9(1), 3-16.
[http://dx.doi.org/10.1002/fsn3.1872] [PMID: 33473265]
[54]
Kang, K.A.; Piao, M.J.; Madduma Hewage, S.R.K.; Ryu, Y.S.; Oh, M.C.; Kwon, T.K.; Chae, S.; Hyun, J.W. Fisetin induces apoptosis and endoplasmic reticulum stress in human non-small cell lung cancer through inhibition of the MAPK signaling pathway. Tumour Biol., 2016, 37(7), 9615-9624.
[http://dx.doi.org/10.1007/s13277-016-4864-x] [PMID: 26797785]
[55]
Klimaszewska-Wisniewska, A.; Halas-Wisniewska, M.; Tadrowski, T.; Gagat, M.; Grzanka, D.; Grzanka, A. Paclitaxel and the dietary flavonoid fisetin: A synergistic combination that induces mitotic catastrophe and autophagic cell death in A549 non-small cell lung cancer cells. Cancer Cell Int., 2016, 16(1), 10.
[http://dx.doi.org/10.1186/s12935-016-0288-3] [PMID: 26884726]
[56]
Khan, N.; Afaq, F.; Khusro, F.H.; Adhami, V.M.; Suh, Y.; Mukhtar, H. Dual inhibition of PI3K/AKT and mTOR signaling in human non-small cell lung cancer cells by a dietary flavonoid fisetin. Int. J. Cancer, 2012, 130(7), 1695.
[http://dx.doi.org/10.1002/ijc.26178] [PMID: 21618507]
[57]
Wang, J.; Huang, S. Fisetin inhibits the growth and migration in the A549 human lung cancer cell line via the ERK1/2 pathway. Exp. Ther. Med., 2018, 15(3), 2667-2673.
[PMID: 29467859]
[58]
Kang, K.A.; Piao, M.J.; Hyun, J.W. Fisetin induces apoptosis in human nonsmall lung cancer cells via a mitochondria-mediated pathway. In Vitro Cell. Dev. Biol. Anim., 2015, 51(3), 300-309.
[http://dx.doi.org/10.1007/s11626-014-9830-6] [PMID: 25381036]
[59]
Imran, M.; Aslam Gondal, T.; Atif, M.; Shahbaz, M.; Batool Qaisarani, T.; Hanif Mughal, M.; Salehi, B.; Martorell, M.; Sharifi-Rad, J. Apigenin as an anticancer agent. Phytother. Res., 2020, 34(8), 1812-1828.
[http://dx.doi.org/10.1002/ptr.6647] [PMID: 32059077]
[60]
Chen, M.; Wang, X.; Zha, D.; Cai, F.; Zhang, W.; He, Y.; Huang, Q.; Zhuang, H.; Hua, Z-C. Apigenin potentiates TRAIL therapy of non-small cell lung cancer via upregulating DR4/DR5 expression in a p53-dependent manner. Sci. Rep., 2016, 6(1), 35468.
[http://dx.doi.org/10.1038/srep35468] [PMID: 27752089]
[61]
Li, Y.; Chen, X.; He, W.; Xia, S.; Jiang, X.; Li, X.; Bai, J.; Li, N.; Chen, L.; Yang, B. Apigenin enhanced antitumor effect of cisplatin in lung cancer via inhibition of cancer stem cells. Nutr. Cancer, 2021, 73(8), 1489-1497.
[http://dx.doi.org/10.1080/01635581.2020.1802494] [PMID: 32757802]
[62]
Jiang, Z-B.; Wang, W-J.; Xu, C.; Xie, Y-J.; Wang, X-R.; Zhang, Y-Z.; Huang, J-M.; Huang, M.; Xie, C.; Liu, P.; Fan, X.X.; Ma, Y.P.; Yan, P.Y.; Liu, L.; Yao, X.J.; Wu, Q.B.; Lai-Han Leung, E. Luteolin and its derivative apigenin suppress the inducible PD-L1 expression to improve anti-tumor immunity in KRAS-mutant lung cancer. Cancer Lett., 2021, 515, 36-48.
[http://dx.doi.org/10.1016/j.canlet.2021.05.019] [PMID: 34052328]
[63]
Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.A.; Khan, I.A.; Imran, A.; Orhan, I.E.; Rizwan, M.; Atif, M.; Gondal, T.A.; Mubarak, M.S. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother., 2019, 112, 108612.
[http://dx.doi.org/10.1016/j.biopha.2019.108612] [PMID: 30798142]
[64]
Masraksa, W.; Tanasawet, S.; Hutamekalin, P.; Wongtawatchai, T.; Sukketsiri, W. Luteolin attenuates migration and invasion of lung cancer cells via suppressing focal adhesion kinase and non-receptor tyrosine kinase signaling pathway. Nutr. Res. Pract., 2020, 14(2), 127-133.
[http://dx.doi.org/10.4162/nrp.2020.14.2.127] [PMID: 32256987]
[65]
Wu, B.; Xiong, J.; Zhou, Y.; Wu, Y.; Song, Y.; Wang, N.; Chen, L.; Zhang, J. Luteolin enhances TRAIL sensitivity in non-small cell lung cancer cells through increasing DR5 expression and Drp1-mediated mitochondrial fission. Arch. Biochem. Biophys., 2020, 692, 108539.
[http://dx.doi.org/10.1016/j.abb.2020.108539] [PMID: 32777260]
[66]
Zhang, M.; Wang, R.; Tian, J.; Song, M.; Zhao, R.; Liu, K.; Zhu, F.; Shim, J.H.; Dong, Z.; Lee, M.H. Targeting LIMK1 with luteolin inhibits the growth of lung cancer in vitro and in vivo. J. Cell. Mol. Med., 2021, 25(12), 5560-5571.
[http://dx.doi.org/10.1111/jcmm.16568] [PMID: 33982869]
[67]
Wang, Y.; Zhang, Y.; Chen, X.; Hong, Y.; Wu, Z. [Combined treatment with myo-inositol and luteolin selectively suppresses growth of human lung cancer A549 cells possibly by suppressing activation of PDK1 and Akt]. Nan Fang Yi Ke Da Xue Xue Bao, 2018, 38(11), 1378-1383. [Combined treatment with myo-inositol and luteolin selectively suppresses growth of human lung cancer A549 cells possibly by suppressing activation of PDK1 and Akt].
[PMID: 30514689]
[68]
Jiang, Z.Q.; Li, M.H.; Qin, Y.M.; Jiang, H.Y.; Zhang, X.; Wu, M.H. Luteolin inhibits tumorigenesis and induces apoptosis of non-small cell lung cancer cells via regulation of MicroRNA-34a-5p. Int. J. Mol. Sci., 2018, 19(2), E447.
[http://dx.doi.org/10.3390/ijms19020447] [PMID: 29393891]
[69]
Yu, Q.; Zhang, M.; Ying, Q.; Xie, X.; Yue, S.; Tong, B.; Wei, Q.; Bai, Z.; Ma, L. Decrease of AIM2 mediated by luteolin contributes to non-small cell lung cancer treatment. Cell Death Dis., 2019, 10(3), 218.
[http://dx.doi.org/10.1038/s41419-019-1447-y] [PMID: 30833546]
[70]
Tan, Z.; Sun, Y.; Liu, M.; Xia, L.; Cao, F.; Qi, Y.; Song, Y. Retracted: Naringenin inhibits cell migration, invasion, and tumor growth by regulating circFOXM1/miR-3619-5p/SPAG5 axis in lung cancer. Cancer Biother. Radiopharm. 2020, cbr.2019.3520.
[http://dx.doi.org/10.1089/cbr.2019.3520] [PMID: 32598178]
[71]
Lu, W.L.; Yu, C.R.; Lien, H.M.; Sheu, G.T.; Cherng, S.H. Cytotoxicity of naringenin induces Bax-mediated mitochondrial apoptosis in human lung adenocarcinoma A549 cells. Environ. Toxicol., 2020, 35(12), 1386-1394.
[http://dx.doi.org/10.1002/tox.23003] [PMID: 32667124]
[72]
Shi, X.; Luo, X.; Chen, T.; Guo, W.; Liang, C.; Tang, S.; Mo, J. Naringenin inhibits migration, invasion, induces apoptosis in human lung cancer cells and arrests tumour progression in vitro. J. Cell. Mol. Med., 2021, 25(5), 2563-2571.
[http://dx.doi.org/10.1111/jcmm.16226] [PMID: 33523599]
[73]
Wang, Z.; Liu, L.; Yin, W.; Liu, Z.; Shi, L.; Tang, M. A novel drug delivery system: The encapsulation of naringenin in metal-organic frameworks into liposomes. AAPS PharmSciTech, 2021, 22(2), 61.
[http://dx.doi.org/10.1208/s12249-021-01927-w] [PMID: 33527250]
[74]
Wang, Y.; Liu, S.; Dong, W.; Qu, X.; Huang, C.; Yan, T.; Du, J. Combination of hesperetin and platinum enhances anticancer effect on lung adenocarcinoma. Biomed. Pharmacother., 2019, 113, 108779.
[http://dx.doi.org/10.1016/j.biopha.2019.108779] [PMID: 30889488]
[75]
Elango, R.; Athinarayanan, J.; Subbarayan, V.P.; Lei, D.K.Y.; Alshatwi, A.A. Hesperetin induces an apoptosis-triggered extrinsic pathway and a p53- independent pathway in human lung cancer H522 cells. J. Asian Nat. Prod. Res., 2018, 20(6), 559-569.
[http://dx.doi.org/10.1080/10286020.2017.1327949] [PMID: 28537448]
[76]
Zhou, H.; Manthey, J.; Lioutikova, E.; Yang, W.; Yoshigoe, K.; Yang, M.Q.; Wang, H. The up-regulation of Myb may help mediate EGCG inhibition effect on mouse lung adenocarcinoma. Hum. Genomics, 2016, 10(Suppl. 2), 19.
[http://dx.doi.org/10.1186/s40246-016-0072-4]
[77]
Zhang, L.; Xie, J.; Gan, R.; Wu, Z.; Luo, H.; Chen, X.; Lu, Y.; Wu, L.; Zheng, D. Synergistic inhibition of lung cancer cells by EGCG and NF-κB inhibitor BAY11-7082. J. Cancer, 2019, 10(26), 6543-6556.
[http://dx.doi.org/10.7150/jca.34285] [PMID: 31777584]
[78]
Zhang, L.; Chen, W.; Tu, G.; Chen, X.; Lu, Y.; Wu, L.; Zheng, D. Enhanced chemotherapeutic efficacy of PLGA-encapsulated epigallocatechin gallate (EGCG) against human lung cancer. Int. J. Nanomedicine, 2020, 15, 4417-4429.
[PMID: 32606686]
[79]
Gu, J.J.; Qiao, K.S.; Sun, P.; Chen, P.; Li, Q. Study of EGCG induced apoptosis in lung cancer cells by inhibiting PI3K/Akt signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(14), 4557-4563.
[PMID: 30058690]
[80]
Meng, J.; Chang, C.; Chen, Y.; Bi, F.; Ji, C.; Liu, W. EGCG overcomes gefitinib resistance by inhibiting autophagy and augmenting cell death through targeting ERK phosphorylation in NSCLC. OncoTargets Ther., 2019, 12, 6033-6043.
[http://dx.doi.org/10.2147/OTT.S209441] [PMID: 31440060]
[81]
Chen, B.H.; Hsieh, C.H.; Tsai, S.Y.; Wang, C.Y.; Wang, C.C. Anticancer effects of epigallocatechin-3-gallate nanoemulsion on lung cancer cells through the activation of AMP-activated protein kinase signaling pathway. Sci. Rep., 2020, 10(1), 5163.
[http://dx.doi.org/10.1038/s41598-020-62136-2] [PMID: 32198390]
[82]
Jiang, P.; Xu, C.; Zhang, P.; Ren, J.; Mageed, F.; Wu, X.; Chen, L.; Zeb, F.; Feng, Q.; Li, S. Epigallocatechin-3-gallate inhibits self-renewal ability of lung cancer stem like-cells through inhibition of CLOCK. Int. J. Mol. Med., 2020, 46(6), 2216-2224.
[http://dx.doi.org/10.3892/ijmm.2020.4758] [PMID: 33125096]
[83]
Wang, J.; Sun, P.; Wang, Q.; Zhang, P.; Wang, Y.; Zi, C.; Wang, X.; Sheng, J. (-)-Epigallocatechin-3-gallate derivatives combined with cisplatin exhibit synergistic inhibitory effects on non-small-cell lung cancer cells. Cancer Cell Int., 2019, 19(1), 266.
[http://dx.doi.org/10.1186/s12935-019-0981-0] [PMID: 31636509]
[84]
Huang, J.; Chen, S.; Shi, Y.; Li, C.H.; Wang, X.J.; Li, F.J.; Wang, C.H.; Meng, Q.H.; Zhong, J.N.; Liu, M.; Wang, Z.M. Epigallocatechin gallate from green tea exhibits potent anticancer effects in A-549 non-small lung cancer cells by inducing apoptosis, cell cycle arrest and inhibition of cell migration. J. BUON, 2017, 22(6), 1422-1427.
[PMID: 29332333]
[85]
Guo, J.; Wang, Q.; Zhang, Y.; Sun, W.; Zhang, S.; Li, Y.; Wang, J.; Bao, Y. Functional daidzein enhances the anticancer effect of topotecan and reverses BCRP-mediated drug resistance in breast cancer. Pharmacol. Res., 2019, 147, 104387.
[http://dx.doi.org/10.1016/j.phrs.2019.104387] [PMID: 31408695]
[86]
Bie, B.; Sun, J.; Guo, Y.; Li, J.; Jiang, W.; Yang, J.; Huang, C.; Li, Z. Baicalein: A review of its anti-cancer effects and mechanisms in Hepatocellular Carcinoma. Biomed. Pharmacother., 2017, 93, 1285-1291.
[http://dx.doi.org/10.1016/j.biopha.2017.07.068] [PMID: 28747003]
[87]
Liu, H.; Dong, Y.; Gao, Y.; Du, Z.; Wang, Y.; Cheng, P.; Chen, A.; Huang, H. The fascinating effects of baicalein on cancer: A review. Int. J. Mol. Sci., 2016, 17(10), E1681.
[http://dx.doi.org/10.3390/ijms17101681] [PMID: 27735841]
[88]
Deng, X.; Liu, J.; Liu, L.; Sun, X.; Huang, J.; Dong, J. Drp1-mediated mitochondrial fission contributes to baicalein-induced apoptosis and autophagy in lung cancer via activation of AMPK signaling pathway. Int. J. Biol. Sci., 2020, 16(8), 1403-1416.
[http://dx.doi.org/10.7150/ijbs.41768] [PMID: 32210728]
[89]
Yu, M.; Qi, B.; Xiaoxiang, W.; Xu, J.; Liu, X. Baicalein increases cisplatin sensitivity of A549 lung adenocarcinoma cells via PI3K/Akt/NF-κB pathway. Biomed. Pharmacother., 2017, 90, 677-685.
[http://dx.doi.org/10.1016/j.biopha.2017.04.001] [PMID: 28415048]
[90]
Cathcart, M.C.; Useckaite, Z.; Drakeford, C.; Semik, V.; Lysaght, J.; Gately, K.; O’Byrne, K.J.; Pidgeon, G.P. Anti-cancer effects of baicalein in non-small cell lung cancer in-vitro and in-vivo. BMC Cancer, 2016, 16(1), 707.
[http://dx.doi.org/10.1186/s12885-016-2740-0] [PMID: 27586635]
[91]
Kiartivich, S.; Wei, Y.; Liu, J.; Soiampornkul, R.; Li, M.; Zhang, H.; Dong, J. Regulation of cytotoxicity and apoptosis-associated pathways contributes to the enhancement of efficacy of cisplatin by baicalein adjuvant in human A549 lung cancer cells. Oncol. Lett., 2017, 13(4), 2799-2804.
[http://dx.doi.org/10.3892/ol.2017.5746] [PMID: 28454469]
[92]
Zhao, Z.; Liu, B.; Sun, J.; Lu, L.; Liu, L.; Qiu, J.; Li, Q.; Yan, C.; Jiang, S.; Mohammadtursun, N.; Ma, W.; Li, M.; Dong, J.; Gong, W. Baicalein inhibits orthotopic human non-small cell lung cancer xenografts via Src/Id1 pathway. Evid. Based Complement. Alternat. Med., 2019, 2019, 9806062.
[http://dx.doi.org/10.1155/2019/9806062] [PMID: 30949224]
[93]
Jaiswal, N.; Akhtar, J.; Singh, S.P.; Ahsan, F. An overview on genistein and its various formulations. Drug Res. (Stuttg.), 2019, 69(6), 305-313.
[http://dx.doi.org/10.1055/a-0797-3657] [PMID: 30517965]
[94]
Spagnuolo, C.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Sureda, A.; Nabavi, S.F.; Devi, K.P.; Loizzo, M.R.; Tundis, R.; Nabavi, S.M. Genistein and cancer: Current status, challenges, and future directions. Adv. Nutr., 2015, 6(4), 408-419.
[http://dx.doi.org/10.3945/an.114.008052] [PMID: 26178025]
[95]
Yang, Y.; Zang, A.; Jia, Y.; Shang, Y.; Zhang, Z.; Ge, K.; Zhang, J.; Fan, W.; Wang, B. Genistein inhibits A549 human lung cancer cell proliferation via miR-27a and MET signaling. Oncol. Lett., 2016, 12(3), 2189-2193.
[http://dx.doi.org/10.3892/ol.2016.4817] [PMID: 27602162]
[96]
Zhang, L.; Ma, X.; Dong, Y. Effect of genistein on apoptosis of lung adenocarcinoma A549 cells and expression of apoptosis factors. J. BUON, 2018, 23(3), 641-646.
[PMID: 30003731]
[97]
Zhang, J.; Su, H.; Li, Q.; Li, J.; Zhao, Q. Genistein decreases A549 cell viability via inhibition of the PI3K/AKT/HIF 1α/VEGF and NF κB/COX 2 signaling pathways. Mol. Med. Rep., 2017, 15(4), 2296-2302.
[http://dx.doi.org/10.3892/mmr.2017.6260] [PMID: 28259980]
[98]
Zhang, Z.; Jin, F.; Lian, X.; Li, M.; Wang, G.; Lan, B.; He, H.; Liu, G.D.; Wu, Y.; Sun, G.; Xu, C.X.; Yang, Z.Z. Genistein promotes ionizing radiation-induced cell death by reducing cytoplasmic Bcl-xL levels in non-small cell lung cancer. Sci. Rep., 2018, 8(1), 328.
[http://dx.doi.org/10.1038/s41598-017-18755-3] [PMID: 29321496]
[99]
Tian, T.; Li, J.; Li, B.; Wang, Y.; Li, M.; Ma, D.; Wang, X. Genistein exhibits anti-cancer effects via down-regulating FoxM1 in H446 small-cell lung cancer cells. Tumour Biol., 2014, 35(5), 4137-4145.
[http://dx.doi.org/10.1007/s13277-013-1542-0] [PMID: 24379139]
[100]
Liu, D.; Yan, L.; Wang, L.; Tai, W.; Wang, W.; Yang, C. Genistein enhances the effect of cisplatin on the inhibition of non-small cell lung cancer A549 cell growth in vitro and in vivo. Oncol. Lett., 2014, 8(6), 2806-2810.
[http://dx.doi.org/10.3892/ol.2014.2597] [PMID: 25364470]
[101]
Zhu, H.; Cheng, H.; Ren, Y.; Liu, Z.G.; Zhang, Y.F.; De Luo, B. Synergistic inhibitory effects by the combination of gefitinib and genistein on NSCLC with acquired drug-resistance in vitro and in vivo. Mol. Biol. Rep., 2012, 39(4), 4971-4979.
[http://dx.doi.org/10.1007/s11033-011-1293-1] [PMID: 22160570]
[102]
Thangavel, P.; Puga-Olguín, A.; Rodríguez-Landa, J.F.; Zepeda, R.C. Genistein as potential therapeutic candidate for menopausal symptoms and other related diseases. Molecules, 2019, 24(21), E3892.
[http://dx.doi.org/10.3390/molecules24213892] [PMID: 31671813]
[103]
Pal, H.C.; Sharma, S.; Strickland, L.R.; Agarwal, J.; Athar, M.; Elmets, C.A.; Afaq, F. Delphinidin reduces cell proliferation and induces apoptosis of non-small-cell lung cancer cells by targeting EGFR/VEGFR2 signaling pathways. PLoS One, 2013, 8(10), e77270.
[http://dx.doi.org/10.1371/journal.pone.0077270] [PMID: 24124611]
[104]
Kim, M.H.; Jeong, Y.J.; Cho, H.J.; Hoe, H.S.; Park, K.K.; Park, Y.Y.; Choi, Y.H.; Kim, C.H.; Chang, H.W.; Park, Y.J.; Chung, I.K.; Chang, Y.C. Delphinidin inhibits angiogenesis through the suppression of HIF-1α and VEGF expression in A549 lung cancer cells. Oncol. Rep., 2017, 37(2), 777-784.
[http://dx.doi.org/10.3892/or.2016.5296] [PMID: 27959445]
[105]
Mehdi, S.H.; Zafaryab, M.; Nafees, S.; Khan, A.; Ahmad, I.; Hafeez, Z.B.; Rizvi, M.A. Chrysin sensitizes human lung cancer cells to tumour necrosis factor related apoptosis-inducing ligand (TRAIL) mediated apoptosis. Asian Pacific J. Cancer Biol., 2019, 4(2), 27-33.
[http://dx.doi.org/10.31557/apjcb.2019.4.2.27-33]
[106]
Fang, D.; Xiong, Z.; Xu, J.; Yin, J.; Luo, R. Chemopreventive mechanisms of galangin against hepatocellular carcinoma: A review. Biomed. Pharmacother., 2019, 109, 2054-2061.
[http://dx.doi.org/10.1016/j.biopha.2018.09.154] [PMID: 30551461]
[107]
Liu, X.; Chen, L.; Liu, Y.; Zhang, T. Tangeretin sensitises human lung cancer cells to TRAILinduced apoptosis via ROS-JNK/ERK-CHOP pathwaymediated up-regulation of death receptor 5. Trop. J. Pharm. Res., 2017, 16(1), 17-29.
[http://dx.doi.org/10.4314/tjpr.v16i1.4]
[108]
Charoensinphon, N.; Qiu, P.; Dong, P.; Zheng, J.; Ngauv, P.; Cao, Y.; Li, S.; Ho, C.T.; Xiao, H. 5-demethyltangeretin inhibits human nonsmall cell lung cancer cell growth by inducing G2/M cell cycle arrest and apoptosis. Mol. Nutr. Food Res., 2013, 57(12), 2103-2111.
[http://dx.doi.org/10.1002/mnfr.201300136] [PMID: 23926120]
[109]
Kang, H.R.; Moon, J.Y.; Ediriweera, M.K.; Song, Y.W.; Cho, M.; Kasiviswanathan, D.; Cho, S.K. Dietary flavonoid myricetin inhibits invasion and migration of radioresistant lung cancer cells (A549-IR) by suppressing MMP-2 and MMP-9 expressions through inhibition of the FAK-ERK signaling pathway. Food Sci. Nutr., 2020, 8(4), 2059-2067.
[http://dx.doi.org/10.1002/fsn3.1495] [PMID: 32328272]
[110]
Nafee, N.; Gaber, D.M.; Elzoghby, A.O.; Helmy, M.W.; Abdallah, O.Y. Promoted antitumor activity of myricetin against lung carcinoma via nanoencapsulated phospholipid complex in respirable microparticles. Pharm. Res., 2020, 37(4), 82.
[http://dx.doi.org/10.1007/s11095-020-02794-z] [PMID: 32291520]
[111]
Hsu, Y.L.; Kuo, P.L.; Liu, C.F.; Lin, C.C. Acacetin-induced cell cycle arrest and apoptosis in human non-small cell lung cancer A549 cells. Cancer Lett., 2004, 212(1), 53-60.
[http://dx.doi.org/10.1016/j.canlet.2004.02.019] [PMID: 15246561]
[112]
Chien, S.T.; Lin, S.S.; Wang, C.K.; Lee, Y.B.; Chen, K.S.; Fong, Y.; Shih, Y.W. Acacetin inhibits the invasion and migration of human non-small cell lung cancer A549 cells by suppressing the p38α MAPK signaling pathway. Mol. Cell. Biochem., 2011, 350(1-2), 135-148.
[http://dx.doi.org/10.1007/s11010-010-0692-2] [PMID: 21210297]
[113]
Semwal, R.B.; Semwal, D.K.; Combrinck, S.; Trill, J.; Gibbons, S.; Viljoen, A. Acacetin—A simple flavone exhibiting diverse pharmacological activities. Phytochem. Lett., 2019, 32, 56-65.
[http://dx.doi.org/10.1016/j.phytol.2019.04.021]
[114]
Huynh, D.L.; Ngau, T.H.; Nguyen, N.H.; Tran, G-B.; Nguyen, C.T. Potential therapeutic and pharmacological effects of Wogonin: An updated review. Mol. Biol. Rep., 2020, 47(12), 9779-9789.
[http://dx.doi.org/10.1007/s11033-020-05972-9] [PMID: 33165817]
[115]
Tai, M.C.; Tsang, S.Y.; Chang, L.Y.; Xue, H. Therapeutic potential of wogonin: A naturally occurring flavonoid. CNS Drug Rev., 2005, 11(2), 141-150.
[http://dx.doi.org/10.1111/j.1527-3458.2005.tb00266.x] [PMID: 16007236]
[116]
Pandey, P.; Khan, F. A mechanistic review of the anticancer potential of hesperidin, a natural flavonoid from citrus fruits. Nutr. Res., 2021, 92, 21-31.
[http://dx.doi.org/10.1016/j.nutres.2021.05.011] [PMID: 34273640]
[117]
Liu, H.; Wang, X.; Jin, O.; Fu, D.; Peng, Y.; Cheng, C.; Xiong, X.; Huang, S. Effect of daidzein on the proliferation of lung cancer cells involved in the apoptotic signaling pathway. researchsquare. com, 2020.
[118]
Chen, Z.; Miao, H.; Zhu, Z.; Zhang, H.; Huang, H. Daidzein induces apoptosis of non-small cell lung cancer cells by restoring STK 4/YAP 1 signaling. Int. J. Clin. Exp. Med., 2017, 10, 15205-15212.
[119]
Kang, S.H.; Bak, D-H.; Chung, B.Y.; Bai, H-W.; Kang, B.S. Delphinidin enhances radio-therapeutic effects via autophagy induction and JNK/MAPK pathway activation in non-small cell lung cancer. Korean J. Physiol. Pharmacol., 2020, 24(5), 413-422.
[http://dx.doi.org/10.4196/kjpp.2020.24.5.413] [PMID: 32830148]
[120]
Samarghandian, S.; Azimi Nezhad, M.; Mohammadi, G. Role of caspases, Bax and Bcl-2 in chrysin-induced apoptosis in the A549 human lung adenocarcinoma epithelial cells. Anticancer. Agents Med. Chem., 2014, 14(6), 901-909.
[121]
Jun, W.; Min, W.; Haitao, Z. Galangin induces apoptosis on lung cancer A549 cells. Zhongliu Fangzhi Yanjiu, 2011, 38(11), 1228-1231.
[122]
Zhang, W.; Huang, Q.; Hua, Z. Galangin and TRAIL cooperate to suppress A549 lung cancer proliferation via apoptosis and p38 MAPK activation. Acta Pharm. Sin. B, 2012, 2(6), 569-574.
[http://dx.doi.org/10.1016/j.apsb.2012.10.009]
[123]
Yu, S.; Gong, L.S.; Li, N.F.; Pan, Y.F.; Zhang, L. Galangin (GG) combined with cisplatin (DDP) to suppress human lung cancer by inhibition of STAT3-regulated NF-κB and Bcl-2/Bax signaling pathways. Biomed. Pharmacother., 2018, 97, 213-224.
[http://dx.doi.org/10.1016/j.biopha.2017.10.059] [PMID: 29091869]
[124]
Chen, K-H.; Weng, M-S.; Lin, J-K. Tangeretin suppresses IL-1β-induced cyclooxygenase (COX)-2 expression through inhibition of p38 MAPK, JNK, and AKT activation in human lung carcinoma cells. Biochem. Pharmacol., 2007, 73(2), 215-227.
[http://dx.doi.org/10.1016/j.bcp.2006.09.018] [PMID: 17067555]
[125]
Liou, C-J.; Huang, W-C. Casticin inhibits interleukin-1β-induced ICAM-1 and MUC5AC expression by blocking NF-κB, PI3K-Akt, and MAPK signaling in human lung epithelial cells. Oncotarget, 2017, 8(60), 101175-101188.
[http://dx.doi.org/10.18632/oncotarget.20933] [PMID: 29254155]
[126]
Gong, Q.; Cao, X.; Cao, J.; Yang, X.; Zeng, W. Casticin suppresses the carcinogenesis of small cell lung cancer H446 cells through activation of AMPK/FoxO3a signaling. Oncol. Rep., 2018, 40(3), 1401-1410.
[http://dx.doi.org/10.3892/or.2018.6547] [PMID: 30015975]
[127]
Zhou, Y.; Peng, Y.; Mao, Q-Q.; Li, X.; Chen, M-W.; Su, J.; Tian, L.; Mao, N-Q.; Long, L-Z.; Quan, M-F.; Liu, F.; Zhou, S.F.; Zhao, Y.X. Casticin induces caspase-mediated apoptosis via activation of mitochondrial pathway and upregulation of DR5 in human lung cancer cells. Asian Pac. J. Trop. Med., 2013, 6(5), 372-378.
[http://dx.doi.org/10.1016/S1995-7645(13)60041-3] [PMID: 23608376]
[128]
Liu, F.; Cao, X.; Liu, Z.; Guo, H.; Ren, K.; Quan, M.; Zhou, Y.; Xiang, H.; Cao, J. Casticin suppresses self-renewal and invasion of lung cancer stem-like cells from A549 cells through down-regulation of pAkt. Acta Biochim. Biophys. Sin. (Shanghai), 2014, 46(1), 15-21.
[http://dx.doi.org/10.1093/abbs/gmt123] [PMID: 24247269]
[129]
Yang, L.; Wang, Q.; Li, D.; Zhou, Y.; Zheng, X.; Sun, H.; Yan, J.; Zhang, L.; Lin, Y.; Wang, X. Wogonin enhances antitumor activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo through ROS-mediated downregulation of cFLIPL and IAP proteins. Apoptosis, 2013, 18(5), 618-626.
[http://dx.doi.org/10.1007/s10495-013-0808-8] [PMID: 23371323]
[130]
Chen, X.M.; Bai, Y.; Zhong, Y.J.; Xie, X.L.; Long, H.W.; Yang, Y.Y.; Wu, S.G.; Jia, Q.; Wang, X.H. Wogonin has multiple anti-cancer effects by regulating c-Myc/SKP2/Fbw7α and HDAC1/HDAC2 pathways and inducing apoptosis in human lung adenocarcinoma cell line A549. PLoS One, 2013, 8(11), e79201.
[http://dx.doi.org/10.1371/journal.pone.0079201] [PMID: 24265759]
[131]
Yao, Q.; Lin, M-T.; Zhu, Y-D.; Xu, H-L.; Zhao, Y-Z. Recent trends in potential therapeutic applications of the dietary flavonoid didymin. Molecules, 2018, 23(10), 2547.
[http://dx.doi.org/10.3390/molecules23102547] [PMID: 30301216]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy