Generic placeholder image

Recent Advances in Electrical & Electronic Engineering

Editor-in-Chief

ISSN (Print): 2352-0965
ISSN (Online): 2352-0973

Review Article

A Review on Investigation of PV Solar Panel Surface Defects and MPPT Techniques

Author(s): Gayathri Monicka Subarnan, Manimegalai Damodaran* and Karthikeyan Madhu

Volume 15, Issue 8, 2022

Published on: 27 September, 2022

Page: [607 - 620] Pages: 14

DOI: 10.2174/2352096515666220620093933

Price: $65

conference banner
Abstract

The lifetime of PV modules is reduced due to a variety of degradation modes. Failure modes that contribute significantly to PV module output power losses include snail trails, hotspots, micro cracks, bubbles or delamination, and dust accumulation. The correlations between these phenomena, like those between corrosive environment and potential-induced breakdown, are not well understood. As a result, in this review, we will try to explain the relationship between snail trails, hotspots, microcracks, bubbles or delamination, and dust accumulation on photovoltaic module components in order to ensure the PV modules' reliability. This paper in the Photovoltaic literature gives an overview of several Maximum Point Tracking (MPPT) techniques that have been recently designed, simulated and/or experimentally validated. The main objective of every MPPT technology is to maximize the output of a photovoltaic array with shade or unshade conditions. The characteristics presented in this paper are unique, and they provide researchers with a starting point for choosing and implementing an appropriate MPPT technique.

Keywords: Degradation rate, MPPT techniques, partial shading, photovoltaic system, power loss, manufacturers.

Graphical Abstract

[1]
Renewables - International Energy Agency, Available from: https://www.iea.org/reports/renewables-2020
[2]
J.A. Tsanakas, L. Ha, and C. Buerhop, "Faults and infrared thermographic diagnosis in operating cSi photovoltaic modules: A review of research and future challenges", Renew. Sustain. Energy Rev., vol. 62, pp. 695-709, 2016.
[http://dx.doi.org/10.1016/j.rser.2016.04.079]
[3]
A. Virtuani, M. Caccivio, E. Annigoni, G. Friesen, D. Chianese, C. Ballif, and T. Sample, "35 years of photovoltaics: Analysis of the TI-SO-10-kW solar plant lessons learnt in safety and performance—Part 1", Prog. Photovolt. Res. Appl., vol. 27, pp. 328-339, 2019.
[http://dx.doi.org/10.1002/pip.3104]
[4]
J.E.F. Da Fonseca, F.S. de Oliveira, C.W.M. Prieb, and A. Krenzinger, "Degradation analysis of a photovoltaic generator after operating for 15 years in southern Brazil", Sol. Energy, vol. 196, pp. 196-206, 2020.
[http://dx.doi.org/10.1016/j.solener.2019.11.086]
[5]
T. Ishii, and A. Masuda, "Annual degradation rates of recent crystalline silicon photovoltaic modules", Prog. Photovolt. Res. Appl., vol. 25, pp. 953-967, 2017.
[http://dx.doi.org/10.1002/pip.2903]
[6]
M. Dhimish, and A. Alrashidi, "Photovoltaic Degradation Rate Affected by Different Weather Conditions: A Case Study Based on PV Systems in the UK and Australia", Electronics (Basel), vol. 9, p. 650, 2020.
[http://dx.doi.org/10.3390/electronics9040650]
[7]
R. Singh, M. Sharma, R. Rawat, and C. Banerjee, "Field Analysis of three different silicon-based Technologies in Composite Climate Condition–Part II–Seasonal assessment and performance degradation rates using statistical tools", Renew. Energy, vol. 147, pp. 2102-2117, 2020.
[http://dx.doi.org/10.1016/j.renene.2019.10.015]
[8]
A.G. Gaglia, S. Lykoudis, A.A. Argiriou, C.A. Balaras, and E. Dialynas, "Energy efficiency of PV panels under real outdoor conditions–An experimental assessment in Athens, Greece", Renew. Energy, vol. 101, pp. 236-243, 2017.
[http://dx.doi.org/10.1016/j.renene.2016.08.051]
[9]
S.S. Chandel, M.N. Naik, V. Sharma, and R. Chandel, "Degradation analysis of 28 year field-exposed mono-c-Si photovoltaic modules of a direct coupled solar water pumping system in western Himalayan region of India", Renew. Energy, vol. 78, pp. 193-202, 2015.
[http://dx.doi.org/10.1016/j.renene.2015.01.015]
[10]
M. Lovati, G. Salvalai, G. Fratus, L. Maturi, R. Albatici, and D. Moser, "New method for the early design of BIPV with electric storage: A case study in northern Italy", Sustain Cities Soc., vol. 48, p. 101400, 2019.
[http://dx.doi.org/10.1016/j.scs.2018.12.028]
[11]
J.H. Park, H.D. Lee, D.H. Tae, M. Ferreira, and D.S. Rho, "A Study on Disposal Diagnosis Algorithm of PV Modules Considering Perfor-mance Degradation Rate", J. Korea Acad. Ind. Coop. Soc., vol. 20, pp. 493-502, 2019.
[12]
D.C. Jordan, C. Deline, M. Deceglie, T.J. Silverman, and W.P.V. Luo, "Degradation–Mounting & Temperature", In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 2019, pp. 673-679
[http://dx.doi.org/10.1109/PVSC40753.2019.8980767]
[13]
J.K. Jurasz, P.B. Da˛bek, and P.E. Campana, "A city reach energy self-sufficiency by means of rooftop photovoltaics Case study in Po-land", J. Clean. Prod., vol. 245, p. 118813, 2020.
[http://dx.doi.org/10.1016/j.jclepro.2019.118813]
[14]
H.S. Teah, Q. Yang, M. Onuki, and H.Y. Teah, "Incorporating External Effects into Project Sustainability Assessments: The Case of a Green Campus Initiative Based on a Solar PV System", Sustainability, vol. 11, p. 5786, 2019.
[http://dx.doi.org/10.3390/su11205786]
[15]
S. Martín-Martínez, M. Cañas-Carretón, A. Honrubia-Escribano, and E.J.E.C. Gómez-Lázaro, "Performance evaluation of large solar photovoltaic power plants in Spain", Energy Convers. Manage., vol. 183, pp. 515-528, 2019.
[http://dx.doi.org/10.1016/j.enconman.2018.12.116]
[16]
S. Thotakura, S.C. Kondamudi, J.F. Xavier, M. Quanjin, G.R. Reddy, P. Gangwar, and S.L. Davuluri, "Operational performance of mega-watt-scale grid integrated rooftop solar PV system in tropical wet and dry climates of India", Case Stud. Therm. Eng., vol. 18, p. 100602, 2020.
[http://dx.doi.org/10.1016/j.csite.2020.100602]
[17]
S. Tongsopit, S. Junlakarn, W. Wibulpolprasert, A. Chaianong, P. Kokchang, and N.V. Hoang, "The economics of solar PV self-consumption in Thailand", Renew. Energy, vol. 138, pp. 395-408, 2019.
[http://dx.doi.org/10.1016/j.renene.2019.01.087]
[18]
D.C. Jordan, J.H. Wohlgemuth, and S.R. Kurtz, Technology and climate trends in pv module degradation. Proceedings of the 27th Euro-pean Photovoltaic Solar Energy Conference and Exhibition, Frankfurt, Germany, 2012.
[19]
W. Herrmann, N. Bogdanski, F. Reil, M. Köhl, K-A. Weiss, M. Assmus, and M. Heck, PV module degradation caused by thermo mechanical stress: Real impacts of outdoor weathering versus accelerated testing in the laboratory.Reliability of Photovoltaic Cells, Modules, Components, and Systems III., vol., vol. 7773. International Society for Optics and Photonics: Bellingham, DC, USA, 2010, p. 77730I.
[http://dx.doi.org/10.1117/12.859809]
[20]
H.W. John, Photovoltaic Module Reliability., Wiley: Hoboken, NY, USA, 2020.
[21]
S. Bouguerra, M.R. Yaiche, O. Gassab, A. Sangwongwanich, and F. Blaabjerg, "The Impact of PV Panel Positioning and Degradation on the PV Inverter Lifetime and Reliability", IEEE J. Emerg. Sel. Top. Power Electron., vol. 9, pp. 3114-3126, 2021.
[http://dx.doi.org/10.1109/JESTPE.2020.3006267]
[22]
D. Majumdar, S.B. Pal, and R. Ganguly, Comparative Reliability Analysis of PV Modules under tropical conditionsIn Proceedings of the Innovations in Energy Management and Renewable Resources, 2021, pp. 1-5
[http://dx.doi.org/10.1109/IEMRE52042.2021.9386742]
[23]
W. Yan, W. Liu, and W. Kong, "Reliability evaluation of PV modules based on exponential dispersion process", Energy Rep., vol. 7, p. 3023, 2021.
[http://dx.doi.org/10.1016/j.egyr.2021.05.033]
[24]
M. Muller, and I. Repins, Proceedings of the PV Reliability Workshop, 2021pp. 22-26. Available from: https://www.nrel. gov/docs/fy21osti/80055.pdf (Accessed on 26 February 2021).
[25]
A. Lannoy, and H., Procaccia, Evaluation et Maîtrise du Vieillissement Industriel. Lavoisier: Paris, France, 2005.
[26]
A. Charki, R. Laronde, and D. Bigaud, "The time-variant degradation of a photovoltaic system", J. Sol. Energy Eng., vol. 135, p. 024503, 2013.
[http://dx.doi.org/10.1115/1.4007771]
[27]
J.H. Wohlgemuth, D.W. Cunningham, P. Monus, J. Miller, and A. Nguyen, Long term reliability of photovoltaic modulesIn Proceedings of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, Waikoloa, HI, USA, 2006, pp. 2050-2053
[http://dx.doi.org/10.1109/WCPEC.2006.279905]
[28]
M.A. Quintana, D.L. King, T.J. McMahon, and C.R. Osterwald, Commonly observed degradation in field-aged photovoltaic modulesIn Proceedings of the Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, New Orleans, LA, USA, 2002, pp. 1436-1439
[http://dx.doi.org/10.1109/PVSC.2002.1190879]
[29]
C.R. Osterwald, and T.J. McMahon, "History of accelerated and qualification testing of terrestrial photovoltaic modules: A literature re-view", Prog. Photovolt. Res. Appl., vol. 17, pp. 11-33, 2009.
[http://dx.doi.org/10.1002/pip.861]
[30]
M.A. Munoz, M.C. Alonso-García, N. Vela, and F. Chenlo, "Early degradation of silicon PV modules and guaranty conditions", Sol. Energy, vol. 85, pp. 2264-2274, 2011.
[http://dx.doi.org/10.1016/j.solener.2011.06.011]
[31]
M. Vazquez, and I. Rey-Stolle, "Photovoltaic module reliability model based on field degradation studies", Prog. Photovolt. Res. Appl., vol. 16, pp. 419-433, 2008.
[http://dx.doi.org/10.1002/pip.825]
[32]
S. Chowdhury, E.C. Cho, Y. Cho, Y. Kim, and J. Yi, "Analysis of Cell Module Loss Factor for Shingled PV Module", KSNRE, vol. 16, pp. 1-12, 2020.
[http://dx.doi.org/10.7849/ksnre.2020.0009]
[33]
M. Dhimish, V. Holmes, B. Mehrdadi, M. Dales, and P. Mather, "Output-power enhancement for hot spotted polycrystalline photovoltaic solar cells", Trans. Device Mater. Reliab., vol. 18, pp. 37-45, 2017.
[http://dx.doi.org/10.1109/TDMR.2017.2780224]
[34]
E. Molenbroek, D.W. Waddington, and K.A. Emery, "Hot spot susceptibility and testing of PV modules", In: Proceedings of the 22th IEEE Photovoltaic Specialists Conference, Las Vegas, 1991, pp. 547-552.
[http://dx.doi.org/10.1109/PVSC.1991.169273]
[35]
C.H. Cox III, D.J. Silversmith, and R.W. Mountain, Reduction of photovoltaic cell reverse breakdown by a peripheral bypass diode. Proceedings of the 16 IEEE Photovoltaics Specialists Conference, San Diego, CA, USA, 1982.
[36]
H.S. Rauschenbach, and E.E. Maiden, Breakdown phenomena in reverse biased silicon solar cells. Proceedings of the Record of the 9th IEEE Photovoltaic Specialists Conference, Silver Spring, MD, USA, 2002.
[37]
T. Sarver, A. Al-Qaraghuli, and L. Kazmerski, A comprehensive review of the impact of dust on the use of solar energy: Histo-ry., Investigations, Results, Literature, and Mitigation Approaches, 2013.
[38]
H.P. Garg, "Effect of dirt on transparent covers in flat-plate solar energy collectors", Sol. Energy, vol. 15, pp. 299-302, 1974.
[http://dx.doi.org/10.1016/0038-092X(74)90019-X]
[39]
A.A.M. Sayigh, S. Al-Jandal, and H. Ahmed, "Dust effect on solar flat surface devices in Kuwait", In Proceedings of the Workshop on the Physics of Non-Conventional Energy Sources and Materials Science for Energy, Trieste, Italy, 1985, pp. 353-367
[40]
A.A.M. Sayigh, "Effect of dust on flat plate collectors", In Proceedings of the International Solar Energy Society Congress, New Delhi, India, 1978, pp. 960-964
[http://dx.doi.org/10.1016/B978-1-4832-8407-1.50190-2]
[41]
A. Hasan, and A.A. Sayigh, "Effect of sand and dust accumulation on the light transmittance, reflectance, and absorbance of the PV glaz-ing. Renewable energy: Technology and environment", In Proceedings of the 2nd World Renewable Energy Congress, Reading, UKpp. 461-466
[42]
H.K. Elminir, A.E. Ghitas, R.H. Hamid, F. El-Hussainy, M.M. Beheary, and K.M. Abdel-Moneim, "Effect of dust on the transparent cover of solar collectors", Energy Conserv. Manag., vol. 47, pp. 3192-3203, 2006.
[http://dx.doi.org/10.1016/j.enconman.2006.02.014]
[43]
M.R. Maghami, H. Hizam, C. Gomes, M.A. Radzi, M.I. Rezadad, and S. Hajighorbani, "Power loss due to soiling on solar panel: A re-view", Renew. Sustain. Energy Rev., vol. 59, pp. 1307-1316, 2016.
[http://dx.doi.org/10.1016/j.rser.2016.01.044]
[44]
J.H. Wohlgemuth, and S. Kurtz, Reliability testing beyond qualification as a key component in photovoltaic’s progress toward grid parity. Proceedings of the 2011 International Reliability Physics Symposium, Monterey, CA, USA, 2011.
[http://dx.doi.org/10.1109/IRPS.2011.5784534]
[45]
N.C. Park, J.S. Jeong, B.J. Kang, and D.H. Kim, "The effect of encapsulant discoloration and delamination on the electrical characteristics of the photovoltaic module", Microelectron. Reliab., vol. 53, pp. 1818-1822, 2013.
[http://dx.doi.org/10.1016/j.microrel.2013.07.062]
[46]
S. Meyer, "Snail trails: Root cause analysis and test procedures", Energy Procedia, vol. 38, pp. 498-505, 2013.
[http://dx.doi.org/10.1016/j.egypro.2013.07.309]
[47]
M. Kontges, Snail tracks (Schneckenspuren), worm marks, and cell cracks. Proc. 27th Eur. Photovoltaic Sol. Energy Conf. Exhib., Frankfurt, Germany, 2012.
[48]
S. Richter, Understanding the snail trail effect in silicon solar modules on a structural scale. 27th Eur. Photovoltaic Sol. Energy Conf. Exhib., Frankfurt, Germany, 2012.
[49]
S. Meyer, "Silver nanoparticles cause snail trails in photovoltaic modules", Sol. Energy Mater. Sol. Cells, vol. 121, pp. 171-175, 2013.
[http://dx.doi.org/10.1016/j.solmat.2013.11.013]
[50]
N. Kim, "Analysis and reproduction of snail trails on silver grid lines in crystalline silicon photovoltaic modules", Sol. Energy, vol. 124, pp. 153-162, 2016.
[http://dx.doi.org/10.1016/j.solener.2015.11.040]
[51]
P. Peng, "Microscopy study of snail trail phenomenon on photovoltaic modules", RSC Advances, vol. 2, pp. 11359-11365, 2012.
[http://dx.doi.org/10.1039/c2ra22280a]
[52]
Y-H. Lee, "Indoor acceleration program for snail track effect in silicon solar modules", Proc. 28th Eur. Photovoltaic Sol. Energy Conf. Exhib., pp. 3135-3137, 2013. Paris, France
[53]
G. Stollwerck, W. Schoeppel, A. Graichen, and C. Jaeger, "Polyolefin backsheet and new encapsulant suppress cell degradation in the module", Proc. 28th Eur. Photovoltaic Sol. Energy Conf. Exhib., pp. 3318-3320, 2013. Paris, France
[54]
M. K¨ontges, S. Kajari-Schroder, and I. Kunze, "Crack statistics for wafer-based silicon solar cell modules in the field measured by UV fluorescence", IEEE J. Photovoltaics, vol. 3, no. 1, pp. 95-101, 2013.
[http://dx.doi.org/10.1109/JPHOTOV.2012.2208941]
[55]
J. K¨asewieter, F. Haase, and M. Kontges, "Model of cracked solar cell metallization leading to permanent module power loss", IEEE J. Photovoltaics, vol. 5, no. 6, pp. 1735-1741, 2015.
[56]
A. Morlier, F. Haase, and M. Kontges, "Impact of cracks in multicrystalline silicon solar cells on PV module power—A simulation study based on field data", IEEE J. Photovoltaics, vol. 6, no. 1, pp. 28-33, 2016.
[57]
S. Kawai, T. Tanahashi, Y. Fukumoto, F. Tamai, A. Masuda, and M. Kondo, "Causes of degradation identified by the extended thermal cycling test on commercially available crystalline silicon photovoltaic modules", IEEE J. Photovolt., vol. 7, pp. 1511-1518, 2017.
[http://dx.doi.org/10.1109/JPHOTOV.2017.2741102]
[58]
J.A. Tsanakas, M. Karoglou, E.T. Delegou, P.N. Botsaris, A. Bakolas, and A. Moropoulou, "Assessment of the Performance and Defect Investigation of PV Modules after Accelerated Ageing Tests", Renew. Energy Power Qual. J., vol. 1, pp. 866-872, 2013.
[http://dx.doi.org/10.24084/repqj11.472]
[59]
G. Mathiak, J. Althaus, S. Menzler, L. Lichtschläger, and W. Herrmann, "PV Module Corrosion in ammonia and salt mist—Experimental study with full-size modules", In Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt, Germany, 2012, pp. 3536-3540
[60]
M. Gagliardi, and M. Paggi, "Multiphysics analysis of backsheet blistering in photovoltaic modules", Sol. Energy, vol. 183, pp. 512-520, 2019.
[http://dx.doi.org/10.1016/j.solener.2019.03.050]
[61]
P. Hülsmann, and K.A. Weiss, "Simulation of water ingress into PV-modules: IEC-testing versus outdoor exposure", Sol. Energy, vol. 115, pp. 347-353, 2015.
[http://dx.doi.org/10.1016/j.solener.2015.03.007]
[62]
A. Masuda, C. Yamamoto, N. Uchiyama, K. Ueno, T. Yamazaki, K. Mitsuhashi, A. Tsutsumida, J. Watanabe, J. Shirataki, and K. Matsuda, "Sequential and combined acceleration tests for crystalline Si photovoltaic modules", Jpn. J. Appl. Phys., vol. 55, p. 04ES10, 2016.
[http://dx.doi.org/10.7567/JJAP.55.04ES10]
[63]
S. Koch, J. Kupke, D. Tornow, M. Schoppa, S. Krauter, and P. Grunow, Dynamic Mechanical Load Tests on Crystalline Silicon Mod-ules. Proceedings of the 25th EPVSEC,, vol. 25. Valencia, Spain, 2010, pp. 3998-4001.
[64]
F. Fertig, S. Rein, M. Schubert, and W. Warta, Impact of Junction Breakdown in Multi-Crystalline Silicon Solar Cells on Hot Spot For-mation and Module Performance. Proceedings of the 26th European PV Solar Energy Conference and Exhibition, Hamburg Germany, 2011.
[65]
B. Guo, W. Javed, C. Pett, C.Y. Wu, and J.R. Scheffe, "Electrodynamic dust shield performance under simulated operating conditions for solar energy applications", Sol. Energy Mater. Sol. Cells, vol. 185, pp. 80-85, 2018.
[http://dx.doi.org/10.1016/j.solmat.2018.05.021]
[66]
H.J. Punge, and M. Kunz, "Hail observations and hailstorm characteristics in Europe: A review", Atmos. Res., vol. 176-177, pp. 159-184, 2016.
[http://dx.doi.org/10.1016/j.atmosres.2016.02.012]
[67]
K. Kilikeviciene, J. Matijosius, A. Kilikevicius, M. Jurevicius, V. Makarskas, J. Caban, and A. Marczuk, "Research of the energy losses of photovoltaic (PV) modules after hail simulation using a newly-created test bed", Energies, vol. 12, p. 4537, 2019.
[http://dx.doi.org/10.3390/en12234537]
[68]
A. Mathew, and A. Immanuel Selvakumar, "MPPT based standalone water pumping system", Proceedings of the IEEE International Con-ference on Computer, Communication and Electrical Technology (ICCCET ’11), pp. 455-460, 2011. Tamil Nadu, India
[69]
R. Faranda, and S. Leva, "Energy comparison of MPPT techniques for PV systems", WSEAS Trans. Power Syst., vol. 3, no. 6, pp. 446-455, 2008.
[70]
C. Liu, B. Wu, and R. Cheung, Advanced algorithm for MPPT control of photovoltaic systems. Proceedings of the Canadian Solar Buildings Conference, Montreal, Canada, 2004.
[71]
A. Al-Amoudi, and L. Zhang, "Optimal control of a grid-connected PV system for maximum power point tracking and unity power factor", In Proceedings of the 7th International Conference on Power Electronics and Variable Speed Drives, 1998, pp. 80-85
[http://dx.doi.org/10.1049/cp:19980504]
[72]
L. Zhang, A. Al-Amoudi, and Y. Bai, Real-time maximum power point tracking for grid-connected photovoltaic systems. Proceedings of the 8th IEEE International Conference on Power Electronics and Variable Speed Drives, London, UK, 2000, pp. 124-129.
[http://dx.doi.org/10.1049/cp:20000232]
[73]
M. Yue, and X. Wang, A revised incremental conductance MPPT algorithm for solar PV generation systems, Available from:x.http://arxiv.org/abs/1405.4890
[74]
K.H. Hussein, I. Muta, T. Hoshino, and M. Osakada, "Maximum photovoltaic power tracking: An algorithm for rapidly changing atmos-pheric conditions", IEE Proc., Gener. Transm. Distrib., vol. 142, no. 1, pp. 59-64, 1995.
[http://dx.doi.org/10.1049/ip-gtd:19951577]
[75]
T-Y. Kim, H-G. Ahn, S-K. Park, and Y-K. Lee, "A novel maximum power point tracking control for photovoltaic power system under rapidly changing solar radiation", In Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE ’01), 2001, pp. 1011-1014
[76]
A. Patel, V. Kumar, and Y. Kumar, "Perturb and observe maximum power point tracking for Photovoltaic cell", Innovative Systems Design and Engineering, vol. 4, no. 6, pp. 9-15, 2013.
[77]
T.H. Tuffaha, M. Babar, Y. Khan, and N.H. Malik, "Comparative study of different hill climbing MPPT through simulation and experimental test bed", Res. J. Appl. Sci. Eng. Technol., vol. 7, no. 20, pp. 4258-4263, 2014.
[http://dx.doi.org/10.19026/rjaset.7.797]
[78]
M. Quamruzzaman, and K.M. Rahman, "A modified perturb and observe the maximum power point tracking technique for single-stage grid-connected photovoltaic inverter", WSEAS Trans. Power Syst., vol. 9, pp. 111-118, 2014.
[79]
N. Femia, G. Petrone, and G. Spagnuolo, " "and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method"", IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963-973, 2005.
[http://dx.doi.org/10.1109/TPEL.2005.850975]
[80]
S. Go, S. Ahn, J. Choi, W. Jung, S. Yun, and I. Song, "Simulation and analysis of existing MPPT control methods in a PV generation system", J. Int. Counc. Electr. Eng., vol. 1, no. 4, pp. 446-451, 2011.
[http://dx.doi.org/10.5370/JICEE.2011.1.4.446]
[81]
L. Shang, H. Guo, and W. Zhu, "An improved MPPT control strategy based on incremental conductance algorithm", Prot Control Mod Power Syst, vol. 5, p. 14, 2020.
[http://dx.doi.org/10.1186/s41601-020-00161-z]
[82]
M. Yang, and J.W. Bao, "Variable power output control strategy based on reference current photovoltaic power generation system", Power System Protection and Control, vol. 47, no. 20, pp. 104-111, 2019.
[83]
P. Sangeetha, and B. Santhoshkumar, MPPT for PV system using improved incremental conductance method.
[84]
M. Hebchi, A. Kouzou, and A. Choucha, “Improved incremental conductance algorithm for mppt in photovoltaic system”, 2021 18th In-ternational Multi-Conference on Systems, Signals & Devices., SSD, 2021, pp. 1271-1278.
[85]
S.T. Kon, and M. Saad, "Modified incremental conductance algorithm for photovoltaic system under partial shading conditions and load variation", IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5384-5392, 2014.
[http://dx.doi.org/10.1109/TIE.2014.2304921]
[86]
N.H. Abdul Rahman, A.M. Omar, and E.H. Mat Saat, "A modification of variable step size INC MPPT in PV system", Proceedings of the IEEE 7th international conference on power engineering and optimization, pp. 340-345, 2013.
[87]
F. Liu, S. Duan, F. Liu, B. Liu, and Y. Kang, "A variable step size INC MPPT method for PV systems", IEEE Trans. Ind. Electron., vol. 55, pp. 2622-2628, 2008.
[http://dx.doi.org/10.1109/TIE.2008.920550]
[88]
J.Z. Tang, C.L. Wang, and X.F. Fang, "A MPPT implementation strategy based on incremental conductance method", Power Electronics, vol. 45, no. 4, pp. 73-75, 2011.
[89]
M.J. Hossain, B. Tiwari, and I. Bhattacharya, "An adaptive step size incremental conductance method for faster maximum power point tracking",
2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), 2016, pp. 3230-3233 [http://dx.doi.org/10.1109/PVSC.2016.7750262]
[90]
M. Abdulkadir, A.H.M. Yatim, and S.T. Yusuf, "An improved PSO-based MPPT control strategy for photovoltaic systems", Intern. J. Photo., vol. 2014, p. 11, 2014.
[http://dx.doi.org/10.1155/2014/818232]
[91]
K. Ishaque, Z. Salam, M. Amjad, and S. Mekhilef, "An improved particle swarm optimization (PSO)-based MPPT for PV with reduced steady-state oscillation", IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3627-3638, 2012.
[http://dx.doi.org/10.1109/TPEL.2012.2185713]
[92]
H-T. Yau, C-J. Lin, and Q-C. Liang, "PSO based PI controller design for a solar charger system", The Scie. World J., vol. 2013, p. 13, 2013.
[http://dx.doi.org/10.1155/2013/815280]
[93]
K-H. Chao, L-Y. Chang, and H-C. Liu, "Maximum power point tracking method based on modified particle swarm optimization for photovoltaic systems", Int. J. Photoe., vol. 2013, p. 6, 2013.
[http://dx.doi.org/10.1155/2013/583163]
[94]
S. Sreekumar, and A. Benny, "Maximum power point tracking of photovoltaic system using fuzzy logic controller-based boost converter", Proceedings of the International Conference on Current Trends in Engineering and Technology (ICCTET ’13), pp. 275-280, 2013.
[95]
A. Mellit, A.H. Arab, N. Khorissi, and H. Salhi, "An ANFIS based forecasting for solar radiation data from sunshine duration and ambient temperature", Proceedings of the Power Engineering Society General Meeting, pp. 1-6, 2007.
[http://dx.doi.org/10.1109/PES.2007.386131]
[96]
M.I. Hossain, S.A. Khan, M. Shafiullah, and M.J. Hossain, "Design and implementation of MPPT controlled grid-connected photovoltaic system", Proceedings of the IEEE Symposium on Computers and Informatics (ISCI ’11), pp. 284-289, 2011.
[http://dx.doi.org/10.1109/ISCI.2011.5958928]
[97]
A.A. Nabulsi, R. Dhaouadi, and H-U. Rehman, "Single input fuzzy controller (SFLC) based maximum power point tracking", Proceedings of the 4th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO ’11), pp. 1-5, 2011.
[http://dx.doi.org/10.1109/ICMSAO.2011.5775508]
[98]
S. Hadjammar, and F. Bouchafaa, "Performance of PV system connected to the grid with MPPT controlled by fuzzy control", Proceedings of the IEEE International Conference on Smart Energy Grid Engineering (SEGE ’13), pp. 1-7, 2013.
Oshawa, Canada [http://dx.doi.org/10.1109/SEGE.2013.6707922]
[99]
H.H. Lee, L.M. Phuong, P.Q. Dzung, N.T. Dan Vu, and L.D. Khoa, "The new maximum power point tracking algorithm for ANN-based solar PV systems", Proceedings of the IEEE Region 10 Conference (TENCON ’10), pp. 2179-2184, 2010. Fukuoka, Japan
[100]
M. Sheraz, and M.A. Abido, "An efficient MPPT controller using differential evolution and neural network", Proceedings of the IEEE In-ternational Conference on Power and Energy (PECon ’12), pp. 378-383, 2012.
[http://dx.doi.org/10.1109/PECon.2012.6450241]
[101]
Q.D. Phan, D.K. Le, H.L. Hong, and M.P. Le, andN. T. D. Vu, “The new MPPT algorithm for ANN-based PV. Proceedings of the Inter-national Forumon Strategic Technology (IFOST ’10), Ulsan, Republic of Korea, 2010, pp. 402-407.
[102]
L. Ciabattoni, M. Grisostomi, G. Ippoliti, and S. Longhi, "Neural networks based home energy management system in residential PV sce-nario", Proceedings of the 39th IEEE Photovoltaic Specialists Conference (PVSC ’13), pp. 1721-1726, 2013.
[http://dx.doi.org/10.1109/PVSC.2013.6744476]
[103]
H. Afghoul, F. Krim, and D. Chikouche, Increase the photovoltaic conversion efficiency using Neuro-fuzzy control applied to MPPT. Proceedings of the 1st International Renewable and Sustainable Energy Conference (IRSEC ’13), Ouarzazate, Morocco, 2013, pp. 348-353.
[http://dx.doi.org/10.1109/IRSEC.2013.6529700]
[104]
L. Wu, Z. Zhao, and J. Liu, "A single-stage three-phase grid-connected photovoltaic system with modified MPPT method and reactive power compensation", IEEE Trans. Energ. Convers., vol. 22, no. 4, pp. 881-886, 2007.
[http://dx.doi.org/10.1109/TEC.2007.895461]
[105]
L. Piegari, and R. Rizzo, "Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking", IET Renew. Power Gener., vol. 4, no. 4, pp. 317-328, 2010.
[http://dx.doi.org/10.1049/iet-rpg.2009.0006]
[106]
N.A. Azli, Z. Salam, A. Jusoh, M. Facta, B.C. Lim, and S. Hossain, "Effect of fill factor on the MPPT performance of a grid-connected inverter under Malaysian conditions", Proceedings of the IEEE 2nd International Power and Energy Conference (PECon ’08), pp. 460-462, 2008.
[http://dx.doi.org/10.1109/PECON.2008.4762509]
[107]
M. Tauseef, and E. Nowicki, "A simple and cost-effective maximum power point tracker for PV arrays employing a novel constant volt-age technique", Proceedings of the 25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE ’12), pp. 1-4, 2012.
[http://dx.doi.org/10.1109/CCECE.2012.6334828]
[108]
P. Mattavelli, S. Saggini, E. Orietti, and G. Spiazzi, "A simple mixed-signal MPPT circuit for photovoltaic applications", Proceedings of the 25th Annual IEEE Applied Power Electronics Conference and Exposition (APEC ’10), pp. 953-960, 2010.
[http://dx.doi.org/10.1109/APEC.2010.5433389]
[109]
H. Al-Bahadili, H. Al-Saadi, R. Al-Sayed, and M.A.S. Hasan, Simulation of maximum power point tracking for photovoltaic systems. Proceedings of the 1st International Conference & Exhibition on the Applications of Information Technology to Renewable Energy Pro-cesses and Systems (IT-DREPS), Amman, Jordan, 2013, pp. 79-84.
[http://dx.doi.org/10.1109/IT-DREPS.2013.6588157]
[110]
X. Wu, Z. Cheng, and X. Wei, "A study of maximum power point tracking in novel small-scale photovoltaic LED lighting systems", In Proceedings of the International Conference on Artificial Intelligence and Computational Intelligence (AICI ’09), 2009, pp. 40-43 Shanghai, China
[http://dx.doi.org/10.1109/AICI.2009.387]
[111]
M.E. Ropp, and S. Gonzalez, "Development of a MATLAB/simulink model of a single-phase grid-connected photovoltaic system", IEEE Trans. Energ. Convers., vol. 24, no. 1, pp. 195-202, 2009.
[http://dx.doi.org/10.1109/TEC.2008.2003206]
[112]
G. Brando, A. Dannier, and R. Rizzo, A sensorless control of H bridge multilevel converter for maximum power point tracking in grid-connected photovoltaic systems. Proceedings of the International Conference on Clean Electrical Power (ICCEP ’07), Capri, Italy, 2007, pp. 789-794.
[http://dx.doi.org/10.1109/ICCEP.2007.384305]
[113]
S.A. Khan, and M.I. Hossain, Design and implementation of microcontroller based fuzzy logic control for maximum power point track-ing of a photovoltaic system. Proceedings of the International Conference on Electrical and Computer Engineering (ICECE ’10), 2010, pp. 322-325.
[http://dx.doi.org/10.1109/ICELCE.2010.5700693]
[114]
R. Kadri, J-P. Gaubert, and G. Champenois, "An Improved maximum power point tracking for photovoltaic grid-connected inverter based on voltage-oriented control", IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 66-75, 2011.
[http://dx.doi.org/10.1109/TIE.2010.2044733]
[115]
N.G.M. Thao, and K. Uchida, "Control photovoltaic grid-connected system using fuzzy logic and back-stepping approach", Proceedings of the 9th Asian Control Conference (ASCC ’13), pp. 1-8, 2013.
[116]
D. Beriber, and A. Talha, "MPPT techniques for PV systems", 4th International Conference on Power Engineering, Energy and Electrical Drives, pp. 1437-1442, 2013.
[117]
R.B. Bollipo, S. Mikkili, and P.K. Bonthagorla, "Hybrid, optimal, intelligent and classical PV MPPT techniques: A review", CSEE Journal of Power and Energy Systems, vol. 7, no. 1, pp. 9-33, 2021.
[118]
D. Sera, L. Mathe, T. Kerekes, S.V. Spataru, and R. Teodorescu, "On the perturb-and-observe and incremental conductance MPPT meth-ods for PV systems", IEEE J. Photov., vol. 3, no. 3, pp. 1070-1078, 2013.
[http://dx.doi.org/10.1109/JPHOTOV.2013.2261118]
[119]
A.M. Atallah, A.Y. Abdelaziz, and R.S. Jumaah, "Implementation of perturb and observe MPPT of PV system with direct control method using buck and buck-boost converters", Emerging Trends in Electrical, Electronics and Instrumentation Engineering: An international Journal (EEIEJ), vol. 1, no. 1, pp. 31-44, 2014.
[120]
V.R. Kota, and M.N. Bhukya, "Anovel linear tangent based P&O scheme for MPPT of a PV system", Renew. Sustain. Energy Rev., vol. 71, pp. 257-267, 2017.
[http://dx.doi.org/10.1016/j.rser.2016.12.054]
[121]
B. Subudhi, and R. Pradhan, "A comparative study on maximum power point tracking techniques for photovoltaic power systems", IEEE Trans. Sustain. Energy, vol. 4, no. 1, pp. 89-98, 2012.
[http://dx.doi.org/10.1109/TSTE.2012.2202294]
[122]
A.R. Reisi, M.H. Moradi, and S. Jamasb, "Classification and comparison of maximum power point tracking techniques for photovoltaic system: A review", Renew. Sustain. Energy Rev., vol. 19, pp. 433-443, 2013.
[http://dx.doi.org/10.1016/j.rser.2012.11.052]
[123]
A. Mohapatra, B. Nayak, P. Das, and K.B. Mohanty, "A review on MPPT techniques of PV system under partial shading condition", Renew. Sustain. Energy Rev., vol. 80, pp. 854-867, 2017.
[http://dx.doi.org/10.1016/j.rser.2017.05.083]
[124]
A.B.G. Bahgat, N.H. Helwa, G.E. Ahmad, and E.T. Shenawy, "MPPT controller for PV systems using neural networks", Renew. Energy, vol. 30, no. 8, pp. 1257-1268, 2005.
[http://dx.doi.org/10.1016/j.renene.2004.09.011]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy