Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Review Article

A Review of Pyridine and Pyrimidine Derivatives as Anti-MRSA Agents

Author(s): Adarsh Kumar, Ankit Kumar Singh, Suresh Thareja and Pradeep Kumar*

Volume 21, Issue 2, 2023

Published on: 28 October, 2022

Article ID: e050722206610 Pages: 23

DOI: 10.2174/2211352520666220705085733

Price: $65

Abstract

Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a Gram-positive strain whose resistance against existing antibiotics is a significant concern for researchers across the globe. Gram-positive infections, particularly methicillin-resistant Staphylococcus aureus spreading among S. aureus isolates, increased exponentially from 29% in 2009 to 47% in 2014. Literature reviews revealed that about 13-74% of S. aureus strains are Methicillin-resistant worldwide.

Objective: In this article, we have summarized the mechanism of bacterium resistance, molecular targets to treat MRSA, and the activity of reported pyridine and pyrimidine derivatives against methicillin-resistant Staphylococcus aureus.

Results: The data collected for this study from online peer-reviewed research articles and the Molecular-docking study of reported anti-MRSA agents performed using the Maestro Module of Schrodinger software. In silico studies showed that some pyridine derivatives have better binding interactions than standard anti-MRSA agents.

Conclusion: Molecular docking studies of reported pyridine derivatives resulted in excellent hits for developing novel anti- MRSA agents. Overall, this study will be of immense importance for researchers designing and developing target-based anti-MRSA agents.

Keywords: Staphylococcus aureus, MRSA, Resistance, Pyridine, Pyrimidine, and Molecular docking

Graphical Abstract

[1]
Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G. Jr Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol., 2019, 17(4), 203-218.
[http://dx.doi.org/10.1038/s41579-018-0147-4] [PMID: 30737488]
[2]
Organization, W.H. Antimicrobial resistance: global report on surveillance; World Health Organization, 2014.
[3]
Peterson, E.; Kaur, P. Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front. Microbiol., 2018, 9, 2928.
[http://dx.doi.org/10.3389/fmicb.2018.02928] [PMID: 30555448]
[4]
Harkins, C.P.; Pichon, B.; Doumith, M.; Parkhill, J.; Westh, H.; Tomasz, A.; de Lencastre, H.; Bentley, S.D.; Kearns, A.M.; Holden, M.T.G. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol., 2017, 18(1), 130.
[http://dx.doi.org/10.1186/s13059-017-1252-9] [PMID: 28724393]
[5]
Kim, C.; Milheiriço, C.; Gardete, S.; Holmes, M.A.; Holden, M.T.; de Lencastre, H.; Tomasz, A. Properties of a novel PBP2A protein homolog from Staphylococcus aureus strain LGA251 and its contribution to the β-lactam-resistant phenotype. J. Biol. Chem., 2012, 287(44), 36854-36863.
[http://dx.doi.org/10.1074/jbc.M112.395962] [PMID: 22977239]
[6]
Lim, D.; Strynadka, N.C. Structural basis for the β lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nat. Struct. Biol., 2002, 9(11), 870-876.
[http://dx.doi.org/10.1038/nsb858] [PMID: 12389036]
[7]
Diep, B.A.; Gill, S.R.; Chang, R.F.; Phan, T.H.; Chen, J.H.; Davidson, M.G.; Lin, F.; Lin, J.; Carleton, H.A.; Mongodin, E.F.; Sensabaugh, G.F.; Perdreau-Remington, F. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet, 2006, 367(9512), 731-739.
[http://dx.doi.org/10.1016/S0140-6736(06)68231-7] [PMID: 16517273]
[8]
Weterings, V.; Bosch, T.; Witteveen, S.; Landman, F.; Schouls, L.; Kluytmans, J. Next-generation sequence analysis reveals transfer of methicillin resistance to a methicillin-susceptible Staphylococcus aureus strain that subsequently caused a methicillin-resistant Staphylococcus aureus outbreak: A descriptive study. J. Clin. Microbiol., 2017, 55(9), 2808-2816.
[http://dx.doi.org/10.1128/JCM.00459-17] [PMID: 28679522]
[9]
Mehta, Y.; Hegde, A.; Pande, R.; Zirpe, K.G.; Gupta, V.; Ahdal, J.; Qamra, A.; Motlekar, S.; Jain, R. Methicillin-resistant Staphylococcus aureus in intensive care unit setting of India: A review of clinical burden, patterns of prevalence, preventive measures, and future strategies. Indian J. Crit. Care Med., 2020, 24(1), 55-62.
[http://dx.doi.org/10.5005/jp-journals-10071-23337] [PMID: 32148350]
[10]
Hassoun, A.; Linden, P.K.; Friedman, B. Incidence, prevalence, and management of MRSA bacteremia across patient populations-A review of recent developments in MRSA management and treatment. Crit. Care, 2017, 21(1), 211.
[http://dx.doi.org/10.1186/s13054-017-1801-3] [PMID: 28807042]
[11]
Lakhundi, S.; Zhang, K. Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev., 2018, 31(4), e00020-e18.
[http://dx.doi.org/10.1128/CMR.00020-18] [PMID: 30209034]
[12]
Wong, J.W.; Ip, M.; Tang, A.; Wei, V.W.; Wong, S.Y.; Riley, S.; Read, J.M.; Kwok, K.O. Prevalence and risk factors of community-associated methicillin-resistant Staphylococcus aureus carriage in Asia-Pacific region from 2000 to 2016: A systematic review and meta-analysis. Clin. Epidemiol., 2018, 10, 1489-1501.
[http://dx.doi.org/10.2147/CLEP.S160595] [PMID: 30349396]
[13]
Szychowski, J.; Truchon, J.F.; Bennani, Y.L. Natural products in medicine: Transformational outcome of synthetic chemistry. J. Med. Chem., 2014, 57(22), 9292-9308.
[http://dx.doi.org/10.1021/jm500941m] [PMID: 25144261]
[14]
Rebstock, M.C.; Crooks, H.M.; Controulis, J.; Bartz, Q.R. Chloramphenicol (chloromycetin). 1 IV. 1a chemical studies. J. Am. Chem. Soc., 1949, 71(7), 2458-2462.
[http://dx.doi.org/10.1021/ja01175a065]
[15]
Johnston, N.J.; Mukhtar, T.A.; Wright, G.D. Streptogramin antibiotics: Mode of action and resistance. Curr. Drug Targets, 2002, 3(4), 335-344.
[http://dx.doi.org/10.2174/1389450023347678] [PMID: 12102603]
[16]
Dhondikubeer, R.; Bera, S.; Zhanel, G.G.; Schweizer, F. Antibacterial activity of amphiphilic tobramycin. J. Antibiot. (Tokyo), 2012, 65(10), 495-498.
[http://dx.doi.org/10.1038/ja.2012.59] [PMID: 22781280]
[17]
Weisblum, B. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother., 1995, 39(3), 577-585.
[http://dx.doi.org/10.1128/AAC.39.3.577] [PMID: 7793855]
[18]
Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev., 2001, 65(2), 232-260.
[http://dx.doi.org/10.1128/MMBR.65.2.232-260.2001] [PMID: 11381101]
[19]
Noble, W.C.; Virani, Z.; Cree, R.G. Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol. Lett., 1992, 72(2), 195-198.
[http://dx.doi.org/10.1111/j.1574-6968.1992.tb05089.x] [PMID: 1505742]
[20]
Müller, A.; Grein, F.; Otto, A.; Gries, K.; Orlov, D.; Zarubaev, V.; Girard, M.; Sher, X.; Shamova, O.; Roemer, T.; François, P.; Becher, D.; Schneider, T.; Sahl, H.G. Differential daptomycin resistance development in Staphylococcus aureus strains with active and mutated gra regulatory systems. Int. J. Med. Microbiol., 2018, 308(3), 335-348.
[http://dx.doi.org/10.1016/j.ijmm.2017.12.002] [PMID: 29429584]
[21]
Walsh, F. Doripenem: A new carbapenem antibiotic a review of comparative antimicrobial and bactericidal activities. Ther. Clin. Risk Manag., 2007, 3(5), 789-794.
[PMID: 18473003]
[22]
Scheinfeld, N. Tigecycline: A review of a new glycylcycline antibiotic. J. Dermatolog. Treat., 2005, 16(4), 207-212.
[http://dx.doi.org/10.1080/09546630510011810] [PMID: 16249141]
[23]
Jones, R.N.; Fritsche, T.R.; Sader, H.S.; Ross, J.E. Activity of retapamulin (SB-275833), a novel pleuromutilin, against selected resistant gram-positive cocci. Antimicrob. Agents Chemother., 2006, 50(7), 2583-2586.
[http://dx.doi.org/10.1128/AAC.01432-05] [PMID: 16801451]
[24]
Higgins, D.L.; Chang, R.; Debabov, D.V.; Leung, J.; Wu, T.; Krause, K.M.; Sandvik, E.; Hubbard, J.M.; Kaniga, K.; Schmidt, D.E., Jr; Gao, Q.; Cass, R.T.; Karr, D.E.; Benton, B.M.; Humphrey, P.P. Telavancin, a multifunctional lipoglycopeptide, disrupts both cell wall synthesis and cell membrane integrity in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 2005, 49(3), 1127-1134.
[http://dx.doi.org/10.1128/AAC.49.3.1127-1134.2005] [PMID: 15728913]
[25]
Sykes, R.B.; Bonner, D.P. Aztreonam: The first monobactam. Am. J. Med., 1985, 78(2A), 2-10.
[http://dx.doi.org/10.1016/0002-9343(85)90196-2] [PMID: 3871589]
[26]
Gatadi, S.; Gour, J.; Nanduri, S. Natural product derived promising anti-MRSA drug leads: A review. Bioorg. Med. Chem., 2019, 27(17), 3760-3774.
[http://dx.doi.org/10.1016/j.bmc.2019.07.023] [PMID: 31324564]
[27]
van Hal, S.J.; Lodise, T.P.; Paterson, D.L. The clinical significance of vancomycin minimum inhibitory concentration in Staphylococcus aureus infections: A systematic review and meta-analysis. Clin. Infect. Dis., 2012, 54(6), 755-771.
[http://dx.doi.org/10.1093/cid/cir935] [PMID: 22302374]
[28]
Silverman, J.A.; Mortin, L.I.; Vanpraagh, A.D.; Li, T.; Alder, J. Inhibition of daptomycin by pulmonary surfactant: In vitro modeling and clinical impact. J. Infect. Dis., 2005, 191(12), 2149-2152.
[http://dx.doi.org/10.1086/430352] [PMID: 15898002]
[29]
Katz, L.; Ashley, G.W. Translation and protein synthesis. Macrolides. Chem. Rev., 2005, 105(2), 499-528.
[http://dx.doi.org/10.1021/cr030107f] [PMID: 15700954]
[30]
Mukhtar, T.A.; Wright, G.D. Streptogramins, oxazolidinones, and other inhibitors of bacterial protein synthesis. Chem. Rev., 2005, 105(2), 529-542.
[http://dx.doi.org/10.1021/cr030110z] [PMID: 15700955]
[31]
Bi, E.; Dai, K.; Subbarao, S.; Beall, B.; Lutkenhaus, J. FtsZ and cell division. Res. Microbiol., 1991, 142(2-3), 249-252.
[http://dx.doi.org/10.1016/0923-2508(91)90037-B] [PMID: 1925024]
[32]
Wang, J.; Galgoci, A.; Kodali, S.; Herath, K.B.; Jayasuriya, H.; Dorso, K.; Vicente, F.; González, A.; Cully, D.; Bramhill, D.; Singh, S. Discovery of a small molecule that inhibits cell division by blocking FtsZ, a novel therapeutic target of antibiotics. J. Biol. Chem., 2003, 278(45), 44424-44428.
[http://dx.doi.org/10.1074/jbc.M307625200] [PMID: 12952956]
[33]
Drlica, K.; Malik, M.; Kerns, R.J.; Zhao, X. Quinolone-mediated bacterial death. Antimicrob. Agents Chemother., 2008, 52(2), 385-392.
[http://dx.doi.org/10.1128/AAC.01617-06] [PMID: 17724149]
[34]
Kahne, D.; Leimkuhler, C.; Lu, W.; Walsh, C. Glycopeptide and lipoglycopeptide antibiotics. Chem. Rev., 2005, 105(2), 425-448.
[http://dx.doi.org/10.1021/cr030103a] [PMID: 15700951]
[35]
Takahata, S.; Iida, M.; Yoshida, T.; Kumura, K.; Kitagawa, H.; Hoshiko, S. Discovery of 4-Pyridone derivatives as specific inhibitors of enoyl-acyl carrier protein reductase (FabI) with antibacterial activity against Staphylococcus aureus. J. Antibiot. (Tokyo), 2007, 60(2), 123-128.
[http://dx.doi.org/10.1038/ja.2007.11] [PMID: 17420562]
[36]
Wang, Y.; Ma, S. Recent advances in inhibitors of bacterial fatty acid synthesis type II (FASII) system enzymes as potential antibacterial agents. ChemMedChem, 2013, 8(10), 1589-1608.
[http://dx.doi.org/10.1002/cmdc.201300209] [PMID: 23894064]
[37]
Swoboda, J.G.; Campbell, J.; Meredith, T.C.; Walker, S. Wall teichoic acid function, biosynthesis, and inhibition. ChemBioChem, 2010, 11(1), 35-45.
[http://dx.doi.org/10.1002/cbic.200900557] [PMID: 19899094]
[38]
Mann, P.A.; Müller, A.; Wolff, K.A.; Fischmann, T.; Wang, H.; Reed, P.; Hou, Y.; Li, W.; Müller, C.E.; Xiao, J.; Murgolo, N.; Sher, X.; Mayhood, T.; Sheth, P.R.; Mirza, A.; Labroli, M.; Xiao, L.; McCoy, M.; Gill, C.J.; Pinho, M.G.; Schneider, T.; Roemer, T. Chemical genetic analysis and functional characterization of staphylococcal wall teichoic acid 2-epimerases reveals unconventional antibiotic drug targets. PLoS Pathog., 2016, 12(5), e1005585.
[http://dx.doi.org/10.1371/journal.ppat.1005585] [PMID: 27144276]
[39]
Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr., 2016, 4(2), 4.2.15.
[http://dx.doi.org/10.1128/microbiolspec.VMBF-0016-2015] [PMID: 27227291]
[40]
Andersen, J.L.; He, G-X.; Kakarla, P. K C, R.; Kumar, S.; Lakra, W.S.; Mukherjee, M.M.; Ranaweera, I.; Shrestha, U.; Tran, T.; Varela, M.F. Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. Int. J. Environ. Res. Public Health, 2015, 12(2), 1487-1547.
[http://dx.doi.org/10.3390/ijerph120201487] [PMID: 25635914]
[41]
Bonev, B.; Brown, N. Bacterial resistance to antibiotics: From molecules to man; Wiley-Blackwell, 2019.
[http://dx.doi.org/10.1002/9781119593522]
[42]
Henry, G.D. De novo synthesis of substituted pyridines. Tetrahedron, 2004, 29(60), 6043-6061.
[http://dx.doi.org/10.1016/j.tet.2004.04.043]
[43]
Abele, E.; Abele, R.; Lukevics, E. Pyridine oximes: Synthesis, reactions, and biological activity. Chem. Heterocycl. Compd., 2003, 39(7), 825-865.
[http://dx.doi.org/10.1023/A:1026181918567]
[44]
Firke, S.; Firake, B.; Chaudhari, R.; Patil, V. Synthetic and pharmacological evaluation of some pyridine containing thiazolidinones. Asian J. Chem., 2009, 2(2), 157-161.
[45]
Feng, X-J.; Yao, W.; Luo, M-F.; Ma, R-Y.; Xie, H-W.; Yu, Y.; Li, Y-G.; Wang, E-B. New polyoxometalate-templated supramolecular networks based on transition metal ions and pyridine-N-oxide ligands. Inorg. Chim. Acta, 2011, 368(1), 29-36.
[http://dx.doi.org/10.1016/j.ica.2010.12.015]
[46]
Acharya, B.N.; Thavaselvam, D.; Kaushik, M.P. Synthesis and antimalarial evaluation of novel pyridine quinoline hybrids. Med. Chem. Res., 2008, 17(8), 487-494.
[http://dx.doi.org/10.1007/s00044-008-9092-5]
[47]
Chavan, V.; Sonawane, S.; Shingare, M.; Karale, B. Synthesis, characterization, and biological activities of some 3, 5, 6-trichloropyridine derivatives. Chem. Heterocycl. Compd., 2006, 42(5), 625-630.
[http://dx.doi.org/10.1007/s10593-006-0137-8]
[48]
Sondhi, S.M.; Dinodia, M.; Kumar, A. Synthesis, anti-inflammatory and analgesic activity evaluation of some amidine and hydrazone derivatives. Bioorg. Med. Chem., 2006, 14(13), 4657-4663.
[http://dx.doi.org/10.1016/j.bmc.2006.02.014] [PMID: 16504522]
[49]
Bharti, N.; Maurya, M.R.; Naqvi, F.; Azam, A. Synthesis and antiamoebic activity of new cyclooctadiene ruthenium(II) complexes with 2-acetylpyridine and benzimidazole derivatives. Bioorg. Med. Chem. Lett., 2000, 10(20), 2243-2245.
[http://dx.doi.org/10.1016/S0960-894X(00)00446-7] [PMID: 11055329]
[50]
Worachartcheewan, A.; Prachayasittikul, S.; Pingaew, R.; Nantasenamat, C.; Tantimongcolwat, T.; Ruchirawat, S.; Prachayasittikul, V. Antioxidant, cytotoxicity, and QSAR study of 1-adamantylthio derivatives of 3-picoline and phenylpyridines. Med. Chem. Res., 2012, 21(11), 3514-3522.
[http://dx.doi.org/10.1007/s00044-011-9903-y]
[51]
Li, J-y.; Yu, Y.; Wang, Q.; Zhang, J-y.; Yang, Y.; Li, B.; Zhou, X.; Niu, J.; Wei, X.; Liu, X.; Liu, Z. Synthesis of aspirin eugenol ester and its biological activity. Med. Chem. Res., 2012, 21(7), 995-999.
[http://dx.doi.org/10.1007/s00044-011-9609-1]
[52]
López‐Martínez, M.; Salgado‐Zamora, H.; San‐Juan, E.R.; Zamudio, S.; Picazo, O.; Campos, M.E.; Naranjo‐Rodriguez, E.B. Anti‐anxiety and sedative profile evaluation of imidazo [1, 2‐a] pyridine derivatives. Drug Dev. Res., 2010, 71(6), 371-381.
[http://dx.doi.org/10.1002/ddr.20382]
[53]
Lee, K.; Cho, S.H.; Lee, J.H.; Goo, J.; Lee, S.Y.; Boovanahalli, S.K.; Yeo, S.K.; Lee, S-J.; Kim, Y.K.; Kim, D.H.; Choi, Y.; Song, G.Y. Synthesis of a novel series of 2-alkylthio substituted naphthoquinones as potent acyl-CoA: cholesterol acyltransferase (ACAT) inhibitors. Eur. J. Med. Chem., 2013, 62, 515-525.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.020] [PMID: 23419736]
[54]
Gao, Y.; Chen, R.; Ma, Y. Synthesis of asymmetrical 2, 6-diarylpyridines from linear α β γ δ-unsaturated ketones by addition of ammonium formate followed by annulation. Synthesis, 2019, 51(20), 3875-3882.
[http://dx.doi.org/10.1055/s-0037-1610725]
[55]
Asskar, G.; Rivard, M.; Martens, T. Glutaconaldehyde as an alternative reagent to the zincke salt for the transformation of primary amines into pyridinium salts. J. Org. Chem., 2020, 85(2), 1232-1239.
[http://dx.doi.org/10.1021/acs.joc.9b02538] [PMID: 31834800]
[56]
El-Sattar, A.; Nour, E.; Badawy, E.H.; Abdel-Mottaleb, M. Synthesis of some pyrimidine, pyrazole, and pyridine derivatives and their reactivity descriptors. J. Chem., 2018, 2018, 1-11.
[http://dx.doi.org/10.1155/2018/8795061]
[57]
Xue, L.; Cheng, G.; Zhu, R.; Cui, X. Acid-promoted oxidative methylenation of 1, 3-dicarbonyl compounds with DMSO: application to the three-component synthesis of Hantzsch-type pyridines. RSC Advances, 2017, 7(69), 44009-44012.
[http://dx.doi.org/10.1039/C7RA07442E]
[58]
Huang, H.; Cai, J.; Tang, L.; Wang, Z.; Li, F.; Deng, G-J. Metal-free assembly of polysubstituted pyridines from oximes and acroleins. J. Org. Chem., 2016, 81(4), 1499-1505.
[http://dx.doi.org/10.1021/acs.joc.5b02624] [PMID: 26788938]
[59]
Xi, L-Y.; Zhang, R-Y.; Liang, S.; Chen, S-Y.; Yu, X-Q. Copper-catalyzed aerobic synthesis of 2-arylpyridines from acetophenones and 1,3-diaminopropane. Org. Lett., 2014, 16(20), 5269-5271.
[http://dx.doi.org/10.1021/ol5023596] [PMID: 25285847]
[60]
Wei, Y.; Yoshikai, N. Modular pyridine synthesis from oximes and enals through synergistic copper/iminium catalysis. J. Am. Chem. Soc., 2013, 135(10), 3756-3759.
[http://dx.doi.org/10.1021/ja312346s] [PMID: 23437938]
[61]
Hossaini, Z.; Rostami-Charati, F.; Hajinasiri, R.; Khalilzadeh, M.A. Solvent-free one-pot synthesis of 2-pyridone derivatives. Chin. Chem. Lett., 2012, 23(5), 512-514.
[http://dx.doi.org/10.1016/j.cclet.2012.01.018]
[62]
Bagley, M.C.; Glover, C.; Merritt, E.A. The Bohlmann-Rahtz pyridine synthesis: From discovery to applications. Synlett, 2007, 2007(16), 2459-2482.
[http://dx.doi.org/10.1055/s-2007-986674]
[63]
Kelly, T.R.; Liu, H. A new pyridine synthesis. J. Am. Chem. Soc., 1985, 107(17), 4998-4999.
[http://dx.doi.org/10.1021/ja00303a031]
[64]
Sharma, V.; Chitranshi, N.; Agarwal, A.K. Significance and biological importance of pyrimidine in the microbial world. Int. J. Med. Chem., 2014, 2014, 202784.
[http://dx.doi.org/10.1155/2014/202784] [PMID: 25383216]
[65]
Naik, T.; Chikhalia, K. Studies on synthesis of pyrimidine derivatives and their pharmacological evaluation. J. Chem., 2007, 4(1), 60-66.
[66]
Sharma, P.; Rane, N.; Gurram, V.K. Synthesis and QSAR studies of pyrimido[4,5-d]pyrimidine-2,5-dione derivatives as potential antimicrobial agents. Bioorg. Med. Chem. Lett., 2004, 14(16), 4185-4190.
[http://dx.doi.org/10.1016/j.bmcl.2004.06.014] [PMID: 15261267]
[67]
Prakash, O.; Bhardwaj, V.; Kumar, R.; Tyagi, P.; Aneja, K.R. Organoiodine (III) mediated synthesis of 3-aryl/hetryl-5,7-dimethyl-1,2,4-triazolo[4,3-a]pyrimidines as antibacterial agents. Eur. J. Med. Chem., 2004, 39(12), 1073-1077.
[http://dx.doi.org/10.1016/j.ejmech.2004.06.011] [PMID: 15571869]
[68]
Basavaraja, H.; Sreenivasa, G.; Jayachandran, E. Synthesis and biological activity of novel pyrimidino imidazolines. Indian J. Heterocycl. Chem., 2005, 15, 69.
[69]
Amir, M.; Javed, S.; Kumar, H. Pyrimidine as antiinflammatory agent: A review. Indian J. Pharm. Sci., 2007, 69(3), 337.
[http://dx.doi.org/10.4103/0250-474X.34540]
[70]
Sondhi, S.M.; Jain, S.; Dwivedi, A.D.; Shukla, R.; Raghubir, R. Synthesis of condensed pyrimidines and their evaluation for anti-inflammatory and analgesic activities. Indian J. Chem. Section B, 2008, 47(1), 136-143.
[71]
Chadotra, S.N.; Baldaniya, B. Synthesis, characterization and antimicrobial activities of some new oxazolo pyrimidine derivatives. Inter. J. Sci. Res. Chem., 2018, 3(1), 49-59.
[72]
Juby, P.F.; Hudyma, T.W.; Brown, M.; Essery, J.M.; Partyka, R.A. Antiallergy agents. 1. 1,6-Dihydro-6-oxo-2-phenylpyrimidine-5-carboxylic acids and esters. J. Med. Chem., 1979, 22(3), 263-269.
[http://dx.doi.org/10.1021/jm00189a009] [PMID: 423208]
[73]
Abu-Hashem, A.A.; El-Shehry, M.F.; Badria, F.A. Design and synthesis of novel thiophenecarbohydrazide, thienopyrazole and thienopyrimidine derivatives as antioxidant and antitumor agents. Acta Pharm., 2010, 60(3), 311-323.
[http://dx.doi.org/10.2478/v10007-010-0027-6] [PMID: 21134865]
[74]
Abu‐Hashem, A.A.; Youssef, M.M.; Hussein, H.A. Synthesis, antioxidant, antituomer activities of some new thiazolopyrimidines, pyrrolothiazolopyrimidines and triazolopyrrolothiazolopyrimidines derivatives. J. Chin. Chem. Soc. (Taipei), 2011, 58(1), 41-48.
[http://dx.doi.org/10.1002/jccs.201190056]
[75]
Rahaman, S.A.; Rajendra Pasad, Y.; Kumar, P.; Kumar, B. Synthesis and anti-histaminic activity of some novel pyrimidines. Saudi Pharm. J., 2009, 17(3), 255-258.
[http://dx.doi.org/10.1016/j.jsps.2009.08.001] [PMID: 23964169]
[76]
Nezu, Y.; Miyazaki, M.; Sugiyama, K.; Kajiwara, I. Dimethoxypyrimidines as novel herbicides. Part 1. Synthesis and herbicidal activity of dimethoxyphenoxyphenoxypyrimidines and analogues. Pestic. Sci., 1996, 47(2), 103-113.
[http://dx.doi.org/10.1002/(SICI)1096-9063(199606)47:2<103:AID-PS396>3.0.CO;2-Z]
[77]
Breault, G.A.; Newcombe, N.J.; Thomas, A.P. Imidazolo-5-YL-2-anilino-pyrimidines as agents for the inhibition of the cell proliferation; Google Patents, 2005.
[78]
Xie, F.; Zhao, H.; Zhao, L.; Lou, L.; Hu, Y. Synthesis and biological evaluation of novel 2,4,5-substituted pyrimidine derivatives for anticancer activity. Bioorg. Med. Chem. Lett., 2009, 19(1), 275-278.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.067] [PMID: 19028425]
[79]
Gupta, A.; Kayath, H.; Ajit, S.; Geeta, S.; Mishra, K. Anticonvulsant activity of pyrimidine thiols. Indian J. Pharmacol., 1994, 26(3), 227.
[http://dx.doi.org/10.4103/ijp.IJP_486_20]
[80]
Lee, H.W.; Kim, B.Y.; Ahn, J.B.; Kang, S.K.; Lee, J.H.; Shin, J.S.; Ahn, S.K.; Lee, S.J.; Yoon, S.S. Molecular design, synthesis, and hypoglycemic and hypolipidemic activities of novel pyrimidine derivatives having thiazolidinedione. Eur. J. Med. Chem., 2005, 40(9), 862-874.
[http://dx.doi.org/10.1016/j.ejmech.2005.03.019] [PMID: 15908051]
[81]
Smith, P.A.; Kan, R.O. Cyclization of isothiocyanates as a route to phthalic and homophthalic acid derivatives 1, 2. J. Org. Chem., 1964, 29(8), 2261-2265.
[http://dx.doi.org/10.1021/jo01031a037]
[82]
Hannah, D.R.; Stevens, M.F. Structural studies on bioactive compounds. Part 38.1 reactions of 5-aminoimidazole-4-carboxamide: Synthesis of imidazo [1, 5-a] quinazoline-3-carboxamides. J. Chem. Res., 2003, 2003(7), 398-401.
[http://dx.doi.org/10.3184/030823403103174533]
[83]
Rana, K.; Kaur, B.; Kumar, B. Synthesis and anti-hypertensive activity of some dihydropyrimidines., 2004.
[84]
Vega, S.; Alonso, J.; Diaz, J.A.; Junquera, F. Synthesis of 3‐substituted‐4‐phenyl‐2‐thioxo‐1, 2, 3, 4, 5, 6, 7, 8‐octahydrobenzo [4, 5] thieno [2, 3‐á] pyrimidines. J. Heterocycl. Chem., 1990, 27(2), 269-273.
[http://dx.doi.org/10.1002/jhet.5570270229]
[85]
Rodrigues, A.L.; Rosa, J.M.; Gadotti, V.M.; Goulart, E.C.; Santos, M.M.; Silva, A.V.; Sehnem, B.; Rosa, L.S.; Gonçalves, R.M.; Corrêa, R.; Santos, A.R. Antidepressant-like and antinociceptive-like actions of 4-(4′-chlorophenyl)-6-(4′'-methylphenyl)-2-hydrazinepyrimidine Mannich base in mice. Pharmacol. Biochem. Behav., 2005, 82(1), 156-162.
[http://dx.doi.org/10.1016/j.pbb.2005.08.003] [PMID: 16153700]
[86]
Tani, J.; Yamada, Y.; Oine, T.; Ochiai, T.; Ishida, R.; Inoue, I. Studies on biologically active halogenated compounds. 1. Synthesis and central nervous system depressant activity of 2-(fluoromethyl)-3-aryl-4(3H)-quinazolinone derivatives. J. Med. Chem., 1979, 22(1), 95-99.
[http://dx.doi.org/10.1021/jm00187a021] [PMID: 423189]
[87]
Su, L.; Sun, K.; Pan, N.; Liu, L.; Sun, M.; Dong, J.; Zhou, Y.; Yin, S-F. Cyclization of ketones with nitriles under base: A general and economical synthesis of pyrimidines. Org. Lett., 2018, 20(11), 3399-3402.
[http://dx.doi.org/10.1021/acs.orglett.8b01324] [PMID: 29790759]
[88]
Jadhav, S.D.; Singh, A. Oxidative annulations involving DMSO and Formamide: K2S2O8 mediated syntheses of quinolines and pyrimidines. Org. Lett., 2017, 19(20), 5673-5676.
[http://dx.doi.org/10.1021/acs.orglett.7b02838] [PMID: 28980820]
[89]
Chu, X-Q.; Cao, W-B.; Xu, X-P.; Ji, S-J. Iron catalysis for modular pyrimidine synthesis through β-ammoniation/cyclization of saturated carbonyl compounds with amidines. J. Org. Chem., 2017, 82(2), 1145-1154.
[http://dx.doi.org/10.1021/acs.joc.6b02767] [PMID: 28032761]
[90]
Sasada, T.; Kobayashi, F.; Sakai, N.; Konakahara, T. An unprecedented approach to 4,5-disubstituted pyrimidine derivatives by a ZnCl(2)-catalyzed three-component coupling reaction. Org. Lett., 2009, 11(10), 2161-2164.
[http://dx.doi.org/10.1021/ol900382j] [PMID: 19371078]
[91]
Ahmad, O.K.; Hill, M.D.; Movassaghi, M. Synthesis of densely substituted pyrimidine derivatives. J. Org. Chem., 2009, 74(21), 8460-8463.
[http://dx.doi.org/10.1021/jo9017149] [PMID: 19810691]
[92]
Barthakur, M.G.; Borthakur, M.; Devi, P.; Saikia, C.J.; Saikia, A.; Bora, U.; Chetia, A.; Boruah, R.C. A novel and efficient lewis acid catalysed preparation of pyrimidines: Microwave-promoted reaction of urea and β-formyl enamides. Synlett, 2007, 2007(2), 223-226.
[93]
Ling, Y.; Hao, Z.Y.; Liang, D.; Zhang, C.L.; Liu, Y.F.; Wang, Y. The expanding role of pyridine and dihydropyridine scaffolds in drug design. Drug Des. Devel. Ther., 2021, 15, 4289-4338.
[http://dx.doi.org/10.2147/DDDT.S329547] [PMID: 34675489]
[94]
Mekky, A.E.; Sanad, S.M.; Said, A.Y.; Elneairy, M.A. Synthesis, cytotoxicity, in vitro antibacterial screening and in silico study of novel thieno [2, 3-b] pyridines as potential pim-1 inhibitors. Synth. Commun., 2020, 50(15), 2376-2389.
[http://dx.doi.org/10.1080/00397911.2020.1778033]
[95]
Milošević M.D.; Marinković A.D.; Petrović P.; Klaus, A.; Nikolić M.G.; Prlainović N.Ž.; Cvijetić I.N. Synthesis, characterization and SAR studies of bis(imino)pyridines as antioxidants, acetylcholinesterase inhibitors and antimicrobial agents. Bioorg. Chem., 2020, 102, 104073.
[http://dx.doi.org/10.1016/j.bioorg.2020.104073] [PMID: 32693308]
[96]
Azrad, M.; Baum, M.; Rokney, A.; Levi, Y.; Peretz, A. In vitro activity of tedizolid and dalbavancin against MRSA strains is dependent on infection source. Int. J. Infect. Dis., 2019, 78, 107-112.
[http://dx.doi.org/10.1016/j.ijid.2018.11.011] [PMID: 30468873]
[97]
Gao, F.; Xiao, J.; Huang, G. Current scenario of tetrazole hybrids for antibacterial activity. Eur. J. Med. Chem., 2019, 184, 111744.
[http://dx.doi.org/10.1016/j.ejmech.2019.111744] [PMID: 31605865]
[98]
Karunanidhi, A.; Ghaznavi-Rad, E.; Jeevajothi Nathan, J.; Joseph, N.; Chigurupati, S.; Mohd Fauzi, F.; Pichika, M.R.; Hamat, R.A.; Lung, L.T.T.; van Belkum, A.; Neela, V. Bioactive 2-(methyldithio) pyridine-3-carbonitrile from Persian shallot (allium stipitatum regel.) exerts broad-spectrum antimicrobial activity. Molecules, 2019, 24(6), 1003.
[http://dx.doi.org/10.3390/molecules24061003] [PMID: 30871159]
[99]
Mohi El-Deen, E.M.; Abd El-Meguid, E.A.; Hasabelnaby, S.; Karam, E.A.; Nossier, E.S.; Nossier, E.S. Synthesis, docking studies, and in vitro evaluation of some novel thienopyridines and fused thienopyridine-quinolines as antibacterial agents and DNA gyrase inhibitors. Molecules, 2019, 24(20), 3650.
[http://dx.doi.org/10.3390/molecules24203650] [PMID: 31658631]
[100]
Świątek, P.; Strzelecka, M. Isothiazolopyridine Mannich bases and their antibacterial effect. Adv. Clin. Exp. Med. 2019, 28(7), 967- 972.
[http://dx.doi.org/10.17219/acem/99310] [PMID: 30561174]
[101]
Dang, T.; Nizamov, I.S.; Salikhov, R.Z.; Sabirzyanova, L.R.; Vorobev, V.V.; Burganova, T.I.; Shaidoullina, M.M.; Batyeva, E.S.; Cherkasov, R.A.; Abdullin, T.I. Synthesis and characterization of pyridoxine, nicotine and nicotinamide salts of dithiophosphoric acids as antibacterial agents against resistant wound infection. Bioorg. Med. Chem., 2019, 27(1), 100-109.
[http://dx.doi.org/10.1016/j.bmc.2018.11.017] [PMID: 30503413]
[102]
Fan, T.; Hu, X.; Tang, S.; Liu, X.; Wang, Y.; Deng, H.; You, X.; Jiang, J.; Li, Y.; Song, D. Discovery and development of 8-substituted cycloberberine derivatives as novel antibacterial agents against MRSA. ACS Med. Chem. Lett., 2018, 9(5), 484-489.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00094] [PMID: 29795764]
[103]
Ante, I.E.; Aboaba, S.A.; Siddiqui, H.; Bashir, M.A.; Choudhary, M.I. Derivatives of 2-aminopyridines as inhibitors of multidrug resistant Staphylococcus aureus strains. Int. J. Chem., 2018, 10(1), 153-161.
[http://dx.doi.org/10.5539/ijc.v10n1p153]
[104]
Han, J.; Liu, C.; Li, L.; Zhou, H.; Liu, L.; Bao, L.; Chen, Q.; Song, F.; Zhang, L.; Li, E.; Liu, L.; Pei, Y.; Jin, C.; Xue, Y.; Yin, W.; Ma, Y.; Liu, H. Decalin-containing tetramic acids and 4-hydroxy-2-pyridones with antimicrobial and cytotoxic activity from the fungus Coniochaeta cephalothecoides collected in Tibetan plateau (medog). J. Org. Chem., 2017, 82(21), 11474-11486.
[http://dx.doi.org/10.1021/acs.joc.7b02010] [PMID: 29019245]
[105]
Kumar, S.V.; Scottwell, S.Ø.; Waugh, E.; McAdam, C.J.; Hanton, L.R.; Brooks, H.J.; Crowley, J.D. Antimicrobial properties of tris (homoleptic) ruthenium (II) 2-Pyridyl-1, 2, 3-triazole “click” complexes against pathogenic bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Inorg. Chem., 2016, 55(19), 9767-9777.
[http://dx.doi.org/10.1021/acs.inorgchem.6b01574] [PMID: 27657170]
[106]
Cai, M-G.; Wu, Y.; Chang, J. Synthesis and biological evaluation of 2-arylimino-3-pyridin-thiazolineone derivatives as antibacterial agents. Bioorg. Med. Chem. Lett., 2016, 26(10), 2517-2520.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.089] [PMID: 27036520]
[107]
Chang, H-C.; Huang, Y-T.; Chen, C-S.; Chen, Y-W.; Huang, Y-T.; Su, J-C.; Teng, L-J.; Shiau, C-W.; Chiu, H-C. In vitro and in vivo activity of a novel sorafenib derivative SC5005 against MRSA. J. Antimicrob. Chemother., 2016, 71(2), 449-459.
[http://dx.doi.org/10.1093/jac/dkv367] [PMID: 26553845]
[108]
Reeve, S.M.; Scocchera, E.; Ferreira, J.J. G-Dayanandan, N.; Keshipeddy, S.; Wright, D.L.; Anderson, A.C. Charged propargyl-linked antifolates reveal mechanisms of antifolate resistance and inhibit trimethoprim-resistant MRSA strains possessing clinically relevant mutations. J. Med. Chem., 2016, 59(13), 6493-6500.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00688] [PMID: 27308944]
[109]
Kim, Y.G.; Seo, J.H.; Kwak, J.H.; Shin, K.J. Discovery of a potent enoyl-acyl carrier protein reductase (FabI) inhibitor suitable for antistaphylococcal agent. Bioorg. Med. Chem. Lett., 2015, 25(20), 4481-4486.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.077] [PMID: 26343826]
[110]
Fontaine, F.; Héquet, A.; Voisin-Chiret, A-S.; Bouillon, A.; Lesnard, A.; Cresteil, T.; Jolivalt, C.; Rault, S. Boronic species as promising inhibitors of the Staphylococcus aureus NorA efflux pump: Study of 6-substituted pyridine-3-boronic acid derivatives. Eur. J. Med. Chem., 2015, 95, 185-198.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.056] [PMID: 25817769]
[111]
Pandurangan, K.; Kitchen, J.A.; Blasco, S.; Paradisi, F.; Gunnlaugsson, T. Supramolecular pyridyl urea gels as soft matter with antibacterial properties against MRSA and/or E. coli. Chem. Commun. (Camb.), 2014, 50(74), 10819-10822.
[http://dx.doi.org/10.1039/C4CC04028G] [PMID: 25089301]
[112]
Ling, C.; Fu, L.; Gao, S.; Chu, W.; Wang, H.; Huang, Y.; Chen, X.; Yang, Y. Design, synthesis, and structure-activity relationship studies of novel thioether pleuromutilin derivatives as potent antibacterial agents. J. Med. Chem., 2014, 57(11), 4772-4795.
[http://dx.doi.org/10.1021/jm500312x] [PMID: 24874438]
[113]
Lobana, T.S.; Indoria, S.; Jassal, A.K.; Kaur, H.; Arora, D.S.; Jasinski, J.P. Synthesis, structures, spectroscopy and antimicrobial properties of complexes of copper(II) with salicylaldehyde N-substituted thiosemicarbazones and 2,2′-bipyridine or 1,10-phenanthroline. Eur. J. Med. Chem., 2014, 76, 145-154.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.009] [PMID: 24583354]
[114]
Erdem-Tuncmen, M.; Karipcin, F.; Sariboga, B. Synthesis and characterization of novel organocobaloximes as potential catecholase and antimicrobial activity agents. Arch. Pharm. (Weinheim), 2013, 346(10), 718-726.
[http://dx.doi.org/10.1002/ardp.201300168] [PMID: 24003018]
[115]
Kim, H.S.; Jadhav, J.R.; Jung, S.J.; Kwak, J.H. Synthesis and antimicrobial activity of imidazole and pyridine appended cholestane-based conjugates. Bioorg. Med. Chem. Lett., 2013, 23(15), 4315-4318.
[http://dx.doi.org/10.1016/j.bmcl.2013.05.098] [PMID: 23791571]
[116]
Kaul, M.; Mark, L.; Zhang, Y.; Parhi, A.K.; Lavoie, E.J.; Pilch, D.S. An FtsZ-targeting prodrug with oral antistaphylococcal efficacy in vivo. Antimicrob. Agents Chemother., 2013, 57(12), 5860-5869.
[http://dx.doi.org/10.1128/AAC.01016-13] [PMID: 24041882]
[117]
Shukla, N.M.; Salunke, D.B.; Yoo, E.; Mutz, C.A.; Balakrishna, R.; David, S.A. Antibacterial activities of Groebke-Blackburn-Bienaymé-derived imidazo[1,2-a]pyridin-3-amines. Bioorg. Med. Chem., 2012, 20(19), 5850-5863.
[http://dx.doi.org/10.1016/j.bmc.2012.07.052] [PMID: 22925449]
[118]
Chan, B.C.; Ip, M.; Lau, C.B.; Lui, S.L.; Jolivalt, C.; Ganem-Elbaz, C.; Litaudon, M.; Reiner, N.E.; Gong, H.; See, R.H.; Fung, K.P.; Leung, P.C. Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. J. Ethnopharmacol., 2011, 137(1), 767-773.
[http://dx.doi.org/10.1016/j.jep.2011.06.039] [PMID: 21782012]
[119]
Starr, J.T.; Sciotti, R.J.; Hanna, D.L.; Huband, M.D.; Mullins, L.M.; Cai, H.; Gage, J.W.; Lockard, M.; Rauckhorst, M.R.; Owen, R.M.; Lall, M.S.; Tomilo, M.; Chen, H.; McCurdy, S.P.; Barbachyn, M.R. 5-(2-Pyrimidinyl)-imidazo[1,2-a]pyridines are antibacterial agents targeting the ATPase domains of DNA gyrase and topoisomerase IV. Bioorg. Med. Chem. Lett., 2009, 19(18), 5302-5306.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.141] [PMID: 19683922]
[120]
Lange, C. Holzhey, N.; Schönecker, B.; Beckert, R.; Möllmann, U.; Dahse, H-M. ω-pyridiniumalkylethers of steroidal phenols: new compounds with potent antibacterial and antiproliferative activities. Bioorg. Med. Chem., 2004, 12(12), 3357-3362.
[PMID: 15158804]
[121]
Springer, D.M.; Luh, B-Y.; Bronson, J.J. Anti-MRSA cephems. Part 1: C-3 substituted thiopyridinium derivatives. Bioorg. Med. Chem. Lett., 2001, 11(6), 797-801.
[http://dx.doi.org/10.1016/S0960-894X(01)00060-9] [PMID: 11277523]
[122]
Fang, Z.; Zheng, S.; Chan, K-F.; Yuan, W.; Guo, Q.; Wu, W.; Lui, H-K.; Lu, Y.; Leung, Y-C.; Chan, T-H.; Wong, K.Y.; Sun, N. Design, synthesis and antibacterial evaluation of 2,4-disubstituted-6-thiophenyl-pyrimidines. Eur. J. Med. Chem., 2019, 161, 141-153.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.039] [PMID: 30347327]
[123]
Deng, Y.; Wang, X-Z.; Huang, S-H.; Li, C-H. Antibacterial activity evaluation of synthetic novel pleuromutilin derivatives in vitro and in experimental infection mice. Eur. J. Med. Chem., 2019, 162, 194-202.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.006] [PMID: 30445267]
[124]
Gao, F.; Wang, T.; Xiao, J.; Huang, G. Antibacterial activity study of 1,2,4-triazole derivatives. Eur. J. Med. Chem., 2019, 173, 274-281.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.043] [PMID: 31009913]
[125]
Ezzat, H. Synthesis and evaluation of new phenylthiazole dervatives as antimicrobial agents. Al-Azhar. J. Pharm. Sci., 2019, 60(2), 59-75.
[126]
Liu, H-B.; Gao, W-W.; Tangadanchu, V.K.R.; Zhou, C-H.; Geng, R-X. Novel aminopyrimidinyl benzimidazoles as potentially antimicrobial agents: Design, synthesis and biological evaluation. Eur. J. Med. Chem., 2018, 143, 66-84.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.027] [PMID: 29172083]
[127]
Yi, Y.; Xu, X.; Liu, Y.; Xu, S.; Huang, X.; Liang, J.; Shang, R. Synthesis and antibacterial activities of novel pleuromutilin derivatives with a substituted pyrimidine moiety. Eur. J. Med. Chem., 2017, 126, 687-695.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.054] [PMID: 27940400]
[128]
Hagras, M.; Mohammad, H.; Mandour, M.S.; Hegazy, Y.A.; Ghiaty, A.; Seleem, M.N.; Mayhoub, A.S. Investigating the antibacterial activity of biphenylthiazoles against methicillin-and vancomycin-resistant Staphylococcus aureus (MRSA and VRSA). J. Med. Chem., 2017, 60(9), 4074-4085.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00392] [PMID: 28436655]
[129]
Yi, Y.; Fu, Y.; Dong, P.; Qin, W.; Liu, Y.; Liang, J.; Shang, R. Synthesis and biological activity evaluation of novel heterocyclic pleuromutilin derivatives. Molecules, 2017, 22(6), 996.
[http://dx.doi.org/10.3390/molecules22060996] [PMID: 28617344]
[130]
Jiang, Z.; Hong, W.D.; Cui, X.; Gao, H.; Wu, P.; Chen, Y.; Shen, D.; Yang, Y.; Zhang, B.; Taylor, M.J.; Ward, S.A.; O’Neill, P.M.; Zhao, S.; Zhang, K. Synthesis and structure–activity relationship of N 4-benzylamine-N 2-isopropyl-quinazoline-2, 4-diamines derivatives as potential antibacterial agents. RSC Advances, 2017, 7(82), 52227-52237.
[http://dx.doi.org/10.1039/C7RA10352B]
[131]
Seleem, M.A.; Disouky, A.M.; Mohammad, H.; Abdelghany, T.M.; Mancy, A.S.; Bayoumi, S.A.; Elshafeey, A.; El-Morsy, A.; Seleem, M.N.; Mayhoub, A.S. Second-generation phenylthiazole antibiotics with enhanced pharmacokinetic properties. J. Med. Chem., 2016, 59(10), 4900-4912.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00233] [PMID: 27187739]
[132]
Fang, X-J.; Jeyakkumar, P.; Avula, S.R.; Zhou, Q.; Zhou, C-H. Design, synthesis and biological evaluation of 5-fluorouracil-derived benzimidazoles as novel type of potential antimicrobial agents. Bioorg. Med. Chem. Lett., 2016, 26(11), 2584-2588.
[133]
Yi, Y.; Yang, G.; Zhang, C.; Chen, J.; Liang, J.; Shang, R. Synthesis and evaluation of novel pleuromutilin derivatives with a substituted pyrimidine moiety. Eur. J. Med. Chem., 2015, 101, 179-184.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.034] [PMID: 26134552]
[134]
Ali, K.A.; Hosni, H.M.; Ragab, E.A.; El-Moez, S.I.A. Synthesis and antimicrobial evaluation of some new cyclooctanones and cyclooctane-based heterocycles. Arch. Pharm. (Weinheim), 2012, 345(3), 231-239.
[http://dx.doi.org/10.1002/ardp.201100186] [PMID: 22045512]
[135]
Wyatt, E.E.; Galloway, W.R.; Thomas, G.L.; Welch, M.; Loiseleur, O.; Plowright, A.T.; Spring, D.R. Identification of an anti-MRSA dihydrofolate reductase inhibitor from a diversity-oriented synthesis. Chem Comm, 2008, 4962-4964.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy