Generic placeholder image

Recent Advances in Electrical & Electronic Engineering

Editor-in-Chief

ISSN (Print): 2352-0965
ISSN (Online): 2352-0973

Mini-Review Article

A Comprehensive Review of Various Isolated DC-DC Converters Topologies Associated with Photovoltaic Applications

Author(s): J. Supriya* and J.S. Rajashekar

Volume 15, Issue 8, 2022

Published on: 30 September, 2022

Page: [595 - 606] Pages: 12

DOI: 10.2174/2352096515666220707115544

Price: $65

conference banner
Abstract

Environmentally friendly renewable energy sources have shown substantial development over the last few years. Compared with other RES, extracting power from solar has become the most beneficial and profitable source because of its environmentally friendly nature. In the process of power extraction, DC-DC converters have given conspicuous interest due to their broad use in various applications. Although many advancements, research work, and continuous tuning of circuits of photovoltaic systems, remarkable efficiency and stability have not been achieved yet. This paper identifies and studies the exhaustive research and development of DC-DC converters. It surveys the difficulties associated with implementing new converter topologies in photovoltaic applications and presents new topologies with simpler control and a lower number of economic components that are suitable for solar applications. Various types of isolated converters are explained, such as different bidirectional converters, high step-up converters, zero current switchings, highfrequency isolated converters, isolated converters with discontinuous input, quasi-Z-source converters, multiport converters, high efficient converters, single-switch converters and single-switch resonant converters. Different types of structural characteristics and operations of the converters are presented. Based on the distinct features, a comparison of the converters has been carried out. From the review, a single converter topology does not fulfill all of the requirements in the industry. Future scopes of the research trend are suggested. The current survey is to update the research carried out during the time gap.

Keywords: Bidirectional isolated dc-dc converters, energy storage systems, Renewable energy systems, efficiency, review, topology, and renewable energy system

Graphical Abstract

[1]
N. Mukherjee, and D. Strickland, "Control of cascaded DC-DC converter-based hybrid battery energy storage systems-Part I: Stability issue", IEEE Trans. Ind. Electron., vol. 63, pp. 2340-2349, 2016.
[http://dx.doi.org/10.1109/TIE.2015.2511159]
[2]
X. Ma, P. Wang, H. Bi, and Z. Wang, "A bidirectional LLCL resonant DC-DC converter with reduced resonant tank currents and reduced voltage stress of the resonant capacitor", IEEE Access, vol. 8, pp. 125549-125564, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.3007638]
[3]
G. Dotelli, R. Ferrero, P. Gallo Stampino, S. Latorrata, and S. Toscani, "Supercapacitor sizing for fast power dips in a hybrid supercapaci-tor-PEM fuel cell system", IEEE Trans. Instrum. Meas., vol. 65, no. 10, pp. 2196-2203, 2016.
[http://dx.doi.org/10.1109/TIM.2016.2549658]
[4]
S. Kasicheyanula, and V. John, "Adaptive control strategy for ultracapacitor based bidirectional DC-DC converters", IEEE Trans. Ind. Appl., vol. 55, no. 2, pp. 1717-1728, 2019.
[http://dx.doi.org/10.1109/TIA.2018.2882771]
[5]
S.A. Gorji, H.G. Sahebi, M. Ektesabi, and A.B. Rad, "Topologies and control schemes of bidirectional DC–DC power converters: An over-view", IEEE Access, vol. 7, pp. 117997-118019, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2937239]
[6]
P.K. Maroti, S. Padmanaban, F. Blaabjerg, V. Fedák, P. Siano, and V.K. Ramachandaramurthy, "A novel switched inductor configuration for modified SEPIC DC-to-DC converter for renewable energy application", In 2017 Proceedings of the IEEE Conference on Energy Con-version, 30-31 Oct, 2017, Kuala Lumpur, Malaysia, 2017, pp. 218-223
[http://dx.doi.org/10.1109/CENCON.2017.8262487]
[7]
H. Liu, M.S.A. Dahidah, J. Yu, R.T. Naayagi, and M. Armstrong, "Design and control of unidirectional DC-DC modular multilevel conver-ter for offshore DC collection point: Theoretical analysis and experimental validation", IEEE Trans. Power Electron., vol. 34, no. 6, pp. 5191-5208, 2019.
[http://dx.doi.org/10.1109/TPEL.2018.2866787]
[8]
Z.U. Zahid, Z.M. Dalala, R. Chen, B. Chen, and J.S. Lai, "Design of bidirectional DC-DC resonant converter for Vehicle-to-Grid (V2G) applications", IEEE Trans. Transp. Electrif., vol. 1, no. 3, pp. 232-244, 2015.
[http://dx.doi.org/10.1109/TTE.2015.2476035]
[9]
B.R. Ananthapadmanabha, R. Maurya, and S.R. Arya, "Improved power quality switched inductor cuk converter for battery charging appli-cations", IEEE Trans. Power Electron., vol. 33, no. 11, pp. 9412-9423, 2018.
[http://dx.doi.org/10.1109/TPEL.2018.2797005]
[10]
M. Shaneh, E. Adib, and M. Niroomand, "An ultrahigh step-up nonisolated interleaved converter with low input current ripple", IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, no. 2, pp. 1584-1592, 2020.
[http://dx.doi.org/10.1109/JESTPE.2019.2909469]
[11]
X. Hu, P. Ma, J. Wang, and G. Tan, "A hybrid cascaded DC-DC boost converter with ripple reduction and large conversion ratio", IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, no. 1, pp. 761-770, 2020.
[http://dx.doi.org/10.1109/JESTPE.2019.2895673]
[12]
H. Ardi, and A. Ajami, "Study on a high voltage gain SEPIC-based DC-DC converter with continuous input current for sustainable energy applications", IEEE Trans. Power Electron., vol. 33, no. 12, pp. 10403-10409, 2018.
[http://dx.doi.org/10.1109/TPEL.2018.2811123]
[13]
M.E. Azizkandi, F. Sedaghati, H. Shayeghi, and F. Blaabjerg, "A high voltage gain DC-DC converter based on three winding coupled induc-tor and voltage multiplier cell", IEEE Trans. Power Electron., vol. 35, no. 5, pp. 4558-4567, 2020.
[http://dx.doi.org/10.1109/TPEL.2019.2944518]
[14]
M.P. Shreelakshmi, M. Das, and V. Agarwal, "Design and development of a novel high voltage gain, high-efficiency bidirectional DC-DC converter for storage interface", IEEE Trans. Ind. Electron., vol. 66, pp. 4490-4501, 2019.
[http://dx.doi.org/10.1109/TIE.2018.2860539]
[15]
W. Li, Q. Jiang, Y. Mei, C. Li, Y. Deng, and X. He, "Modular multilevel DC/DC converters with phase-shift control scheme for high-voltage DC-based systems", IEEE Trans. Power Electron., vol. 30, no. 1, pp. 99-107, 2015.
[http://dx.doi.org/10.1109/TPEL.2014.2301722]
[16]
K. Jin, and C. Liu, "A novel PWM high voltage conversion ratio bidirectional three-phase DC/DC converter with Y-D connected transfor-mer", IEEE Trans. Power Electron., vol. 31, no. 1, pp. 81-88, 2016.
[http://dx.doi.org/10.1109/TPEL.2015.2397455]
[17]
D.G. Bandeira, T.B. Lazzarin, and I. Barbi, "High voltage power supply using a T-Type parallel resonant DC-DC converter", IEEE Trans. Ind. Appl., vol. 54, no. 3, pp. 2459-2470, 2018.
[http://dx.doi.org/10.1109/TIA.2018.2792446]
[18]
A. Turksoy, A. Teke, and A. Alkaya, "A comprehensive overview of the dc-dc converter-based battery charge balancing methods in elec-tric vehicles", Renew. Sustain. Energy Rev., vol. 133, p. 110274, 2020.
[http://dx.doi.org/10.1016/j.rser.2020.110274]
[19]
A. Affam, Y.M. Buswig, A.K.B.H. Othman, N.B. Julai, and O. Qays, "A review of multiple input DC-DC converter topologies linked with hybrid electric vehicles and renewable energy systems", Renew. Sustain. Energy Rev., vol. 135, p. 110186, 2021.
[http://dx.doi.org/10.1016/j.rser.2020.110186]
[20]
M.Z. Hossain, N.A. Rahim, and J. Selvaraj, "Recent progress and development on power DC-DC converter topology, control, design and applications: A review", Renew. Sustain. Energy Rev., vol. 81, pp. 205-230, 2018.
[http://dx.doi.org/10.1016/j.rser.2017.07.017]
[21]
S. Sivakumar, M.J. Sathik, P.S. Manoj, and G. Sundararajan, "An assessment on performance of DC-DC converters for renewable energy applications", Renew. Sustain. Energy Rev., vol. 58, pp. 1475-1485, 2016.
[http://dx.doi.org/10.1016/j.rser.2015.12.057]
[22]
O.A. Ahmed, and J.A.M. Bleijs, "An overview of DC-DC converter topologies for fuel cell-ultracapacitor hybrid distribution system", Renew. Sustain. Energy Rev., vol. 42, pp. 609-626, 2015.
[http://dx.doi.org/10.1016/j.rser.2014.10.067]
[23]
N. Zhang, D. Sutanto, and K.M. Muttaqi, "A review of topologies of three-port DC-DC converters for the integration of renewable energy and energy storage system", Renew. Sustain. Energy Rev., vol. 56, pp. 388-401, 2016.
[http://dx.doi.org/10.1016/j.rser.2015.11.079]
[24]
Y. Zhang, W. Zhang, F. Gao, S. Gao, and D.J. Rogers, "A switched-capacitor interleaved bidirectional converter with wide voltage-gain range for super capacitors in EVs", IEEE Trans. Power Electron., vol. 35, no. 2, pp. 1536-1547, 2020.
[http://dx.doi.org/10.1109/TPEL.2019.2921585]
[25]
M.A. Hannan, J.A. Ali, P.J. Ker, A. Mohamed, M.S.H. Lipu, and A. Hussain, "Switching techniques and intelligent controllers for induction motor drive: Issues and recommendations", IEEE Access, vol. 6, pp. 47489-47510, 2018.
[http://dx.doi.org/10.1109/ACCESS.2018.2867214]
[26]
H. Liu, H. Hu, H. Wu, Y. Xing, and I. Batarseh, "Overview of high-step-up coupled-inductor boost converters", IEEE J. Emerg. Sel. Top. Power Electron., vol. 4, no. 2, pp. 689-704, 2016.
[http://dx.doi.org/10.1109/JESTPE.2016.2532930]
[27]
C. Gonzalez-Castano, E. Vidal-Idiarte, and J. Calvente, "Design of a bidirectional DC/DC converter with coupled inductor for an electric vehicle application", In 2017 Proceedings of the IEEE International Symposium on Industrial Electronics, 19-21 June, 2017, Edinburgh, UK, 2017, pp. 688-693
[http://dx.doi.org/10.1109/ISIE.2017.8001329]
[28]
H. Wu, K. Sun, L. Chen, L. Zhu, and Y. Xing, "High step-up/step-down soft-switching bidirectional DC-DC converter with coupled-inductor and voltage matching control for energy storage systems", IEEE Trans. Ind. Electron., vol. 63, no. 5, pp. 2892-2903, 2016.
[http://dx.doi.org/10.1109/TIE.2016.2517063]
[29]
X. Zhu, and B. Zhang, "High step-up quasi-Z-source DC–DC converters with single switched capacitor branch", J. Mod. Power Syst. Clean Energy, vol. 5, no. 4, pp. 537-547, 2017.
[http://dx.doi.org/10.1007/s40565-017-0304-1]
[30]
J. Yuan, Y. Yang, and F. Blaabjerg, "A switched quasi-Z-source inverter with continuous input currents", Energies, vol. 13, no. 6, p. 1390, 2020.
[http://dx.doi.org/10.3390/en13061390]
[31]
E. Babaei, M.S. Zarbil, and E.S. Asl, "A developed structure for DC-DC Quasi-Z-Source converter with high voltage gain and high reliabi-lity", J. Circuits Syst. Comput., vol. 28, no. 1, p. 28, 2019.
[http://dx.doi.org/10.1142/S0218126619500129]
[32]
R. Devarajan, and E. Sivaraman, "A novel bidirectional quasi Z source inverter for electric vehicle applications", J. Crit. Rev., vol. 7, pp. 1114-1118, 2020.
[33]
Q. Wu, M. Wang, W. Zhou, X. Wang, and Q. Wang, "One zerovoltage- switching voltage-fed three-phase push-pull DC/DC converter for electric vehicle applications, In:", 2019 IEEE Transportation Electrification Conference and Expo (ITEC), 19-21 June, 2019. Detroit, MI, USA, 2019, pp. 1-5.
[34]
M.C. Taneri, N. Genc, and A. Mamizadeh, "Analyzing and comparing of variable and constant switching frequency Flyback DC-DC con-verter", In Proceedings of the 4th International Conference on Power Electronics and their Applications, ICPEA 2019, 25-27 Sept, 2019, Elazig, Turkey, 2019, pp. 1-6
[http://dx.doi.org/10.1109/ICPEA1.2019.8911196]
[35]
J. Zeng, W. Qiao, L. Qu, and Y. Jiao, "An isolated multiport DC-DC converter for simultaneous power management of multiple different renewable energy sources", IEEE J. Emerg. Sel. Top. Power Electron., vol. 2, no. 1, pp. 70-78, 2013.
[http://dx.doi.org/10.1109/JESTPE.2013.2293331]
[36]
M.-K. Nguyen, Q.-D. Phan, V.-N. Nguyen, Y.-C. Lim, and J.-K. Park, "Trans-Z-source-based isolated DC-DC converters 2013 IEEE International Symposium on Industrial Electronics, 2013, pp. 1-6",
[http://dx.doi.org/10.1109/ISIE.2013.6563610]
[37]
J. Zeng, W. Qiao, and L. Qu, "A single - switch LCL - resonant isolated DC-DC converter", In 2013 IEEE Energy Conversion Congress and Exposition, 15-19 Sept, 2013, Denver, CO, USA, 2013, pp. 5496-5502
[http://dx.doi.org/10.1109/ECCE.2013.6647447]
[38]
M. Forouzesh, Y. Shen, K. Yari, Y. Siwakoti, and F. Blaabjerg, "High efficiency high step-up DC–DC converter with dual coupled induc-tors for grid-connected photovoltaic systems", IEEE Trans. Power Electron., vol. 33, no. 7, pp. 5967-5982, 2018.
[http://dx.doi.org/10.1109/TPEL.2017.2746750]
[39]
M. Forouzesh, Y. Siwakoti, S. Gorji, F. Blaabjerg, and B. Lehman, "Step up DC–DC converters: A comprehensive review of voltage-boosting techniques, topologies, and applications", IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9143-9178, 2017.
[http://dx.doi.org/10.1109/TPEL.2017.2652318]
[40]
P. Wang, L. Zhou, Y. Zhang, J. Li, and M. Sumner, "Input-parallel output-series DC-DC boost converter with a wide input voltage range, for fuel cell vehicles", IEEE Trans. Vehicular Technol., vol. 66, no. 9, pp. 7771-7781, 2017.
[http://dx.doi.org/10.1109/TVT.2017.2688324]
[41]
S. Chen, S. Yang, C. Huang, and C. Lin, "Interleaved high step-up DC DC converter with parallel-input series-output configuration and voltage multiplier module", In 2017 IEEE International Conference on Industrial Technology (ICIT), 22-25 Mar, 2017, Toronto, ON, Canada, 2017, pp. 119-124
[http://dx.doi.org/10.1109/ICIT.2017.7913069]
[42]
L. Liivik, A. Chub, and D. Vinnikov, "Input-parallel output-series cascading possibilities of single-switch galvanically isolated quasi-Zsource DC-DC converters", In 2016 2nd International Conference on Intelligent Energy and Power Systems (IEPS), 7-11 June, 2016, Kyiv, Ukraine, 2016, pp. 1-6
[43]
A. Chub, D. Vinnikov, E. Liivik, and T. Jalakas, "Multiphase quasi-Z-source DC–DC converters for residential distributed generation sys-tems", IEEE Trans. Ind. Electron., vol. 65, no. 10, pp. 8361-8371, 2018.
[http://dx.doi.org/10.1109/TIE.2018.2801860]
[44]
B. Zhao, Z. Ouyang, M. Duffy, M.A.E. Andersen, and W. Hurley, An improved partially interleaved transformer structure for high-voltage high-frequency multiple-output applications.IEEE Trans. Ind. Electron., 2018, pp. 1-1.
[http://dx.doi.org/10.1109/TIE.2018.2815997]
[45]
M. Li, Z. Ouyang, and M.A.E. Andersen, "High frequency LLC resonant converter with magnetic shunt integrated planar transformer", IEEE Trans. Power Electron., vol. 34, no. 3, pp. 2405-2415, 2018.
[http://dx.doi.org/10.1109/APEC.2018.8341395]
[46]
X. Huang, J. Feng, W. Du, F.C. Lee, and Q. Li, "Design consideration of MHz active clamp flyback converter with GaN devices for low power adapter application", In 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), 20-24 Mar, 2016, Long Beach, CA, 2016, pp. 2334-2341
[http://dx.doi.org/10.1109/APEC.2016.7468191]
[47]
C. Wang, M. Li, Z. Ouyang, and G. Wang, "High efficiency high step-up isolated DC-DC converter for photovoltaic applications", In 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), 17-21 Mar, 2019, Anaheim, CA, USA, 2019, pp. 1273-1280
[http://dx.doi.org/10.1109/APEC.2019.8721916]
[48]
S. Miyawaki, J.I. Itoh, and K. Iwaya, "A high efficiency isolated DC/DC converter using series connection on secondary side", IEEJ Trans. Ind. Appl., vol. 131, no. 10, pp. 1175-1183, 2011.
[http://dx.doi.org/10.1109/IPEC.2010.5543336]
[49]
J. Zeng, W. Qiao, and L. Qu, "A single-switch isolated DC-DC converter for photovoltaic systems", In 2012 IEEE Energy Conversion Congress and Exposition (ECCE), 15-20 Sept, 2012, Raleigh, NC, USA, 2012, pp. 3446-3452
[http://dx.doi.org/10.1109/ECCE.2012.6342495]
[50]
S. Inoue, and H. Akagi, "A bidirectional isolated DC-DC converter as a core circuit of the next - generation medium - voltage power con-version system", IEEE Trans. Power Electron., vol. 22, no. 2, pp. 535-542, 2007.
[http://dx.doi.org/10.1109/TPEL.2006.889939]
[51]
Z. Zhang, Z. Ouyang, O.C. Thomsen, and M.A.E. Andersen, "Analysis and design of a bidirectional isolated DC-DC converter for fuel cells and supercapacitors hybrid system", IEEE Trans. Power Electron., vol. 27, no. 2, pp. 848-859, 2012.
[http://dx.doi.org/10.1109/TPEL.2011.2159515]
[52]
A. Mohammadpour, L. Parsa, M.H. Todorovic, R. Lai, and R. Datta, "Interleaved multi-phase ZCS isolated DC-DC converter for sub-sea power distribution", In IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, 10-13 Nov, 2013, Vienna, Austria, 2013, pp. 924-929
[http://dx.doi.org/10.1109/IECON.2013.6699257]
[53]
X. Zhang, C. Li, C. Yao, L. Fu, F. Guo, and J. Wang, "An isolated DC/DC converter with reduced number of switches and voltage stresses for electric and hybrid electric vehicles", In 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) 17-21 Mar, 2013,, Long Beach, CA, USA, 2013, pp. 1759-1767
[54]
A. Mohammadpour, L. Parsa, M.H. Todorovic, R. Lai, R. Datta, and L. Garces, "Series-input parallel-output modular-phase DC–DC con-verter with soft-switching and high-frequency isolation", IEEE Trans. Power Electron., vol. 31, no. 1, pp. 111-119, 2016.
[http://dx.doi.org/10.1109/TPEL.2015.2398813]
[55]
S. Dhanrajshyam, and M. Kowsalya, "Zero current switching high frequency isolated DC-DC converter", In 2017 International Conference on Communication and Signal Processing (ICCSP) 6-8 Apr, 2017, Chennai, India, 2017, pp. 1734-1739
[http://dx.doi.org/10.1109/ICCSP.2017.8286689]
[56]
I.O. Lee, "Hybrid PWM-resonant converter for electric vehicle on board battery chargers", IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3639-3649, 2016.
[http://dx.doi.org/10.1109/TPEL.2015.2456635]
[57]
G. Liu, Y. Jang, M.M. Jovanović, and J.Q. Zhang, "Implementation of a 3.3-kW dc-dc converter for EV on-board charger employing series resonant converter with reduced-frequency-range control", IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4168-4184, 2017.
[http://dx.doi.org/10.1109/TPEL.2016.2598173]
[58]
C. Fei, F.C. Lee, and Q. Li, "High-efficiency high power-density LLC converter with an integrated planar matrix transformer for high-output current applications", IEEE Trans. Ind. Electron., vol. 64, no. 11, pp. 9072-9082, 2017.
[http://dx.doi.org/10.1109/TIE.2017.2674599]
[59]
Y. Jang, M.M. Jovanovic, M. Kumar, J.M. Ruiz, R. Lu, and T. Wei, "Isolated, bi-directional DC-DC converter for fuel cell electric vehicle applications", In 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), 17-21 Mar, 2019, Anaheim, CA, USA, 2019, pp. 1674-1681
[60]
J. Zhang, Z. Wang, and S. Shao, "A three-phase modular multilevel DC DC converter for power electronic transformer applications", IEEE J. Emerg. Sel. Top. Power Electron., vol. 5, no. 1, pp. 140-150, 2017.
[http://dx.doi.org/10.1109/JESTPE.2016.2609936]
[61]
Z. Li, S. Shunichiro, N. Satake, and M. Nogi, "Development of DC/DC converter for battery energy storage supporting railway DC feeder systems", IEEE Trans. Ind. Appl., vol. 52, no. 5, pp. 4218-4224, 2016.
[http://dx.doi.org/10.1109/TIA.2016.2582724]
[62]
L. Schmitz, D. Martins, and R. Coelho, "Generalized high step-up DC-DC boost-based converter with gain cell", IEEE Trans. Circ. Syst., vol. 64, no. 2, pp. 480-493, 2017.
[63]
X.F. St-Onge, C. Richard, K.M. McDonald, and S.A. Saleh, "Performance testing of an active DC multiport link for network-based PMG-based WECs", IEEE Trans. Ind. Appl., vol. 54, no. 6, pp. 5579-5589, 2018.
[64]
Christian Richard K., "McDonald, X.F. St-Onge and S. Saleh, “A new isolated DC-DC converter for discontinuous input and continuous output”", IEEE Trans. Ind. Appl., vol. 55, no. 4, pp. 4215-4224, .
[65]
N.M. Tan, T. Abe, and H. Akagi, "Design and performance of a bidirectional isolated DC-DC converter for a battery energy storage sys-tem", IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1237-1248, 2012.
[66]
H.N. Vu, and W. Choi, "A novel dual full-bridge LLC resonant converter for CC and CV charges of batteries for electric vehicles", IEEE Trans. Ind. Electron., vol. 65, no. 3, pp. 2212-2225, 2018.
[http://dx.doi.org/10.1109/TIE.2017.2739705]
[67]
C. Bai, B. Han, B.H. Kwon, and M. Kim, "Highly efficient bidirectional series-resonant DC/DC converter over wide range of battery volta-ges", IEEE Trans. Power Electron., vol. 35, no. 4, pp. 3636-3650, 2020.
[http://dx.doi.org/10.1109/TPEL.2019.2933408]
[68]
S. Bairabathina, and S. Balamurugan, "Review on non-isolated multi-input step-up converters for grid-independent hybrid electric vehi-cles", Int. J. Hydrogen Energy, vol. 45, no. 41, pp. 21687-21713, 2020.
[http://dx.doi.org/10.1016/j.ijhydene.2020.05.277]
[69]
J.T. Babauta, M. Kerber, L. Hsu, A. Phipps, D.B. Chadwick, and Y.M. Arias-Thode, "Scaling up benthic microbial fuel cells using flyback converters", J. Power Sources, vol. 395, pp. 98-105, 2018.
[http://dx.doi.org/10.1016/j.jpowsour.2018.05.042]
[70]
J. Sangeetha, A.S. Antony, and D. Ramya, "A boosting multi flyback converter for electric vehicle application", Res. J. Appl. Sci. Eng. Technol., vol. 10, no. 10, pp. 1133-1140, 2015.
[http://dx.doi.org/10.19026/rjaset.10.1881]
[71]
W.S. Lee, J.H. Kim, J.Y. Lee, and I.O. Lee, "Design of an isolated DC/DC topology with high efficiency of over 97% for EV fast chargers", IEEE Trans. Veh. Technol., vol. 68, no. 12, pp. 11725-11737, 2019.
[http://dx.doi.org/10.1109/TVT.2019.2949080]
[72]
H. Moradisizkoohi, N. Elsayad, and O.A. Mohammed, "Experimental demonstration of a modular, QUASI-resonant bidirectional DC-DC converter using GaN switches for electric vehicles", IEEE Trans. Ind. Appl., vol. 55, no. 6, pp. 7787-7803, 2019.
[http://dx.doi.org/10.1109/TIA.2019.2914648]
[73]
F. Lin, Y. Wang, Z. Wang, Y. Rong, and H. Yu, "The design of electric car DC/DC converter based on the phase-shifted full-bridge ZVS control", Energy Procedia, vol. 88, pp. 940-944, 2016.
[http://dx.doi.org/10.1016/j.egypro.2016.06.116]
[74]
R. Bhatti, and Z. Salam, "Charging of electric vehicle with constant price using photovoltaic based grid-connected system", In 2016 IEEE International Conference on Power and Energy (PECon), 28-29 Nov, 2016, Melaka, Malaysia, 2016, pp. 268-273
[http://dx.doi.org/10.1109/PECON.2016.7951571]
[75]
J.C. Hernandez, and F.S. Sutil, "Electric vehicle charging stations feeded by renewable: PV and train regenerative braking", IEEE Latin Am. Trans., vol. 14, no. 7, pp. 3262-3269, 2016.
[http://dx.doi.org/10.1109/TLA.2016.7587629]
[76]
M. Singh, P. Kumar, I. Kar, and N. Kumar, "A real-time smart charging station for EVS designed for v2g scenario and its coordination with renewable energy sources", In 2016 IEEE Power and Energy Society General Meeting (PESGM), 17-21 July, 2016, Boston, MA, USA, 2016, pp. 1-5
[http://dx.doi.org/10.1109/PESGM.2016.7741479]
[77]
S. Pranith, S. Kumar, B. Singh, and T.S. Bhatti, "Multimode operation of PV-battery system with renewable intermittency smoothening and enhanced power quality", IET Renew. Power Gener., vol. 13, no. 6, pp. 887-897, 2019.
[http://dx.doi.org/10.1049/iet-rpg.2018.5843]
[78]
R.K. Sharma, S. Mishra, and S.R. Mudaliyar, "Nonlinear disturbance observer based control of three phase grid forming inverter for distri-buted generation system", In 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 18-21 Dec, 2018, Chennai, India, 2018, pp. 1-6
[http://dx.doi.org/10.1109/PEDES.2018.8707734]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy