Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Carvacrol as a Prospective Regulator of Cancer Targets/Signalling Pathways

Author(s): Jyoti Singh, Suaib Luqman* and Abha Meena*

Volume 16, Issue 5, 2023

Published on: 08 September, 2022

Article ID: e050722206644 Pages: 17

DOI: 10.2174/1874467215666220705142954

Price: $65

Abstract

Background: Carvacrol is a naturally occurring phenolic isopropyl monoterpene isolated from oregano, thyme, pepperwort, ajwain, marjoram, and wild bergamot. It possesses pharmacological activities, including anticancer, anti-genotoxic, and anti-inflammation associated with antioxidant properties. The antioxidant property of carvacrol is found to be accountable for its anticancer property. Thus, the present review summarizes and discusses the anticancer potential of carvacrol, revealing its target, signalling pathways, efficacy, pharmacokinetics, and toxicity.

Objective: Carvacrol showed promising activity to be considered in more detail for cancer treatment. This review aims to summarize the evidence concerning the understanding of anticancer potential of carvacrol. However, the mode of action of carvacrol is not yet fully explored and hence requires detailed exploratory studies. This review consists of carvacol’s in vitro, in vivo, preclinical and clinical studies.

Methods: A literature search was done by searching various online databases like Pubmed, Scopus, and Google Scholar with the specific keyword “Carvacrol,” along with other keywords, such as “antioxidant properties,” “oncology research,” “genotoxicity,” and “anti-inflammatory property”.

Results: Carvacrol possesses weak mutagenic and genotoxic potential at non-toxic doses. Carvacrol alone shows the potential to target cancerous cells and significantly deter the growth of cancer cells; this is a targeted method. It offers anti-inflammatory effects by decreasing oxidative stress, primarily targeting ER and mitochondria. Carvacrol depicts targeted explicitly ROSdependent and mitochondrial-mediated apoptosis in different cancer cells. Moreover, carvacrol significantly regulates the cell cycle and prevents tumor progression. Few reports also suggest its significant role in inhibiting cell migration, invasion, and angiogenesis in tumor cells. Hence, carvacrol affects cell survival and cell-killing activity by targeting key biomarkers and major signalling pathways, including PI3K/AKT/mTOR, MAPK, STAT3, and Notch.

Conclusion: Until now, its anticancer mechanism is not yet fully explored. A limited number of research studies have been conducted on carvacrol. It possesses both cancer prevention and cancer therapeutic properties. This molecule needs more validatory research so that it can be analyzed precisely.

Keywords: Carvacrol, Terpenoids, Phytochemicals, Anti-cancer, Signalling pathway, Biomarker

Graphical Abstract

[1]
Demain, A.L.; Vaishnav, P. Natural products for cancer chemotherapy. Microb. Biotechnol., 2011, 4(6), 687-699.
[http://dx.doi.org/10.1111/j.1751-7915.2010.00221.x] [PMID: 21375717]
[2]
Seca, A.M.L.; Pinto, D.C.G.A. Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. Int. J. Mol. Sci., 2018, 19(1), 263.
[http://dx.doi.org/10.3390/ijms19010263] [PMID: 29337925]
[3]
Bouwmeester, H.; Schuurink, R.C.; Bleeker, P.M.; Schiestl, F. The role of volatiles in plant communication. Plant J., 2019, 100(5), 892-907.
[http://dx.doi.org/10.1111/tpj.14496] [PMID: 31410886]
[4]
Böttger, A.; Vothknecht, U.; Bolle, C.; Wolf, A. Terpenes and Terpenoids. In: Lessons on Caffeine, Cannabis & Co. Learning Materials in Biosciences; Springer, 2018; pp. 153-170.
[http://dx.doi.org/10.1007/978-3-319-99546-5_10]
[5]
Caputi, L.; Aprea, E. Use of terpenoids as natural flavouring compounds in food industry. Recent Pat. Food Nutr. Agric., 2011, 3(1), 9-16.
[http://dx.doi.org/10.2174/2212798411103010009] [PMID: 21114471]
[6]
Paduch, R. Kandefer-Szerszeń M.; Trytek, M.; Fiedurek, J. Terpenes: Substances useful in human healthcare. Arch. Immunol. Ther. Exp. (Warsz.), 2007, 55(5), 315-327.
[http://dx.doi.org/10.1007/s00005-007-0039-1] [PMID: 18219762]
[7]
Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc., 2008, 83(5), 584-594.
[http://dx.doi.org/10.1016/S0025-6196(11)60735-0] [PMID: 18452692]
[8]
Bicas, J.L.; Neri-Numa, I.A.; Ruiz, A.L.; De Carvalho, J.E.; Pastore, G.M. Evaluation of the antioxidant and antiproliferative potential of bioflavors. Food Chem. Toxicol., 2011, 49(7), 1610-1615.
[http://dx.doi.org/10.1016/j.fct.2011.04.012] [PMID: 21540069]
[9]
Cox-Georgian, D.; Ramadoss, N.; Dona, C.; Basu, C. Therapeutic and medicinal uses of terpenes.Medicinal Plants; Springer, Cham, 2019, pp. 333-359.
[http://dx.doi.org/10.1007/978-3-030-31269-5_15]
[10]
Sharma, S.H.; Thulasingam, S.; Nagarajan, S. Terpenoids as anti-colon cancer agents - A comprehensive review on its mechanistic perspectives. Eur. J. Pharmacol., 2017, 795, 169-178.
[http://dx.doi.org/10.1016/j.ejphar.2016.12.008] [PMID: 27940056]
[11]
Ansari, I.A.; Akhtar, M.S. Current insights on the role of terpenoids as anticancer agents: A perspective on cancer prevention and treatment In:Swamy, M., Akhtar, M. (eds) Natural Bio-active Compounds.Springer: Singapore, 2019, pp. 53-80.
[http://dx.doi.org/10.1007/978-981-13-7205-6_3]
[12]
Huang, M.; Lu, J-J.; Huang, M-Q.; Bao, J-L.; Chen, X-P.; Wang, Y-T. Terpenoids: Natural products for cancer therapy. Expert Opin. Investig. Drugs, 2012, 21(12), 1801-1818.
[http://dx.doi.org/10.1517/13543784.2012.727395] [PMID: 23092199]
[13]
De Vincenzi, M.; Stammati, A.; De Vincenzi, A.; Silano, M. Constituents of aromatic plants: Carvacrol. Fitoterapia, 2004, 75(7-8), 801-804.
[http://dx.doi.org/10.1016/j.fitote.2004.05.002] [PMID: 15567271]
[14]
Beena, D.; Kumar, D.; Rawat, D.S. Synthesis and antioxidant activity of thymol and carvacrol based Schiff bases. Bioorg. Med. Chem. Lett., 2013, 23(3), 641-645.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.001] [PMID: 23273412]
[15]
Pressman, P.; Clemens, R.; Hayes, W.; Reddy, C. Food additive safety. Toxicol. Res. App., 2017, 1, 239784731772357..
[http://dx.doi.org/10.1177/2397847317723572]
[16]
Campos, E.V.R.; Proença, P.L.F.; Oliveira, J.L.; Pereira, A.E.S.; de Morais Ribeiro, L.N.; Fernandes, F.O.; Gonçalves, K.C.; Polanczyk, R.A.; Pasquoto-Stigliani, T.; Lima, R.; Melville, C.C.; Della Vechia, J.F.; Andrade, D.J.; Fraceto, L.F. Carvacrol and linalool co-loaded in β-cyclodextrin-grafted chitosan nanoparticles as sustainable biopesticide aiming pest control. Sci. Rep., 2018, 8(1), 7623.
[http://dx.doi.org/10.1038/s41598-018-26043-x] [PMID: 29769620]
[17]
Mezzoug, N.; Elhadri, A.; Dallouh, A.; Amkiss, S.; Skali, N.S.; Abrini, J.; Zhiri, A.; Baudoux, D.; Diallo, B.; El Jaziri, M.; Idaomar, M. Investigation of the mutagenic and antimutagenic effects of Origanum compactum essential oil and some of its constituents. Mutat. Res., 2007, 629(2), 100-110.
[http://dx.doi.org/10.1016/j.mrgentox.2007.01.011] [PMID: 17383930]
[18]
Bachir, R.G.; Benali, M. Antibacterial activity of the essential oils from the leaves of Eucalyptus globulus against Escherichia coli and Staphylococcus aureus. Asian Pac. J. Trop. Biomed., 2012, 2(9), 739-742.
[http://dx.doi.org/10.1016/S2221-1691(12)60220-2] [PMID: 23570005]
[19]
Li, L.R.; Liu, C.G.; Wei, Y.J. Fluorescence spectra and absorption spectra of carvacrol. Guangpuxue Yu Guangpu Fenxi, 2011, 31(10), 2763-2766.
[20]
Nicolaou, K.C. Advancing the drug discovery and development process. Angew. Chem. Int. Ed. Engl., 2014, 53(35), 9128-9140.
[http://dx.doi.org/10.1002/anie.201404761] [PMID: 25045053]
[21]
Stojanović N.M.; Stevanović M.; Randjelović P.; Mitić K.; Petrović V.; Sokolović D.; Mladenović B.; Lalić J.; Radulović N.S. Low dose of carvacrol prevents rat pancreas tissue damage after L-arginine application, while higher doses cause pancreatic tissue impairment. Food Chem. Toxicol., 2019, 128, 280-285.
[http://dx.doi.org/10.1016/j.fct.2019.04.010] [PMID: 31004718]
[22]
Ashraf, Z.; Rafiq, M.; Nadeem, H.; Hassan, M.; Afzal, S.; Waseem, M.; Afzal, K.; Latip, J.; Latip, J. Carvacrol derivatives as mushroom tyrosinase inhibitors; synthesis, kinetics mechanism and molecular docking studies. PLoS One, 2017, 12(5), e0178069..
[http://dx.doi.org/10.1371/journal.pone.0178069] [PMID: 28542395]
[23]
Marchese, A.; Arciola, C.R.; Coppo, E.; Barbieri, R.; Barreca, D.; Chebaibi, S.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M.; Daglia, M. The natural plant compound carvacrol as an antimicrobial and anti-biofilm agent: Mechanisms, synergies and bio-inspired anti-infective materials. Biofouling, 2018, 34(6), 630-656.
[http://dx.doi.org/10.1080/08927014.2018.1480756] [PMID: 30067078]
[24]
Meunier, B. Chemistry. Catalytic degradation of chlorinated phenols. Science, 2002, 296(5566), 270-271.
[http://dx.doi.org/10.1126/science.1070976] [PMID: 11951021]
[25]
Savage, T.J.; Croteau, R. Biosynthesis of monoterpenes: Regio- and stereochemistry of (+)-3-carene biosynthesis. Arch. Biochem. Biophys., 1993, 305(2), 581-587.
[http://dx.doi.org/10.1006/abbi.1993.1464] [PMID: 8373196]
[26]
Peters, R.J.; Croteau, R.B. Abietadiene synthase catalysis: Mutational analysis of a prenyl diphosphate ionization-initiated cyclization and rearrangement. Proc. Natl. Acad. Sci. USA, 2002, 99(2), 580-584.
[http://dx.doi.org/10.1073/pnas.022627099] [PMID: 11805316]
[27]
Xu, J.; Xu, J.; Ai, Y.; Farid, R.A.; Tong, L.; Yang, D. Mutational analysis and dynamic simulation of S-limonene synthase reveal the importance of Y573: Insight into the cyclization mechanism in monoterpene synthases. Arch. Biochem. Biophys., 2018, 638, 27-34.
[http://dx.doi.org/10.1016/j.abb.2017.12.007] [PMID: 29225126]
[28]
Angioni, A.; Barra, A.; Arlorio, M.; Coisson, J.D.; Russo, M.T.; Pirisi, F.M.; Satta, M.; Cabras, P. Chemical composition, plant genetic differences, and antifungal activity of the essential oil of Helichrysum italicum G. Don ssp. microphyllum (Willd). Nym. J. Agric. Food Chem., 2003, 51(4), 1030-1034.
[http://dx.doi.org/10.1021/jf025940c] [PMID: 12568568]
[29]
Guimarães, A.G.; Oliveira, G.F.; Melo, M.S.; Cavalcanti, S.C.; Antoniolli, A.R.; Bonjardim, L.R.; Silva, F.A.; Santos, J.P.; Rocha, R.F.; Moreira, J.C.; Araújo, A.A.; Gelain, D.P.; Quintans-Júnior, L.J. Bioassay-guided evaluation of antioxidant and antinociceptive activities of carvacrol. Basic Clin. Pharmacol. Toxicol., 2010, 107(6), 949-957.
[http://dx.doi.org/10.1111/j.1742-7843.2010.00609.x] [PMID: 20849525]
[30]
De Vincenzi, M.; Maialetti, F.; Silano, M. Constituents of aromatic plants: Teucrin A. Fitoterapia, 2003, 74(7-8), 746-749.
[http://dx.doi.org/10.1016/S0367-326X(03)00145-X] [PMID: 14630189]
[31]
Crocoll, C.; Asbach, J.; Novak, J.; Gershenzon, J.; Degenhardt, J. Terpene synthases of oregano (Origanum vulgare L.) and their roles in the pathway and regulation of terpene biosynthesis. Plant Mol. Biol., 2010, 73(6), 587-603.
[http://dx.doi.org/10.1007/s11103-010-9636-1] [PMID: 20419468]
[32]
Sezik, E.; Tümen, G.; Kirimer, N.; Özek, T.; Baser, K.H.C. Essential oil composition of four origanum vulgare subspecies of anatolian origin. J. Essent. Oil Res., 1993, 5(4), 425-431.
[http://dx.doi.org/10.1080/10412905.1993.9698253]
[33]
Eftekhar, F.; Nariman, F.; Yousefzadi, M.; Hadiand, J.; Ebrahimi, S.N. Anti-Helicobacter pylori activity and essential oil composition of Thymus caramanicus from Iran. Nat. Prod. Commun., 2009, 4(8), 1139-1142.
[http://dx.doi.org/10.1177/1934578X0900400825] [PMID: 19769000]
[34]
Fachini-Queiroz, F.C.; Kummer, R.; Estevão-Silva, C.F.; Carvalho, M.D.; Cunha, J.M.; Grespan, R.; Bersani-Amado, C.A.; Cuman, R.K. Effects of thymol and carvacrol, constituents of thymus vulgaris l. essential oil, on the inflammatory response. Evid. Based Complement. Alternat. Med., 2012, 2012, 657026..
[http://dx.doi.org/10.1155/2012/657026] [PMID: 22919415]
[35]
Belaqziz, R.; Bahri, F.; Romane, A.; Antoniotti, S.; Fernandez, X.; Duñach, E. Essential oil composition and antibacterial activity of the different parts of Thymus maroccanus Ball: An endemic species in Morocco. Nat. Prod. Res., 2013, 27(18), 1700-1704.
[http://dx.doi.org/10.1080/14786419.2013.768989] [PMID: 23425125]
[36]
Sökmen, M.; Serkedjieva, J.; Daferera, D.; Gulluce, M.; Polissiou, M.; Tepe, B.; Akpulat, H.A.; Sahin, F.; Sokmen, A. In vitro antioxidant, antimicrobial, and antiviral activities of the essential oil and various extracts from herbal parts and callus cultures of Origanum acutidens. J. Agric. Food Chem., 2004, 52(11), 3309-3312.
[http://dx.doi.org/10.1021/jf049859g] [PMID: 15161188]
[37]
Panuccio, M.R.; Fazio, A.; Papalia, T.; Barreca, D. Antioxidant properties and flavonoid profile in leaves of calabrian lavandula multifida l., an autochthon plant of mediterranean southern regions. Chem. Biodivers., 2016, 13(4), 416-421.
[http://dx.doi.org/10.1002/cbdv.201500115] [PMID: 26948403]
[38]
Economou, G.; Panagopoulos, G.; Karamanos, A.; Tarantilis, P.; Kalivas, D.; Kotoulas, V. An assessment of the behavior of carvacrol rich wild Lamiaceae species from the eastern Aegean under cultivation in two different environments. Ind. Crops Prod., 2014, 54, 62-69.
[http://dx.doi.org/10.1016/j.indcrop.2013.12.044]
[39]
Moretti, A.; D’Antuono, L.F.; Elementi, S. Essential oils of Nigella sativa L. and Nigella damascena L. seed. J. Essent. Oil Res., 2004, 16(3), 182-183.
[http://dx.doi.org/10.1080/10412905.2004.9698690]
[40]
Sampaio, L.A.; Pina, L.T.S.; Serafini, M.R.; Tavares, D.D.S.; Guimarães, A.G. Antitumor effects of carvacrol and thymol: A systematic review. Front. Pharmacol., 2021, 12, 702487..
[http://dx.doi.org/10.3389/fphar.2021.702487] [PMID: 34305611]
[41]
Fan, K.; Li, X.; Cao, Y.; Qi, H.; Li, L.; Zhang, Q.; Sun, H. Carvacrol inhibits proliferation and induces apoptosis in human colon cancer cells. Anticancer Drugs, 2015, 26(8), 813-823.
[http://dx.doi.org/10.1097/CAD.0000000000000263] [PMID: 26214321]
[42]
Ipek, E.; Tüylü, B.A. Zeytinoğlu, H. Effects of carvacrol on sister chromatid exchanges in human lymphocyte cultures. Cytotechnology, 2003, 43(1-3), 145-148.
[http://dx.doi.org/10.1023/B:CYTO.0000039896.26707.40] [PMID: 19003219]
[43]
He, L.; Mo, H.; Hadisusilo, S.; Qureshi, A.A.; Elson, C.E. Isoprenoids suppress the growth of murine B16 melanomas in vitro and in vivo. J. Nutr., 1997, 127(5), 668-674.
[http://dx.doi.org/10.1093/jn/127.5.668] [PMID: 9164984]
[44]
Karkabounas, S.; Kostoula, O.K.; Daskalou, T.; Veltsistas, P.; Karamouzis, M.; Zelovitis, I.; Metsios, A.; Lekkas, P.; Evangelou, A.M.; Kotsis, N.; Skoufos, I. Anticarcinogenic and antiplatelet effects of carvacrol. Exp. Oncol., 2006, 28(2), 121-125.
[PMID: 16837902]
[45]
Baranauskaite, J.; Kubiliene, A.; Marksa, M.; Petrikaite, V. Vitkevičius, K.; Baranauskas, A.; Bernatoniene, J. The influence of different oregano species on the antioxidant activity determined using hplc postcolumn dpph method and anticancer activity of carvacrol and rosmarinic acid. BioMed Res. Int., 2017, 2017, 1681392..
[http://dx.doi.org/10.1155/2017/1681392] [PMID: 29181386]
[46]
Ramos, M.; Beltrán, A.; Peltzer, M.; Valente, A.J.M.; Garrigósa, M. Release and antioxidant activity of carvacrol and thymol from polypropylene active packaging . films. Lebensm. Wiss. Technol., 2014, 58(2), 470-477.
[http://dx.doi.org/10.1016/j.lwt.2014.04.019]
[47]
Lampronti, I.; Saab, A.M.; Gambari, R. Antiproliferative activity of essential oils derived from plants belonging to the Magnoliophyta division. Int. J. Oncol., 2006, 29(4), 989-995.
[http://dx.doi.org/10.3892/ijo.29.4.989] [PMID: 16964395]
[48]
Ahmad, A.; Saeed, M.; Ansari, I.A. Molecular insights on chemopreventive and anticancer potential of carvacrol: Implications from solid carcinomas. J. Food Biochem., 2021, 45(12), e14010..
[http://dx.doi.org/10.1111/jfbc.14010] [PMID: 34796513]
[49]
Hlosrichok, A.; Sumkhemthong, S.; Sritularak, B.; Chanvorachote, P.; Chaotham, C. A bibenzyl from Dendrobium ellipsophyllum induces apoptosis in human lung cancer cells. J. Nat. Med., 2018, 72(3), 615-625.
[http://dx.doi.org/10.1007/s11418-018-1186-x] [PMID: 29488156]
[50]
Tay, K-C.; Tan, L.T-H.; Chan, C.K.; Hong, S.L.; Chan, K-G.; Yap, W.H.; Pusparajah, P.; Lee, L-H.; Goh, B-H. Formononetin: A review of its anticancer potentials and mechanisms. Front. Pharmacol., 2019, 10, 820.
[http://dx.doi.org/10.3389/fphar.2019.00820] [PMID: 31402861]
[51]
Saelens, X.; Festjens, N.; Vande Walle, L.; van Gurp, M.; van Loo, G.; Vandenabeele, P. Toxic proteins released from mitochondria in cell death. Oncogene, 2004, 23(16), 2861-2874.
[http://dx.doi.org/10.1038/sj.onc.1207523] [PMID: 15077149]
[52]
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[53]
Pfeffer, C.M.; Singh, A.T.K. Apoptosis: A target for anticancer therapy. Int. J. Mol. Sci., 2018, 19(2), 448.
[http://dx.doi.org/10.3390/ijms19020448] [PMID: 29393886]
[54]
Goldar, S.; Khaniani, M.S.; Derakhshan, S.M.; Baradaran, B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac. J. Cancer Prev., 2015, 16(6), 2129-2144.
[http://dx.doi.org/10.7314/APJCP.2015.16.6.2129] [PMID: 25824729]
[55]
Zaman, S.; Wang, R.; Gandhi, V. Targeting the apoptosis pathway in hematologic malignancies. Leuk. Lymphoma, 2014, 55(9), 1980-1992.
[http://dx.doi.org/10.3109/10428194.2013.855307] [PMID: 24295132]
[56]
Tian, H.Y.; Li, Z.X.; Li, H.Y.; Wang, H.J.; Zhu, X.W.; Dou, Z.H. Effects of 14 single herbs on the induction of caspase-3 in tumor cells: A brief review. Chin. J. Integr. Med., 2013, 19(8), 636-640.
[http://dx.doi.org/10.1007/s11655-013-1539-y] [PMID: 23893135]
[57]
Al-Fatlawi, A.A.; Al-Fatlawi, A.A.; Irshad, M.; Zafaryab, M.; Rizvi, M.M.; Ahmad, A. Rice bran phytic acid induced apoptosis through regulation of Bcl-2/Bax and p53 genes in HepG2 human hepatocellular carcinoma cells. Asian Pac. J. Cancer Prev., 2014, 15(8), 3731-3736.
[http://dx.doi.org/10.7314/APJCP.2014.15.8.3731] [PMID: 24870784]
[58]
Mari, A.; Mani, G.; Nagabhishek, S.N.; Balaraman, G.; Subramanian, N.; Mirza, F.B.; Sundaram, J.; Thiruvengadam, D. Carvacrol promotes cell cycle arrest and apoptosis through pi3k/akt signaling pathway in mcf-7 breast cancer cells. Chin. J. Integr. Med., 2020.
[PMID: 32572774]
[59]
Arunasree, K.M. Anti-proliferative effects of carvacrol on a human metastatic breast cancer cell line, MDA-MB 231. Phytomedicine, 2010, 17(8-9), 581-588.
[http://dx.doi.org/10.1016/j.phymed.2009.12.008] [PMID: 20096548]
[60]
Zeytinoglu, H.; Incesu, Z.; Baser, K.H.C. Inhibition of DNA synthesis by carvacrol in mouse myoblast cells bearing a human N-RAS oncogene. Phytomedicine, 2003, 10(4), 292-299.
[http://dx.doi.org/10.1078/094471103322004785] [PMID: 12809359]
[61]
Yin, Q.H.; Yan, F.X.; Zu, X-Y.; Wu, Y.H.; Wu, X.P.; Liao, M.C.; Deng, S.W.; Yin, L.L.; Zhuang, Y.Z. Anti-proliferative and pro-apoptotic effect of carvacrol on human hepatocellular carcinoma cell line HepG-2. Cytotechnology, 2012, 64(1), 43-51.
[http://dx.doi.org/10.1007/s10616-011-9389-y] [PMID: 21938469]
[62]
Koparal, A.T.; Zeytinoglu, M. Effects of Carvacrol on a Human Non-Small Cell Lung Cancer (NSCLC) Cell Line, A549. Cytotechnology, 2003, 43(1-3), 149-154.
[http://dx.doi.org/10.1023/B:CYTO.0000039917.60348.45] [PMID: 19003220]
[63]
Dai, W.; Sun, C.; Huang, S.; Zhou, Q. Carvacrol suppresses proliferation and invasion in human oral squamous cell carcinoma. OncoTargets Ther., 2016, 9, 2297-2304.
[http://dx.doi.org/10.2147/OTT.S98875] [PMID: 27143925]
[64]
Fischer, U.; Schulze-Osthoff, K. Apoptosis-based therapies and drug targets. Cell Death Differ., 2005, 12(Suppl. 1), 942-961.
[http://dx.doi.org/10.1038/sj.cdd.4401556] [PMID: 15665817]
[65]
Barnum, K.J.; O’Connell, M.J. Cell cycle regulation by checkpoints. Methods Mol. Biol., 2014, 1170, 29-40.
[66]
Schafer, K.A. The cell cycle: A review. Vet. Pathol., 1998, 35(6), 461-478.
[http://dx.doi.org/10.1177/030098589803500601] [PMID: 9823588]
[67]
Du, Q.; Guo, X.; Wang, M.; Li, Y.; Sun, X.; Li, Q. The application and prospect of CDK4/6 inhibitors in malignant solid tumors. J. Hematol. Oncol., 2020, 13(1), 41.
[http://dx.doi.org/10.1186/s13045-020-00880-8] [PMID: 32357912]
[68]
Kastan, M.B.; Bartek, J. Cell-cycle checkpoints and cancer. Nature, 2004, 432(7015), 316-323.
[http://dx.doi.org/10.1038/nature03097] [PMID: 15549093]
[69]
Heidarian, E.; Keloushadi, M. Antiproliferative and anti-invasion effects of carvacrol on PC3 human prostate cancer cells through reducing pSTAT3, pAKT, and pERK1/2 signaling proteins. Int. J. Prev. Med., 2019, 10, 156.
[http://dx.doi.org/10.4103/ijpvm.IJPVM_292_17] [PMID: 32133074]
[70]
Li, L.; He, L.; Wu, Y.; Zhang, Y. Carvacrol affects breast cancer cells through TRPM7 mediated cell cycle regulation. Life Sci., 2021, 266, 118894..
[http://dx.doi.org/10.1016/j.lfs.2020.118894] [PMID: 33310045]
[71]
Khan, F.; Singh, V.K.; Saeed, M.; Kausar, M.A.; Ansari, I.A. Carvacrol induced program cell death and cell cycle arrest in androgen-independent human prostate cancer cells via inhibition of notch signaling. Anticancer. Agents Med. Chem., 2019, 19(13), 1588-1608.
[http://dx.doi.org/10.2174/1871520619666190731152942] [PMID: 31364516]
[72]
Lim, W.; Ham, J.; Bazer, F.W.; Song, G. Carvacrol induces mitochondria-mediated apoptosis via disruption of calcium homeostasis in human choriocarcinoma cells. J. Cell. Physiol., 2019, 234(2), 1803-1815.
[http://dx.doi.org/10.1002/jcp.27054] [PMID: 30070691]
[73]
Guan, X. Cancer metastases: Challenges and opportunities. Acta Pharm. Sin. B, 2015, 5(5), 402-418.
[http://dx.doi.org/10.1016/j.apsb.2015.07.005] [PMID: 26579471]
[74]
Li, L.; Tang, P.; Li, S.; Qin, X.; Yang, H.; Wu, C.; Liu, Y. Notch signaling pathway networks in cancer metastasis: A new target for cancer therapy. Med. Oncol., 2017, 34(10), 180.
[http://dx.doi.org/10.1007/s12032-017-1039-6] [PMID: 28918490]
[75]
Chaffer, C.L.; Weinberg, R.A. A perspective on cancer cell metastasis. Science, 2011, 331(6024), 1559-1564.
[http://dx.doi.org/10.1126/science.1203543] [PMID: 21436443]
[76]
Li, L.; Zhao, F.; Lu, J.; Li, T.; Yang, H.; Wu, C.; Liu, Y.; Liu, Y. Notch-1 signaling promotes the malignant features of human breast cancer through NF-κB activation. PLoS One, 2014, 9(4), e95912..
[http://dx.doi.org/10.1371/journal.pone.0095912] [PMID: 24760075]
[77]
Chen, W-L.; Barszczyk, A.; Turlova, E.; Deurloo, M.; Liu, B.; Yang, B.B.; Rutka, J.T.; Feng, Z-P.; Sun, H-S. Inhibition of TRPM7 by carvacrol suppresses glioblastoma cell proliferation, migration and invasion. Oncotarget, 2015, 6(18), 16321-16340.
[http://dx.doi.org/10.18632/oncotarget.3872] [PMID: 25965832]
[78]
Porta, C.; Paglino, C.; Mosca, A. Targeting PI3K/Akt/mTOR signaling in cancer. Front. Oncol., 2014, 4, 64.
[http://dx.doi.org/10.3389/fonc.2014.00064] [PMID: 24782981]
[79]
Datta, S.R.; Brunet, A.; Greenberg, M.E. Cellular survival: A play in three Akts. Genes Dev., 1999, 13(22), 2905-2927.
[http://dx.doi.org/10.1101/gad.13.22.2905] [PMID: 10579998]
[80]
Liu, P.; Cheng, H.; Roberts, T.M.; Zhao, J.J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov., 2009, 8(8), 627-644.
[http://dx.doi.org/10.1038/nrd2926] [PMID: 19644473]
[81]
Ono, K.; Han, J. The p38 signal transduction pathway: Activation and function. Cell. Signal., 2000, 12(1), 1-13.
[http://dx.doi.org/10.1016/S0898-6568(99)00071-6] [PMID: 10676842]
[82]
Luo, Y.; Wu, J-Y.; Lu, M-H.; Shi, Z.; Na, N.; Di, J-M. Carvacrol Alleviates Prostate Cancer Cell Proliferation, Migration, and Invasion through Regulation of PI3K/Akt and MAPK Signaling Pathways. Oxid. Med. Cell. Longev., 2016, 2016, 1469693..
[http://dx.doi.org/10.1155/2016/1469693] [PMID: 27803760]
[83]
Llana-Ruiz-Cabello, M.; Gutiérrez-Praena, D.; Pichardo, S.; Moreno, F.J.; Bermúdez, J.M.; Aucejo, S.; Cameán, A.M. Cytotoxicity and morphological effects induced by carvacrol and thymol on the human cell line Caco-2. Food Chem. Toxicol., 2014, 64, 281-290.
[http://dx.doi.org/10.1016/j.fct.2013.12.005] [PMID: 24326232]
[84]
Elshafie, H.S.; Armentano, M.F.; Carmosino, M.; Bufo, S.A.; De Feo, V.; Camele, I. Cytotoxic activity of origanum vulgare l. on hepatocellular carcinoma cell line HEPG2 and evaluation of its biological activity. Molecules, 2017, 22(9), 1435.
[http://dx.doi.org/10.3390/molecules22091435] [PMID: 28867805]
[85]
Suntres, Z.E.; Coccimiglio, J.; Alipour, M. The bioactivity and toxicological actions of carvacrol. Crit. Rev. Food Sci. Nutr., 2015, 55(3), 304-318.
[http://dx.doi.org/10.1080/10408398.2011.653458] [PMID: 24915411]
[86]
Huang, P.; Han, J.; Hui, L. MAPK signaling in inflammation-associated cancer development. Protein Cell, 2010, 1(3), 218-226.
[http://dx.doi.org/10.1007/s13238-010-0019-9] [PMID: 21203968]
[87]
Weston, C.R.; Davis, R.J. The JNK signal transduction pathway. Curr. Opin. Cell Biol., 2007, 19(2), 142-149.
[http://dx.doi.org/10.1016/j.ceb.2007.02.001] [PMID: 17303404]
[88]
Eferl, R.; Wagner, E.F. AP-1: A double-edged sword in tumorigenesis. Nat. Rev. Cancer, 2003, 3(11), 859-868.
[http://dx.doi.org/10.1038/nrc1209] [PMID: 14668816]
[89]
Altucci, L.; Gronemeyer, H. The promise of retinoids to fight against cancer. Nat. Rev. Cancer, 2001, 1(3), 181-193.
[http://dx.doi.org/10.1038/35106036] [PMID: 11902573]
[90]
Cuenda, A.; Rousseau, S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim. Biophys. Acta, 2007, 1773(8), 1358-1375.
[http://dx.doi.org/10.1016/j.bbamcr.2007.03.010] [PMID: 17481747]
[91]
Mittelstadt, P.R.; Salvador, J.M.; Fornace, A.J., Jr; Ashwell, J.D. Activating p38 MAPK: New tricks for an old kinase. Cell Cycle, 2005, 4(9), 1189-1192.
[http://dx.doi.org/10.4161/cc.4.9.2043] [PMID: 16103752]
[92]
Guo, Y.J.; Pan, W.W.; Liu, S.B.; Shen, Z.F.; Xu, Y.; Hu, L.L. ERK/MAPK signalling pathway and tumorigenesis. Exp. Ther. Med., 2020, 19(3), 1997-2007.
[PMID: 32104259]
[93]
Baek, J.H.; Jang, J-E.; Kang, C-M.; Chung, H-Y.; Kim, N.D.; Kim, K-W. Hypoxia-induced VEGF enhances tumor survivability via suppression of serum deprivation-induced apoptosis. Oncogene, 2000, 19(40), 4621-4631.
[http://dx.doi.org/10.1038/sj.onc.1203814] [PMID: 11030151]
[94]
Teoh, S.L.; Das, S. Notch signalling pathways and their importance in the treatment of cancers. Curr. Drug Targets, 2018, 19(2), 128-143.
[http://dx.doi.org/10.2174/1389450118666170309143419] [PMID: 28294046]
[95]
Kopan, R.; Ilagan, M.X.G. The canonical Notch signaling pathway: Unfolding the activation mechanism. Cell, 2009, 137(2), 216-233.
[http://dx.doi.org/10.1016/j.cell.2009.03.045] [PMID: 19379690]
[96]
Nakatogawa, H. Mechanisms governing autophagosome biogenesis. Nat. Rev. Mol. Cell Biol., 2020, 21(8), 439-458.
[http://dx.doi.org/10.1038/s41580-020-0241-0] [PMID: 32372019]
[97]
Yun, C.W.; Lee, S.H. The roles of autophagy in cancer. Int. J. Mol. Sci., 2018, 19(11), 3466.
[http://dx.doi.org/10.3390/ijms19113466] [PMID: 30400561]
[98]
Potočnjak, I.; Gobin, I.; Domitrović R. Carvacrol induces cytotoxicity in human cervical cancer cells but causes cisplatin resistance: Involvement of MEK-ERK activation. Phytother. Res., 2018, 32(6), 1090-1097.
[http://dx.doi.org/10.1002/ptr.6048] [PMID: 29417642]
[99]
Radonic, A.; Milos, M. Chemical composition and in vitro evaluation of antioxidant effect of free volatile compounds from Satureja montana L. Free Radic. Res., 2003, 37(6), 673-679.
[http://dx.doi.org/10.1080/1071576031000105643] [PMID: 12868494]
[100]
Guimarães, A.G.; Scotti, L.; Scotti, M.T.; Mendonça Júnior, F.J.B.; Melo, N.S.R.; Alves, R.S.; De Lucca Júnior, W.; Bezerra, D.P.; Gelain, D.P.; Quintans Júnior, L.J. Evidence for the involvement of descending pain-inhibitory mechanisms in the attenuation of cancer pain by carvacrol aided through a docking study. Life Sci., 2014, 116(1), 8-15.
[http://dx.doi.org/10.1016/j.lfs.2014.08.020] [PMID: 25217880]
[101]
Rojas-Armas, J.P.; Arroyo-Acevedo, J.L.; Palomino-Pacheco, M.; Herrera-Calderón, O.; Ortiz-Sánchez, J.M.; Rojas-Armas, A.; Calva, J.; Castro-Luna, A.; Hilario-Vargas, J. The essential oil of cymbopogon citratus stapt and carvacrol: an approach of the Antitumor effect on 7,12-dimethylbenz-[α]-anthracene (DMBA)-induced breast cancer in female rats. Molecules, 2020, 25(14), 3284.
[http://dx.doi.org/10.3390/molecules25143284] [PMID: 32698395]
[102]
Günes-Bayir, A.; Kocyigit, A.; Güler, E.M.; Bilgin, M.G.; Ergün, İ.S.; Dadak, A. Effects of carvacrol on human fibroblast (WS-1) and gastric adenocarcinoma (AGS) cells in vitro and on Wistar rats in vivo. Mol. Cell. Biochem., 2018, 448(1-2), 237-249.
[http://dx.doi.org/10.1007/s11010-018-3329-5] [PMID: 29442269]
[103]
Arivalagan, S.; Thomas, N.S.; Chandrasekaran, B.; Mani, V.; Siddique, A.I.; Kuppsamy, T.; Namasivayam, N. Combined therapeutic efficacy of carvacrol and X-radiation against 1,2-dimethyl hydrazine-induced experimental rat colon carcinogenesis. Mol. Cell. Biochem., 2015, 410(1-2), 37-54.
[http://dx.doi.org/10.1007/s11010-015-2536-6] [PMID: 26264073]
[104]
Arigesavan, K.; Sudhandiran, G. Carvacrol exhibits anti-oxidant and anti-inflammatory effects against 1, 2-dimethyl hydrazine plus dextran sodium sulfate induced inflammation associated carcinogenicity in the colon of Fischer 344 rats. Biochem. Biophys. Res. Commun., 2015, 461(2), 314-320.
[http://dx.doi.org/10.1016/j.bbrc.2015.04.030] [PMID: 25881504]
[105]
Subramaniyan, J.; Krishnan, G.; Balan, R.; Mgj, D.; Ramasamy, E.; Ramalingam, S.; Veerabathiran, R.; Thandavamoorthy, P.; Mani, G.K.; Thiruvengadam, D. Carvacrol modulates instability of xenobiotic metabolizing enzymes and downregulates the expressions of PCNA, MMP-2, and MMP-9 during diethylnitrosamine-induced hepatocarcinogenesis in rats. Mol. Cell. Biochem., 2014, 395(1-2), 65-76.
[http://dx.doi.org/10.1007/s11010-014-2112-5] [PMID: 24880485]
[106]
Jayakumar, S.; Madankumar, A.; Asokkumar, S.; Raghunandhakumar, S. Gokula dhas, K.; Kamaraj, S.; Divya, M.G.; Devaki, T. Potential preventive effect of carvacrol against diethylnitrosamine-induced hepatocellular carcinoma in rats. Mol. Cell. Biochem., 2012, 360(1-2), 51-60.
[http://dx.doi.org/10.1007/s11010-011-1043-7] [PMID: 21879312]
[107]
Ress, N.B.; Hailey, J.R.; Maronpot, R.R.; Bucher, J.R.; Travlos, G.S.; Haseman, J.K.; Orzech, D.P.; Johnson, J.D.; Hejtmancik, M.R. Toxicology and carcinogenesis studies of microencapsulated citral in rats and mice. Toxicol. Sci., 2003, 71(2), 198-206.
[http://dx.doi.org/10.1093/toxsci/71.2.198] [PMID: 12563105]
[108]
Llana-Ruiz-Cabello, M.; Maisanaba, S.; Puerto, M.; Prieto, A.I.; Pichardo, S.; Moyano, R.; González-Pérez, J.A.; Cameán, A.M. Genotoxicity evaluation of carvacrol in rats using a combined micronucleus and comet assay Food Chem. Toxicol , 2016, 98(Pt B), 240-250.
[http://dx.doi.org/10.1016/j.fct.2016.11.005] [PMID: 27829163]
[109]
Donsì, F.; Annunziata, M.; Sessa, M.; Ferrari, G. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. Lebensm. Wiss. Technol., 2011, 44(9), 1908-1914.
[http://dx.doi.org/10.1016/j.lwt.2011.03.003]
[110]
Austgulen, L-T.; Solheim, E.; Scheline, R.R. Metabolism in rats of p-cymene derivatives: Carvacrol and thymol. Pharmacol. Toxicol., 1987, 61(2), 98-102.
[http://dx.doi.org/10.1111/j.1600-0773.1987.tb01783.x] [PMID: 2959918]
[111]
Michiels, J.; Missotten, J.; Van Hoorick, A.; Ovyn, A.; Fremaut, D.; De Smet, S.; Dierick, N. Effects of dose and formulation of carvacrol and thymol on bacteria and some functional traits of the gut in piglets after weaning. Arch. Anim. Nutr., 2010, 64(2), 136-154.
[http://dx.doi.org/10.1080/17450390903499915] [PMID: 20481352]
[112]
Maisanaba, S.; Pichardo, S.; Puerto, M.; Gutiérrez-Praena, D.; Cameán, A.M.; Jos, A. Toxicological evaluation of clay minerals and derived nanocomposites: A review. Environ. Res., 2015, 138, 233-254.
[http://dx.doi.org/10.1016/j.envres.2014.12.024] [PMID: 25732897]
[113]
LLana-Ruiz-Cabello. M.; Maisanaba, S.; Puerto, M.; Prieto, A.I.; Pichardo, S.; Jos, Á.; Cameán, A.M. Evaluation of the mutagenicity and genotoxic potential of carvacrol and thymol using the Ames Salmonella test and alkaline, Endo III- and FPG-modified comet assays with the human cell line Caco-2. Food Chem. Toxicol., 2014, 72, 122-128.
[http://dx.doi.org/10.1016/j.fct.2014.07.013] [PMID: 25038394]
[114]
Melušová, M.; Jantová, S.; Horváthová, E. Carvacrol and rosemary oil at higher concentrations induce apoptosis in human hepatoma HepG2 cells. Interdiscip. Toxicol., 2014, 7(4), 189-194.
[http://dx.doi.org/10.2478/intox-2014-0027] [PMID: 26109899]
[115]
Hagan, E.C.; Hansen, W.H.; Fitzhugh, O.G.; Jenner, P.M.; Jones, W.I.; Taylor, J.M.; Long, E.L.; Nelson, A.A.; Brouwer, J.B. Food flavourings and compounds of related structure. II. Subacute and chronic toxicity. Food Cosmet. Toxicol., 1967, 5(2), 141-157.
[http://dx.doi.org/10.1016/S0015-6264(67)82961-4] [PMID: 6068552]
[116]
Final report on the safety assessment of sodium p -chloro- m -cresol, p -chloro- m -cresol, chlorothymol, mixed cresols, m -cresol, o -cresol, p -cresol, isopropyl cresols, thymol, o -cymen-5-ol, and carvacrol1. Int. J. Toxicol., 2016, 25(1), 29-127.
[PMID: 27440821]
[117]
McOMIE. W.A.; Anderson, H.H.; Estess, F.M. Comparative toxicity of certain t-butyl substituted cresols and xylenols. J. Am. Pharm. Assoc. (Sci. Ed), 1949, 38(7), 366-369.
[http://dx.doi.org/10.1002/jps.3030380704] [PMID: 18136803]
[118]
Ultee, A.; Kets, E.P.W.; Smid, E.J. Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol., 1999, 65(10), 4606-4610.
[http://dx.doi.org/10.1128/AEM.65.10.4606-4610.1999] [PMID: 10508096]
[119]
De Vincenzi, M.; Silano, M.; Stacchini, P.; Scazzocchio, B. Constituents of aromatic plants: I. Methyleugenol. Fitoterapia, 2000, 71(2), 216-221.
[http://dx.doi.org/10.1016/S0367-326X(99)00150-1] [PMID: 10727828]
[120]
Khan, I.; Bhardwaj, M.; Shukla, S.; Lee, H.; Oh, M-H.; Bajpai, V.K.; Huh, Y.S.; Kang, S.C. Carvacrol encapsulated nanocarrier/nanoemulsion abrogates angiogenesis by downregulating COX-2, VEGF and CD31 in vitro and in vivo in a lung adenocarcinoma model. Colloids Surf. B Biointerfaces, 2019, 181, 612-622.
[http://dx.doi.org/10.1016/j.colsurfb.2019.06.016] [PMID: 31202132]
[121]
Khan, I.; Bahuguna, A.; Kumar, P.; Bajpai, V.K.; Kang, S.C. In vitro and in vivo antitumor potential of carvacrol nanoemulsion against human lung adenocarcinoma A549 cells via mitochondrial mediated apoptosis. Sci. Rep., 2018, 8(1), 144.
[http://dx.doi.org/10.1038/s41598-017-18644-9] [PMID: 29317755]
[122]
de Oliveira Pedrosa Rolim, M.; de Almeida, A.R.; da Rocha Pitta, M.G.; de Melo Rêgo, M.J.B.; Quintans-Júnior, L.J.; de Souza Siqueira Quintans, J.; Heimfarth, L.; Scotti, L.; Scotti, M.T.; da Cruz, R.M.D.; de Almeida, R.N.; da Silva, T.G.; de Oliveira, J.A.; de Campos, M.L.; Marchand, P.; Mendonça-Junior, F.J.B. Design, synthesis and pharmacological evaluation of CVIB, a codrug of carvacrol and ibuprofen as a novel anti-inflammatory agent. Int. Immunopharmacol., 2019, 76, 105856..
[http://dx.doi.org/10.1016/j.intimp.2019.105856] [PMID: 31480005]
[123]
Kong, S-Z.; Chen, H-M.; Yu, X-T.; Zhang, X.; Feng, X-X.; Kang, X-H.; Li, W-J.; Huang, N.; Luo, H.; Su, Z-R. The protective effect of 18β-Glycyrrhetinic acid against UV irradiation induced photoaging in mice. Exp. Gerontol., 2015, 61, 147-155.
[http://dx.doi.org/10.1016/j.exger.2014.12.008] [PMID: 25498537]
[124]
Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med., 2010, 49(11), 1603-1616.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006] [PMID: 20840865]
[125]
Ghorani, V.; Alavinezhad, A.; Rajabi, O.; Boskabady, M.H. Carvacrol improves pulmonary function tests, oxidant/antioxidant parameters and cytokine levels in asthmatic patients: A randomized, double-blind, clinical trial. Phytomedicine, 2021, 85, 153539..
[http://dx.doi.org/10.1016/j.phymed.2021.153539] [PMID: 33773189]
[126]
Khazdair, M.R.; Boskabady, M.H. The effect of carvacrol on inflammatory mediators and respiratory symptoms in veterans exposed to sulfur mustard, a randomized, placebo-controlled trial. Respir. Med., 2019, 150, 21-29.
[http://dx.doi.org/10.1016/j.rmed.2019.01.020] [PMID: 30961947]
[127]
Khazdair, M.R.; Alavinezhad, A.; Boskabady, M.H. Carvacrol ameliorates haematological parameters, oxidant/antioxidant biomarkers and pulmonary function tests in patients with sulphur mustard-induced lung disorders: A randomized double-blind clinical trial. J. Clin. Pharm. Ther., 2018, 43(5), 664-674.
[http://dx.doi.org/10.1111/jcpt.12684] [PMID: 29574804]
[128]
Perillo, F.; Amoroso, C.; Strati, F.; Giuffrè, M.R.; Díaz-Basabe, A.; Lattanzi, G.; Facciotti, F. Gut microbiota manipulation as a tool for colorectal cancer management: Recent advances in its use for therapeutic purposes. Int. J. Mol. Sci., 2020, 21(15), 5389.
[http://dx.doi.org/10.3390/ijms21155389] [PMID: 32751239]
[129]
Li, P.; Zhang, J.; Liu, J.; Ma, H.; Liu, J.; Lie, P.; Wang, Y.; Liu, G.; Zeng, H.; Li, Z.; Wei, X. Promoting the recovery of injured liver with poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhe-xanoate) scaffolds loaded with umbilical cord-derived mesenchymal stem cells. Tissue Eng. Part A, 2015, 21(3-4), 603-615.
[http://dx.doi.org/10.1089/ten.tea.2013.0331] [PMID: 25273546]
[130]
Ghorbanzadeh, V.; Aljaf, K.A.H.; Wasman, H.M.; Pirzeh, L.; Azimi, S.; Dariushnejad, H. Carvacrol enhance apoptotic effect of 5-FU onMCF-7 cell line via inhibiting p-glycoprotein: An in-silico and invitrostudy. Drug Res. (Stuttg.),, 2022.
[http://dx.doi.org/10.1055/a-1766-5491] [PMID: 35253124]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy