Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Cross-Talk between Obesity and Diabetes: Introducing Polyphenols as an Effective Phytomedicine to Combat the Dual Sword Diabesity

Author(s): Muhammad Ajmal Shah*, Muhammad Haris, Hafiza Ishmal Faheem, Ayesha Hamid, Rimsha Yousaf, Azhar Rasul, Ghulam Mujtaba Shah, Atif Ali Khan Khalil, Abdul Wahab, Haroon Khan, Reem Hasaballah Alhasani and Norah A. Althobaiti

Volume 28, Issue 19, 2022

Published on: 04 July, 2022

Page: [1523 - 1542] Pages: 20

DOI: 10.2174/1381612828666220628123224

Price: $65

Abstract

Obesity-associated diabetes mellitus, a chronic metabolic affliction accounting for 90% of all diabetic patients, has been affecting humanity extremely badly and escalating the risk of developing other serious disorders. It is observed that 0.4 billion people globally have diabetes, whose major cause is obesity. Currently, innumerable synthetic drugs like alogliptin and rosiglitazone are being used to get through diabetes, but they have certain complications, restrictions with severe side effects, and toxicity issues. Recently, the frequency of plant-derived phytochemicals as advantageous substitutes against diabesity is increasing progressively due to their unparalleled benefit of producing less side effects and toxicity. Of these phytochemicals, dietary polyphenols have been accepted as potent agents against the dual sword “diabesity”. These polyphenols target certain genes and molecular pathways through dual mechanisms such as adiponectin upregulation, cannabinoid receptor antagonism, free fatty acid oxidation, ghrelin antagonism, glucocorticoid inhibition, sodium-glucose cotransporter inhibition, oxidative stress and inflammation inhibition etc. which sequentially help to combat both diabetes and obesity. In this review, we have summarized the most beneficial natural polyphenols along with their complex molecular pathways during diabesity.

Keywords: Natural products, diabetes, obesity, molecular targets, diabesity, GLUT4.

Next »
[1]
Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell 2001; 104(4): 531-43.
[http://dx.doi.org/10.1016/S0092-8674(01)00240-9]
[2]
Redinger RN. The pathophysiology of obesity and its clinical manifestations. Gastroenterol Hepatol (N Y) 2007; 3(11): 856-63.
[PMID: 21960798]
[3]
He JH, Chen LX, Li H. Progress in the discovery of naturally occurring anti-diabetic drugs and in the identification of their molecular targets. Fitoterapia 2019; 134: 270-89.
[http://dx.doi.org/10.1016/j.fitote.2019.02.033] [PMID: 30840917]
[4]
Arsenault BJ, Cartier A, Côté M, et al. Body composition, cardiorespiratory fitness, and low-grade inflammation in middle-aged men and women. Am J Cardiol 2009; 104(2): 240-6.
[http://dx.doi.org/10.1016/j.amjcard.2009.03.027] [PMID: 19576354]
[5]
Lee CG, Carr MC, Murdoch SJ, et al. Adipokines, inflammation, and visceral adiposity across the menopausal transition: A prospective study. J Clin Endocrinol Metab 2009; 94(4): 1104-10.
[http://dx.doi.org/10.1210/jc.2008-0701] [PMID: 19126626]
[6]
Liang Y, Li Z, Liang S, et al. Hepatic adenylate cyclase 3 is upregulated by Liraglutide and subsequently plays a protective role in insulin resistance and obesity. Nutr Diabetes 2016; 6(1): e191-.
[http://dx.doi.org/10.1038/nutd.2015.37] [PMID: 26807509]
[7]
Farag YM, Gaballa MR. Diabesity: An overview of a rising epidemic. Nephrol Dial Transplant 2011; 26(1): 28-35.
[http://dx.doi.org/10.1093/ndt/gfq576] [PMID: 21045078]
[8]
Dayre A, Pouvreau C, Butkowski EG, et al. Diabesity increases inflammation and oxidative stress. Int J Pharm Sci Develop Res 2016; 2(1): 012-8.
[http://dx.doi.org/10.17352/ijpsdr.000006]
[9]
Preuss HG. Bean amylase inhibitor and other carbohydrate absorption blockers: Effects on diabesity and general health. J Am Coll Nutr 2009; 28(3): 266-76.
[http://dx.doi.org/10.1080/07315724.2009.10719781] [PMID: 20150600]
[10]
Shapiro K, Gong WC. Natural products used for diabetes. J Am Pharm Assoc (1996) 2002; 42(2): 217-6.
[http://dx.doi.org/10.1331/108658002763508515]
[11]
Zhao C, Yang C, Wai STC, et al. Regulation of glucose metabolism by bioactive phytochemicals for the management of type 2 diabetes mellitus. Crit Rev Food Sci Nutr 2019; 59(6): 830-47.
[http://dx.doi.org/10.1080/10408398.2018.1501658] [PMID: 30501400]
[12]
Golay A, Allaz AF, Ybarra J, et al. Similar weight loss with low-energy food combining or balanced diets. Int J Obes 2000; 24(4): 492-6.
[http://dx.doi.org/10.1038/sj.ijo.0801185] [PMID: 10805507]
[13]
Ortega MA, Fraile-Martínez O, Naya I, et al. Type 2 diabetes mellitus associated with obesity (diabesity). The central role of gut micro-biota and its translational applications. Nutrients 2020; 12(9): 2749.
[http://dx.doi.org/10.3390/nu12092749] [PMID: 32917030]
[14]
McNaughton D. ‘Diabesity’ down under: Overweight and obesity as cultural signifiers for type 2 diabetes mellitus. Crit Public Health 2013; 23(3): 274-88.
[http://dx.doi.org/10.1080/09581596.2013.766671] [PMID: 23914074]
[15]
Astrup A, Finer N. Redefining type 2 diabetes: ‘Diabesity’ or ‘Obesity dependent diabetes mellitus’? Obes Rev 2000; 1(2): 57-9.
[16]
Chadt A, Scherneck S, Joost HG, et al. Molecular links between obesity and diabetes: Diabesity. Endotext 2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279051/
[17]
Park J, Jang HJ. Anti-diabetic effects of natural products an overview of therapeutic strategies. Mol Cell Toxicol 2017; 13(1): 1-20.
[http://dx.doi.org/10.1007/s13273-017-0001-1]
[18]
Xu L, Li Y, Dai Y, Peng J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacol Res 2018; 130: 451-65.
[http://dx.doi.org/10.1016/j.phrs.2018.01.015] [PMID: 29395440]
[19]
Tabatabaei-Malazy O, Larijani B, Abdollahi M. Targeting metabolic disorders by natural products. J Diabetes Metab Disord 2015; 14(1): 57.
[http://dx.doi.org/10.1186/s40200-015-0184-8] [PMID: 26157708]
[20]
Cherniack EP. Polyphenols: Planting the seeds of treatment for the metabolic syndrome. Nutrition 2011; 27(6): 617-23.
[http://dx.doi.org/10.1016/j.nut.2010.10.013] [PMID: 21367579]
[21]
Mihaylova D, Popova A, Alexieva I, et al. Polyphenols as suitable control for obesity and diabetes. Open Biotechnol J 2018; 12(1): 219-28.
[http://dx.doi.org/10.2174/1874070701812010219]
[22]
Aryaeian N, Sedehi SK, Arablou T. Polyphenols and their effects on diabetes management: A review. Med J Islam Repub Iran 2017; 31: 134.
[http://dx.doi.org/10.14196/mjiri.31.134] [PMID: 29951434]
[23]
Dragan S, Andrica F, Serban MC, Timar R. Polyphenols-rich natural products for treatment of diabetes. Curr Med Chem 2015; 22(1): 14-22.
[http://dx.doi.org/10.2174/0929867321666140826115422] [PMID: 25174925]
[24]
Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2009; 2(5): 270-8.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[25]
Meydani M, Hasan ST. Dietary polyphenols and obesity. Nutrients 2010; 2(7): 737-51.
[http://dx.doi.org/10.3390/nu2070737] [PMID: 22254051]
[26]
Ebrahimpour S, Zakeri M, Esmaeili A. Crosstalk between obesity, diabetes, and Alzheimer’s disease: Introducing quercetin as an effec-tive triple herbal medicine. Ageing Res Rev 2020; 62: 101095.
[http://dx.doi.org/10.1016/j.arr.2020.101095] [PMID: 32535272]
[27]
Liu Q, Chen L, Hu L, Guo Y, Shen X. Small molecules from natural sources, targeting signaling pathways in diabetes. Biochim Biophys Acta 2010; 1799(10-12): 854-65.
[http://dx.doi.org/10.1016/j.bbagrm.2010.06.004] [PMID: 20601278]
[28]
Prabhakar PK, Doble M. A target based therapeutic approach towards diabetes mellitus using medicinal plants. Curr Diabetes Rev 2008; 4(4): 291-308.
[http://dx.doi.org/10.2174/157339908786241124] [PMID: 18991598]
[29]
Sheikhpour M, Abolfathi H, Khatami S, et al. The interaction between gene profile and obesity in type 2 diabetes: A review. Obes Med 2020; 18: 100197.
[http://dx.doi.org/10.1016/j.obmed.2020.100197]
[30]
Kim JB. Dynamic cross talk between metabolic organs in obesity and metabolic diseases. Exp Mol Med 2016; 48(3): e214.
[http://dx.doi.org/10.1038/emm.2015.119] [PMID: 26964830]
[31]
Colagiuri S. Diabesity: Therapeutic options. Diabetes Obes Metab 2010; 12(6): 463-73.
[http://dx.doi.org/10.1111/j.1463-1326.2009.01182.x] [PMID: 20518802]
[32]
Hossain P, Kawar B, El Nahas M. Obesity and diabetes in the developing world--a growing challenge. N Engl J Med 2007; 356(3): 213-5.
[http://dx.doi.org/10.1056/NEJMp068177] [PMID: 17229948]
[33]
Kingston DG. Modern natural products drug discovery and its relevance to biodiversity conservation. J Nat Prod 2011; 74(3): 496-511.
[http://dx.doi.org/10.1021/np100550t] [PMID: 21138324]
[34]
Mishra BB, Tiwari VK. Natural products: An evolving role in future drug discovery. Eur J Med Chem 2011; 46(10): 4769-807.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.057] [PMID: 21889825]
[35]
Panchal SK, Bliss E, Brown L. Capsaicin in metabolic syndrome. Nutrients 2018; 10(5): 630.
[http://dx.doi.org/10.3390/nu10050630] [PMID: 29772784]
[36]
Yang J, Yin J, Gao H, et al. Berberine improves insulin sensitivity by inhibiting fat store and adjusting adipokines profile in human preadipocytes and metabolic syndrome patients. Evid Based Complement Alternat Med 2012; 2012: 363845.
[http://dx.doi.org/10.1155/2012/363845] [PMID: 2247449]
[37]
Kim T, Davis J, Zhang AJ, He X, Mathews ST. Curcumin activates AMPK and suppresses gluconeogenic gene expression in hepatoma cells. Biochem Biophys Res Commun 2009; 388(2): 377-82.
[http://dx.doi.org/10.1016/j.bbrc.2009.08.018] [PMID: 19665995]
[38]
Vallianou NG, Evangelopoulos A, Kazazis C. Resveratrol and diabetes. Rev Diabet Stud 2013; 10(4): 236-42.
[http://dx.doi.org/10.1900/RDS.2013.10.236] [PMID: 24841877]
[39]
Chamberlain PD, Jennings KH, Paul F, et al. The tissue distribution of the human β3-adrenoceptor studied using a monoclonal antibody: Direct evidence of the β3-adrenoceptor in human adipose tissue, atrium and skeletal muscle. Int J Obes 1999; 23(10): 1057-65.
[http://dx.doi.org/10.1038/sj.ijo.0801039] [PMID: 10557026]
[40]
Azhar Y, Parmar A, Miller CN, Samuels JS, Rayalam S. Phytochemicals as novel agents for the induction of browning in white adipose tissue. Nutr Metab (Lond) 2016; 13(1): 89.
[http://dx.doi.org/10.1186/s12986-016-0150-6] [PMID: 27980598]
[41]
Seely KA. Cannabinoid receptor inverse agonists as novel therapeutic agents. ProQuest 2009.
[42]
Cheng C, Zhuo S, Zhang B, et al. Treatment implications of natural compounds targeting lipid metabolism in nonalcoholic fatty liver disease, obesity and cancer. Int J Biol Sci 2019; 15(8): 1654-63.
[http://dx.doi.org/10.7150/ijbs.33837] [PMID: 31360108]
[43]
Goldwasser J, Cohen PY, Yang E, Balaguer P, Yarmush ML, Nahmias Y. Transcriptional regulation of human and rat hepatic lipid me-tabolism by the grapefruit flavonoid naringenin: Role of PPARalpha, PPARgamma and LXRalpha. PLoS One 2010; 5(8): e12399.
[http://dx.doi.org/10.1371/journal.pone.0012399] [PMID: 20811644]
[44]
Rezaie P, Mazidi M, Nematy M. Ghrelin, food intake, and botanical extracts: A review. Avicenna J Phytomed 2015; 5(4): 271-81.
[PMID: 26445708]
[45]
Rayalam S, Della-Fera MA, Baile CA. Phytochemicals and regulation of the adipocyte life cycle. J Nutr Biochem 2008; 19(11): 717-26.
[http://dx.doi.org/10.1016/j.jnutbio.2007.12.007] [PMID: 18495457]
[46]
Ríos JL, Andújar I, Schinella GR, Francini F. Modulation of diabetes by natural products and medicinal plants via incretins. Planta Med 2019; 85(11-12): 825-39.
[http://dx.doi.org/10.1055/a-0897-7492] [PMID: 31064029]
[47]
Domínguez Avila JA, Rodrigo García J, González Aguilar GA, de la Rosa LA. The antidiabetic mechanisms of polyphenols related to increased Glucagon-Like Peptide-1 (GLP1) and insulin signaling. Molecules 2017; 22(6): 903.
[http://dx.doi.org/10.3390/molecules22060903] [PMID: 28556815]
[48]
Gumy C, Thurnbichler C, Aubry EM, et al. Inhibition of 11β-hydroxysteroid dehydrogenase type 1 by plant extracts used as traditional antidiabetic medicines. Fitoterapia 2009; 80(3): 200-5.
[http://dx.doi.org/10.1016/j.fitote.2009.01.009] [PMID: 19535018]
[49]
Nfisslein-Volhardt C, Wieschaus E. Segmentation in Drosophila: Mutations affecting segment number and polarity. Nature 1980; 287: 795-801.
[http://dx.doi.org/10.1038/287795a0]
[50]
Bretón-Romero R, Feng B, Holbrook M, et al. Endothelial dysfunction in human diabetes is mediated by Wnt5a-JNK signaling. Arterioscler Thromb Vasc Biol 2016; 36(3): 561-9.
[http://dx.doi.org/10.1161/ATVBAHA.115.306578] [PMID: 26800561]
[51]
Aslam MF, Muhammad SM, Aslam S, et al. Vitamins: Key role players in boosting up immune response-A mini review. Vitam Miner 2017; 6(1): 2376-1318.
[52]
Astarci E, Banerjee S. PPARG peroxisome proliferator-activated receptor gamma. Atlas Genet Cytogenet Oncol Haematol 2009. Available from: https://atlasgeneticsoncology.org/gene/383/pparg-(peroxisome-proliferator-activated-receptor-gamma)
[53]
Garcia-Vallve S, Guasch L, Mulero M. Discovery of natural products that modulate the activity of PPARgamma: A source for new anti-diabetics Food Informatics. Springer 2014; pp. 151-76.
[http://dx.doi.org/10.1007/978-3-319-10226-9_6]
[54]
Kerru N, Singh-Pillay A, Awolade P, Singh P. Current anti-diabetic agents and their molecular targets: A review. Eur J Med Chem 2018; 152: 436-88.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.061] [PMID: 29751237]
[55]
Kaszubska W, Falls HD, Schaefer VG, et al. Protein tyrosine phosphatase 1B negatively regulates leptin signaling in a hypothalamic cell line. Mol Cell Endocrinol 2002; 195(1-2): 109-18.
[http://dx.doi.org/10.1016/S0303-7207(02)00178-8] [PMID: 12354677]
[56]
Chen M, Wang K, Zhang Y, et al. New insights into the biological activities of Chrysanthemum morifolium: Natural flavonoids alleviate diabetes by targeting α-glucosidase and the PTP-1B signaling pathway. Eur J Med Chem 2019; 178: 108-15.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.083] [PMID: 31176093]
[57]
Trujillo ME, Scherer PE. Adiponectin--journey from an adipocyte secretory protein to biomarker of the metabolic syndrome. J Intern Med 2005; 257(2): 167-75.
[http://dx.doi.org/10.1111/j.1365-2796.2004.01426.x] [PMID: 15656875]
[58]
Achari AE, Jain SK. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci 2017; 18(6): 1321.
[http://dx.doi.org/10.3390/ijms18061321] [PMID: 28635626]
[59]
Fasshauer M, Kralisch S, Klier M, et al. Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2003; 301(4): 1045-50.
[http://dx.doi.org/10.1016/S0006-291X(03)00090-1] [PMID: 12589818]
[60]
Wang ZV, Scherer PE. Adiponectin, the past two decades. J Mol Cell Biol 2016; 8(2): 93-100.
[http://dx.doi.org/10.1093/jmcb/mjw011] [PMID: 26993047]
[61]
Takahashi M, Arita Y, Yamagata K, et al. Genomic structure and mutations in adipose-specific gene, adiponectin. Int J Obes 2000; 24(7): 861-8.
[http://dx.doi.org/10.1038/sj.ijo.0801244] [PMID: 10918532]
[62]
Wang ZV, Schraw TD, Kim JY, et al. Secretion of the adipocyte-specific secretory protein adiponectin critically depends on thiol-mediated protein retention. Mol Cell Biol 2007; 27(10): 3716-31.
[http://dx.doi.org/10.1128/MCB.00931-06] [PMID: 17353260]
[63]
Qiang L, Wang H, Farmer SR. Adiponectin secretion is regulated by SIRT1 and the endoplasmic reticulum oxidoreductase Ero1-L α. Mol Cell Biol 2007; 27(13): 4698-707.
[http://dx.doi.org/10.1128/MCB.02279-06] [PMID: 17452443]
[64]
Yanai H, Yoshida H. Beneficial effects of adiponectin on glucose and lipid metabolism and atherosclerotic progression: Mechanisms and perspectives. Int J Mol Sci 2019; 20(5): 1190.
[http://dx.doi.org/10.3390/ijms20051190] [PMID: 30857216]
[65]
Kadowaki T, Masato I, Toshimasa Y, et al. Adiponectin and adiponectin Receptors in Obesity-Linked Insulin Resistance. In: Novartis Found Symp 2008; 286: 164-76.
[66]
Ghoshal K, Bhattacharyya M. Adiponectin: Probe of the molecular paradigm associating diabetes and obesity. World J Diabetes 2015; 6(1): 151-66.
[http://dx.doi.org/10.4239/wjd.v6.i1.151] [PMID: 25685286]
[67]
Iwabu M, Okada-Iwabu M, Yamauchi T, Kadowaki T. Adiponectin/AdipoR research and its implications for lifestyle-related diseases. Front Cardiovasc Med 2019; 6: 116.
[http://dx.doi.org/10.3389/fcvm.2019.00116] [PMID: 31475160]
[68]
Deepa SS, Dong LQ. APPL1: Role in adiponectin signaling and beyond. Am J Physiol Endocrinol Metab 2009; 296(1): E22-36.
[http://dx.doi.org/10.1152/ajpendo.90731.2008] [PMID: 18854421]
[69]
Zhao L, Fu Z, Wu J, et al. Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascu-lar insulin responses. J Physiol 2015; 593(17): 4067-79.
[http://dx.doi.org/10.1113/JP270371] [PMID: 26108677]
[70]
Deepa SS, Zhou L, Ryu J, et al. APPL1 mediates adiponectin-induced LKB1 cytosolic localization through the PP2A-PKCzeta signaling pathway. Mol Endocrinol 2011; 25(10): 1773-85.
[http://dx.doi.org/10.1210/me.2011-0082] [PMID: 21835890]
[71]
Yamauchi T, Kamon J, Ito Y, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003; 423(6941): 762-9.
[http://dx.doi.org/10.1038/nature01705] [PMID: 12802337]
[72]
Treebak JT, Glund S, Deshmukh A, et al. AMPK-mediated AS160 phosphorylation in skeletal muscle is dependent on AMPK catalytic and regulatory subunits. Diabetes 2006; 55(7): 2051-8.
[http://dx.doi.org/10.2337/db06-0175] [PMID: 16804075]
[73]
Lochhead PA, Salt IP, Walker KS, Hardie DG, Sutherland C. 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes 2000; 49(6): 896-903.
[http://dx.doi.org/10.2337/diabetes.49.6.896] [PMID: 10866040]
[74]
Shishodia S, Sethi G, Aggarwal BB. Curcumin: Getting back to the roots. Ann N Y Acad Sci 2005; 1056(1): 206-17.
[http://dx.doi.org/10.1196/annals.1352.010] [PMID: 16387689]
[75]
Ohara K, Uchida A, Nagasaka R, Ushio H, Ohshima T. The effects of hydroxycinnamic acid derivatives on adiponectin secretion. Phytomedicine 2009; 16(2-3): 130-7.
[http://dx.doi.org/10.1016/j.phymed.2008.09.012] [PMID: 19013780]
[76]
Lee YK, Lee WS, Hwang JT, Kwon DY, Surh YJ, Park OJ. Curcumin exerts antidifferentiation effect through AMPKalpha-PPAR-γ in 3T3-L1 adipocytes and antiproliferatory effect through AMPKalpha-COX-2 in cancer cells. J Agric Food Chem 2009; 57(1): 305-10.
[http://dx.doi.org/10.1021/jf802737z] [PMID: 19093868]
[77]
Cho J-W, Lee K-S, Kim C-W. Curcumin attenuates the expression of IL-1β IL-6, and TNF-α as well as cyclin E in TNF-α-treated HaCaT cells; NF-kappaB and MAPKs as potential upstream targets. Int J Mol Med 2007; 19(3): 469-74.
[http://dx.doi.org/10.3892/ijmm.19.3.469] [PMID: 17273796]
[78]
O’Neill J, Brock C, Olesen AE, Andresen T, Nilsson M, Dickenson AH. Unravelling the mystery of capsaicin: A tool to understand and treat pain. Pharmacol Rev 2012; 64(4): 939-71.
[http://dx.doi.org/10.1124/pr.112.006163] [PMID: 23023032]
[79]
Seip M, Trygstad O. Generalized lipodystrophy, congenital and acquired (lipoatrophy). Acta Paediatr Suppl 1996; 413: 2-28.
[http://dx.doi.org/10.1111/j.1651-2227.1996.tb14262.x] [PMID: 8783769]
[80]
Brunzell JD, Hokanson JE. Dyslipidemia of central obesity and insulin resistance. Diabetes Care 1999; 22(Suppl. 3): C10-3.
[PMID: 10189557]
[81]
Wickelgren I. Obesity: How big a problem? Science 1998; 280(5368): 1364-7.
[http://dx.doi.org/10.1126/science.280.5368.1364] [PMID: 9634413]
[82]
Yoshida T, Sakane N, Wakabayashi Y, Umekawa T, Kondo M. Anti-obesity and anti-diabetic effects of CL 316,243, a highly specific β 3-adrenoceptor agonist, in yellow KK mice. Life Sci 1994; 54(7): 491-8.
[http://dx.doi.org/10.1016/0024-3205(94)00408-0] [PMID: 8309351]
[83]
Weyer C, Tataranni PA, Snitker S, Danforth E Jr, Ravussin E. Increase in insulin action and fat oxidation after treatment with CL 316,243, a highly selective beta3-adrenoceptor agonist in humans. Diabetes 1998; 47(10): 1555-61.
[http://dx.doi.org/10.2337/diabetes.47.10.1555] [PMID: 9753292]
[84]
Lafontan M. Differential recruitment and differential regulation by physiological amines of fat cell β-1, β-2 and β-3 adrenergic receptors expressed in native fat cells and in transfected cell lines. Cell Signal 1994; 6(4): 363-92.
[http://dx.doi.org/10.1016/0898-6568(94)90085-X] [PMID: 7946963]
[85]
Summers RJ, Papaioannou M, Harris S, Evans BA. Expression of β 3-adrenoceptor mRNA in rat brain. Br J Pharmacol 1995; 116(6): 2547-8.
[http://dx.doi.org/10.1111/j.1476-5381.1995.tb17205.x] [PMID: 8590968]
[86]
Clément K, Vaisse C, Manning BS, et al. Genetic variation in the β 3-adrenergic receptor and an increased capacity to gain weight in pa-tients with morbid obesity. N Engl J Med 1995; 333(6): 352-4.
[http://dx.doi.org/10.1056/NEJM199508103330605] [PMID: 7609752]
[87]
Walston J, Silver K, Bogardus C, et al. Time of onset of non-insulin-dependent diabetes mellitus and genetic variation in the β 3-adrenergic-receptor gene. N Engl J Med 1995; 333(6): 343-7.
[http://dx.doi.org/10.1056/NEJM199508103330603] [PMID: 7609750]
[88]
Pacher P, Bátkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 2006; 58(3): 389-462.
[http://dx.doi.org/10.1124/pr.58.3.2] [PMID: 16968947]
[89]
Pertwee RG. Receptors and channels targeted by synthetic cannabinoid receptor agonists and antagonists. Curr Med Chem 2010; 17(14): 1360-81.
[http://dx.doi.org/10.2174/092986710790980050] [PMID: 20166927]
[90]
Pertwee RG, Howlett AC, Abood ME, et al. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: Beyond CB₁ and CB₂. Pharmacol Rev 2010; 62(4): 588-631.
[http://dx.doi.org/10.1124/pr.110.003004] [PMID: 21079038]
[91]
De Petrocellis L, Cascio MG, Di Marzo V. The endocannabinoid system: A general view and latest additions. Br J Pharmacol 2004; 141(5): 765-74.
[http://dx.doi.org/10.1038/sj.bjp.0705666] [PMID: 14744801]
[92]
Katritch V, Kufareva I, Abagyan R. Structure based prediction of subtype-selectivity for adenosine receptor antagonists. Neuropharmacology 2011; 60(1): 108-15.
[http://dx.doi.org/10.1016/j.neuropharm.2010.07.009] [PMID: 20637786]
[93]
Piomelli D. The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 2003; 4(11): 873-84.
[http://dx.doi.org/10.1038/nrn1247] [PMID: 14595399]
[94]
Basavarajappa BS. Neuropharmacology of the endocannabinoid signaling system-molecular mechanisms, biological actions and synaptic plasticity. Curr Neuropharmacol 2007; 5(2): 81-97.
[http://dx.doi.org/10.2174/157015907780866910] [PMID: 18084639]
[95]
Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R. The emerging role of the endocannabinoid system in endocrine regulation and ener-gy balance. Endocr Rev 2006; 27(1): 73-100.
[http://dx.doi.org/10.1210/er.2005-0009] [PMID: 16306385]
[96]
Bainbridge JS, Davies SH. CCXXXI.—The essential oil of cocoa. J Chem Soc Trans 1912; 101: 2209-21.
[http://dx.doi.org/10.1039/CT9120102209]
[97]
Mechoulam R, Ben-Shabat S, Hanus L, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to can-nabinoid receptors. Biochem Pharmacol 1995; 50(1): 83-90.
[98]
Petrosino S, Di Marzo V. FAAH and MAGL inhibitors: Therapeutic opportunities from regulating endocannabinoid levels. Curr Opin Investig Drugs (London, England: 2000) 2010; 11(1): 51-62.
[99]
Di Marzo V, Bifulco M, De Petrocellis L. The endocannabinoid system and its therapeutic exploitation. Nat Rev Drug Discov 2004; 3(9): 771-84.
[http://dx.doi.org/10.1038/nrd1495] [PMID: 15340387]
[100]
Di Marzo V. Targeting the endocannabinoid system: To enhance or reduce? Nat Rev Drug Discov 2008; 7(5): 438-55.
[http://dx.doi.org/10.1038/nrd2553] [PMID: 18446159]
[101]
Osei-Hyiaman D, DePetrillo M, Pacher P, et al. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J Clin Invest 2005; 115(5): 1298-305.
[http://dx.doi.org/10.1172/JCI200523057] [PMID: 15864349]
[102]
Di MV, Goparaju SK, Wang L, et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 2001; 410: 822-5.
[103]
Engeli S, Böhnke J, Feldpausch M, et al. Activation of the peripheral endocannabinoid system in human obesity. Diabetes 2005; 54(10): 2838-43.
[http://dx.doi.org/10.2337/diabetes.54.10.2838] [PMID: 16186383]
[104]
Di Marzo V. The endocannabinoid system in obesity and type 2 diabetes. Diabetologia 2008; 51(8): 1356-67.
[http://dx.doi.org/10.1007/s00125-008-1048-2] [PMID: 18563385]
[105]
Kunos G, Tam J. The case for peripheral CB₁ receptor blockade in the treatment of visceral obesity and its cardiometabolic complica-tions. Br J Pharmacol 2011; 163(7): 1423-31.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01352.x] [PMID: 21434882]
[106]
Zechner R, Strauss JG, Haemmerle G, Lass A, Zimmermann R. Lipolysis: Pathway under construction. Curr Opin Lipidol 2005; 16(3): 333-40.
[http://dx.doi.org/10.1097/01.mol.0000169354.20395.1c] [PMID: 15891395]
[107]
Ramírez M, Amate L, Gil A. Absorption and distribution of dietary fatty acids from different sources. Early Hum Dev 2001; 65(Suppl.): S95-S101.
[http://dx.doi.org/10.1016/S0378-3782(01)00211-0] [PMID: 11755040]
[108]
Rui L. Energy metabolism in the liver. Compr Physiol 2014; 4(1): 177-97.
[http://dx.doi.org/10.1002/cphy.c130024] [PMID: 24692138]
[109]
Large V, Peroni O, Letexier D, Ray H, Beylot M. Metabolism of lipids in human white adipocyte. Diabetes Metab 2004; 30(4): 294-309.
[http://dx.doi.org/10.1016/S1262-3636(07)70121-0] [PMID: 15525872]
[110]
Dranse HJ, Kelly ME, Hudson BD. Drugs or diet?--Developing novel therapeutic strategies targeting the free fatty acid family of GPCRs. Br J Pharmacol 2013; 170(4): 696-711.
[http://dx.doi.org/10.1111/bph.12327] [PMID: 23937426]
[111]
Nakamura MT, Yudell BE, Loor JJ. Regulation of energy metabolism by long-chain fatty acids. Prog Lipid Res 2014; 53: 124-44.
[http://dx.doi.org/10.1016/j.plipres.2013.12.001] [PMID: 24362249]
[112]
Briscoe CP, Tadayyon M, Andrews JL, et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 2003; 278(13): 11303-11.
[http://dx.doi.org/10.1074/jbc.M211495200] [PMID: 12496284]
[113]
Hasan AU, Ohmori K, Hashimoto T, et al. GPR120 in adipocytes has differential roles in the production of pro-inflammatory adipo-cytokines. Biochem Biophys Res Commun 2017; 486(1): 76-82.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.001] [PMID: 28263744]
[114]
Song T, Zhou Y, Peng J, et al. GPR120 promotes adipogenesis through intracellular calcium and extracellular signal-regulated kinase 1/2 signal pathway. Mol Cell Endocrinol 2016; 434: 1-13.
[http://dx.doi.org/10.1016/j.mce.2016.06.009] [PMID: 27302893]
[115]
Xin Y, Wang Y, Chi J, et al. Elevated free fatty acid level is associated with insulin-resistant state in nondiabetic Chinese people. Diabetes Metab Syndr Obes 2019; 12: 139-47.
[http://dx.doi.org/10.2147/DMSO.S186505] [PMID: 30705599]
[116]
Berger J, Moller D. The mechanisms of action of PPARs. Annu Rev Med 2002; 53(1): 409-35.
[117]
IS Sobczak A. A Blindauer C, J Stewart A. Changes in plasma free fatty acids associated with type-2 diabetes. Nutrients 2019; 11(9): 2022.
[http://dx.doi.org/10.3390/nu11092022]
[118]
Varga T, Czimmerer Z, Nagy L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim Biophys Acta 2011; 1812(8): 1007-22.
[http://dx.doi.org/10.1016/j.bbadis.2011.02.014] [PMID: 21382489]
[119]
Tamori Y, Masugi J, Nishino N, Kasuga M. Role of peroxisome proliferator-activated receptor-γ in maintenance of the characteristics of mature 3T3-L1 adipocytes. Diabetes 2002; 51(7): 2045-55.
[http://dx.doi.org/10.2337/diabetes.51.7.2045] [PMID: 12086932]
[120]
Boden G. Free fatty acids as target for therapy. Curr Opin Endocrinol Diabetes Obes 2004; 11(5): 258-63.
[http://dx.doi.org/10.1097/01.med.0000141928.95173.63]
[121]
Blaschke F, Takata Y, Caglayan E, Law RE, Hsueh WA. Obesity, peroxisome proliferator-activated receptor, and atherosclerosis in type 2 diabetes. Arterioscler Thromb Vasc Biol 2006; 26(1): 28-40.
[http://dx.doi.org/10.1161/01.ATV.0000191663.12164.77] [PMID: 16239592]
[122]
Sánchez-Garrido MA, Brandt SJ, Clemmensen C, Müller TD, DiMarchi RD, Tschöp MH. GLP-1/glucagon receptor co-agonism for treat-ment of obesity. Diabetologia 2017; 60(10): 1851-61.
[http://dx.doi.org/10.1007/s00125-017-4354-8] [PMID: 28733905]
[123]
Lee YS, Jun HS. Anti-diabetic actions of glucagon-like peptide-1 on pancreatic beta-cells. Metabolism 2014; 63(1): 9-19.
[http://dx.doi.org/10.1016/j.metabol.2013.09.010] [PMID: 24140094]
[124]
Brubaker PL, Drucker DJ. Structure-function of the glucagon receptor family of G protein-coupled receptors: The glucagon, GIP, GLP-1, and GLP-2 receptors. Receptors Channels 2002; 8(3-4): 179-88.
[http://dx.doi.org/10.3109/10606820213687] [PMID: 12529935]
[125]
Buteau J. GLP-1 receptor signaling: Effects on pancreatic β-cell proliferation and survival. Diabetes Metab 2008; 34(Suppl. 2): S73-7.
[http://dx.doi.org/10.1016/S1262-3636(08)73398-6] [PMID: 18640589]
[126]
Whalley NM, Pritchard LE, Smith DM, White A. Processing of proglucagon to GLP-1 in pancreatic α-cells: Is this a paracrine mechanism enabling GLP-1 to act on β-cells? J Endocrinol 2011; 211(1): 99-106.
[http://dx.doi.org/10.1530/JOE-11-0094] [PMID: 21795304]
[127]
Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007; 132(6): 2131-57.
[http://dx.doi.org/10.1053/j.gastro.2007.03.054] [PMID: 17498508]
[128]
Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev 2008; 60(4): 470-512.
[http://dx.doi.org/10.1124/pr.108.000604] [PMID: 19074620]
[129]
Kubow S, Hobson L, Iskandar MM, Sabally K, Donnelly DJ, Agellon LB. Extract of Irish potatoes (Solanum tuberosum L.) decreases body weight gain and adiposity and improves glucose control in the mouse model of diet-induced obesity. Mol Nutr Food Res 2014; 58(11): 2235-8.
[http://dx.doi.org/10.1002/mnfr.201400013] [PMID: 25066548]
[130]
Torekov S, Madsbad S, Holst J. Obesity-an indication for GLP-1 treatment? Obesity pathophysiology and GLP-1 treatment potential. Obes Rev 2011; 12(8): 593-601.
[http://dx.doi.org/10.1111/j.1467-789X.2011.00860.x] [PMID: 21401851]
[131]
Picha KM, Cunningham MR, Drucker DJ, et al. Protein engineering strategies for sustained glucagon-like peptide-1 receptor-dependent control of glucose homeostasis. Diabetes 2008; 57(7): 1926-34.
[http://dx.doi.org/10.2337/db07-1775] [PMID: 18426860]
[132]
Baska A, Leis K. Gałązka P. Berberine in the treatment of diabetes mellitus: A review. Endocrine, metabolic & immune disordersdrug targets (Formerly Curr Drug Targets Immune, Endoc Metabol Disord) 2021; 21(8): 1379-86.
[http://dx.doi.org/10.2174/1568026620666201022144405]
[133]
Nie J, Lilley BN, Pan YA, et al. SAD-A potentiates glucose-stimulated insulin secretion as a mediator of glucagon-like peptide 1 response in pancreatic β cells. Mol Cell Biol 2013; 33(13): 2527-34.
[http://dx.doi.org/10.1128/MCB.00285-13] [PMID: 23629625]
[134]
Hwang SL, Kwon O, Kim SG, Lee IK, Kim YD. B-cell translocation gene 2 positively regulates GLP-1-stimulated insulin secretion via induction of PDX-1 in pancreatic β-cells. Exp Mol Med 2013; 45(5): e25-5.
[http://dx.doi.org/10.1038/emm.2013.47] [PMID: 23703573]
[135]
Wang H, Iezzi M, Theander S, et al. Suppression of Pdx-1 perturbs proinsulin processing, insulin secretion and GLP-1 signalling in INS-1 cells. Diabetologia 2005; 48(4): 720-31.
[http://dx.doi.org/10.1007/s00125-005-1692-8] [PMID: 15756539]
[136]
Lawrence MC, Bhatt HS, Easom RA. NFAT regulates insulin gene promoter activity in response to synergistic pathways induced by glucose and glucagon-like peptide-1. Diabetes 2002; 51(3): 691-8.
[http://dx.doi.org/10.2337/diabetes.51.3.691] [PMID: 11872668]
[137]
Zhang W, Hou C, Du L, et al. Protective action of pomegranate peel polyphenols in type 2 diabetic rats via the translocation of Nrf2 and FoxO1 regulated by the PI3K/Akt pathway. Food Funct 2021; 12(22): 11408-19.
[http://dx.doi.org/10.1039/D1FO01213D] [PMID: 34673854]
[138]
Hui H, Nourparvar A, Zhao X, Perfetti R. Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5′-adenosine monophosphate-dependent protein kinase A- and a phosphatidylinositol 3-kinase-dependent pathway. Endocrinology 2003; 144(4): 1444-55.
[http://dx.doi.org/10.1210/en.2002-220897] [PMID: 12639928]
[139]
Buteau J, Spatz ML, Accili D. Transcription factor FoxO1 mediates glucagon-like peptide-1 effects on pancreatic β-cell mass. Diabetes 2006; 55(5): 1190-6.
[http://dx.doi.org/10.2337/db05-0825] [PMID: 16644672]
[140]
Kodama S, Toyonaga T, Kondo T, et al. Enhanced expression of PDX-1 and Ngn3 by exendin-4 during β cell regeneration in STZ-treated mice. Biochem Biophys Res Commun 2005; 327(4): 1170-8.
[http://dx.doi.org/10.1016/j.bbrc.2004.12.120] [PMID: 15652518]
[141]
Yusta B, Baggio LL, Estall JL, et al. GLP-1 receptor activation improves β cell function and survival following induction of endoplasmic reticulum stress. Cell Metab 2006; 4(5): 391-406.
[http://dx.doi.org/10.1016/j.cmet.2006.10.001] [PMID: 17084712]
[142]
Bailey CJ. New therapies for diabesity. Curr Diab Rep 2009; 9(5): 360-7.
[http://dx.doi.org/10.1007/s11892-009-0057-y] [PMID: 19793506]
[143]
Kosaraju J, Dubala A, Chinni S, Khatwal RB, Satish Kumar MN, Basavan D. A molecular connection of Pterocarpus marsupium, Eugen-ia jambolana and Gymnema sylvestre with dipeptidyl peptidase-4 in the treatment of diabetes. Pharm Biol 2014; 52(2): 268-71.
[http://dx.doi.org/10.3109/13880209.2013.823550] [PMID: 24074231]
[144]
Saleem S, Jafri L, ul Haq I, et al. Plants Fagonia cretica L. and Hedera nepalensis K. Koch contain natural compounds with potent di-peptidyl peptidase-4 (DPP-4) inhibitory activity. J Ethnopharmacol 2014; 156: 26-32.
[http://dx.doi.org/10.1016/j.jep.2014.08.017] [PMID: 25169215]
[145]
Walker AK, Gong Z, Park WM, Zigman JM, Sakata I. Expression of serum retinol binding protein and transthyretin within mouse gastric ghrelin cells. PLoS One 2013; 8(6): e64882.
[http://dx.doi.org/10.1371/journal.pone.0064882] [PMID: 23840311]
[146]
Khatib N, Gaidhane S, Gaidhane AM, et al. Ghrelin: Ghrelin as a regulatory Peptide in growth hormone secretion. J Clin Diagn Res 2014; 8(8): MC13-7.
[http://dx.doi.org/10.7860/JCDR/2014/9863.4767] [PMID: 25302229]
[147]
Howick K, Griffin BT, Cryan JF, Schellekens H. From belly to brain: Targeting the ghrelin receptor in appetite and food intake regulation. Int J Mol Sci 2017; 18(2): 273.
[http://dx.doi.org/10.3390/ijms18020273] [PMID: 28134808]
[148]
Seim I, Collet C, Herington AC, Chopin LK. Revised genomic structure of the human ghrelin gene and identification of novel exons, alternative splice variants and natural antisense transcripts. BMC Genomics 2007; 8(1): 298.
[http://dx.doi.org/10.1186/1471-2164-8-298] [PMID: 17727735]
[149]
Abu-Farha M, Mohammed D, Fiona N, et al. Gender differences in ghrelin association with cardiometabolic risk factors in Arab population. Int J Endocrinol 2014; 2014
[http://dx.doi.org/10.1155/2014/730472] [PMID: 25276131]
[150]
Vivenza D, Rapa A, Castellino N, et al. Ghrelin gene polymorphisms and ghrelin, insulin, IGF-I, leptin and anthropometric data in chil-dren and adolescents. Eur J Endocrinol 2004; 151(1): 127-33.
[http://dx.doi.org/10.1530/eje.0.1510127] [PMID: 15248833]
[151]
Barazzoni R, Zanetti M, Ferreira C, et al. Relationships between desacylated and acylated ghrelin and insulin sensitivity in the metabolic syndrome. J Clin Endocrinol Metab 2007; 92(10): 3935-40.
[http://dx.doi.org/10.1210/jc.2006-2527] [PMID: 17652221]
[152]
Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol 2006; 494(3): 528-48.
[http://dx.doi.org/10.1002/cne.20823] [PMID: 16320257]
[153]
Cowley MA, Smith RG, Diano S, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypotha-lamic circuit regulating energy homeostasis. Neuron 2003; 37(4): 649-61.
[http://dx.doi.org/10.1016/S0896-6273(03)00063-1] [PMID: 12597862]
[154]
Tschöp M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature 2000; 407(6806): 908-13.
[http://dx.doi.org/10.1038/35038090] [PMID: 11057670]
[155]
Theander-Carrillo C, Wiedmer P, Cettour-Rose P, et al. Ghrelin action in the brain controls adipocyte metabolism. J Clin Invest 2006; 116(7): 1983-93.
[http://dx.doi.org/10.1172/JCI25811] [PMID: 16767221]
[156]
Rodríguez A, Gómez-Ambrosi J, Catalán V, et al. Acylated and desacyl ghrelin stimulate lipid accumulation in human visceral adipo-cytes. Int J Obes 2009; 33(5): 541-52.
[http://dx.doi.org/10.1038/ijo.2009.40] [PMID: 19238155]
[157]
Ando T, Ichimaru Y, Konjiki F, Shoji M, Komaki G. Variations in the preproghrelin gene correlate with higher body mass index, fat mass, and body dissatisfaction in young Japanese women. Am J Clin Nutr 2007; 86(1): 25-32.
[http://dx.doi.org/10.1093/ajcn/86.1.25] [PMID: 17616759]
[158]
Vestergaard ET, Gormsen LC, Jessen N, et al. Ghrelin infusion in humans induces acute insulin resistance and lipolysis independent of growth hormone signaling. Diabetes 2008; 57(12): 3205-10.
[http://dx.doi.org/10.2337/db08-0025] [PMID: 18776138]
[159]
Tharakan G, Tan T, Bloom S. Emerging therapies in the treatment of ‘diabesity’: Beyond GLP-1. Trends Pharmacol Sci 2011; 32(1): 8-15.
[http://dx.doi.org/10.1016/j.tips.2010.10.003] [PMID: 21130506]
[160]
Dezaki K, Kakei M, Yada T. Ghrelin uses Galphai2 and activates voltage-dependent K+ channels to attenuate glucose-induced Ca2+ signaling and insulin release in islet β-cells: Novel signal transduction of ghrelin. Diabetes 2007; 56(9): 2319-27.
[http://dx.doi.org/10.2337/db07-0345] [PMID: 17575083]
[161]
Wiedmer P, Nogueiras R, Broglio F, D’Alessio D, Tschöp MH. Ghrelin, obesity and diabetes. Nat Clin Pract Endocrinol Metab 2007; 3(10): 705-12.
[http://dx.doi.org/10.1038/ncpendmet0625] [PMID: 17893689]
[162]
Buschard K, Høy M, Bokvist K, et al. Sulfatide controls insulin secretion by modulation of ATP-sensitive K(+)-channel activity and Ca2+-dependent exocytosis in rat pancreatic β-cells. Diabetes 2002; 51(8): 2514-21.
[http://dx.doi.org/10.2337/diabetes.51.8.2514] [PMID: 12145165]
[163]
Peng Z, Xiaolei Z, Al-Sanaban H, Chengrui X, Shengyi Y. Ghrelin inhibits insulin release by regulating the expression of inwardly recti-fying potassium channel 6.2 in islets. Am J Med Sci 2012; 343(3): 215-9.
[http://dx.doi.org/10.1097/MAJ.0b013e31824390b9] [PMID: 22270395]
[164]
Wang Y, Nishi M, Doi A, et al. Ghrelin inhibits insulin secretion through the AMPK-UCP2 pathway in β cells. FEBS Lett 2010; 584(8): 1503-8.
[http://dx.doi.org/10.1016/j.febslet.2010.02.069] [PMID: 20206170]
[165]
Asakawa A, Inui A, Kaga T, et al. Antagonism of ghrelin receptor reduces food intake and body weight gain in mice. Gut 2003; 52(7): 947-52.
[http://dx.doi.org/10.1136/gut.52.7.947] [PMID: 12801949]
[166]
Vauzour D. Dietary polyphenols as modulators of brain functions: Biological actions and molecular mechanisms underpinning their beneficial effects. Oxid Med Cell Longev 2012; 2012
[http://dx.doi.org/10.1155/2012/914273]
[167]
Oakley RH, Cidlowski JA. The biology of the glucocorticoid receptor: New signaling mechanisms in health and disease. J Allergy Clin Immunol 2013; 132(5): 1033-44.
[http://dx.doi.org/10.1016/j.jaci.2013.09.007] [PMID: 24084075]
[168]
Wang M. The role of glucocorticoid action in the pathophysiology of the metabolic syndrome. Nutr Metab (Lond) 2005; 2(1): 3.
[http://dx.doi.org/10.1186/1743-7075-2-3] [PMID: 15689240]
[169]
John K, Marino JS, Sanchez ER, Hinds TD Jr. The glucocorticoid receptor: Cause of or cure for obesity? Am J Physiol Endocrinol Metab 2016; 310(4): E249-57.
[http://dx.doi.org/10.1152/ajpendo.00478.2015] [PMID: 26714851]
[170]
Akalestou E, Genser L, Rutter GA. Glucocorticoid metabolism in obesity and following weight loss. Front Endocrinol (Lausanne) 2020; 11: 59.
[http://dx.doi.org/10.3389/fendo.2020.00059] [PMID: 32153504]
[171]
Arango-Lievano M, Lambert WM, Jeanneteau F. Molecular biology of glucocorticoid signaling. Glucocorticoid Signaling 2015; pp. 33-57.
[http://dx.doi.org/10.1007/978-1-4939-2895-8_2]
[172]
Tiwari N, Thakur AK, Kumar V, et al. Therapeutic targets for diabetes mellitus: An update. Clin Pharmacol Biopharm 2014; 3(1): 1.
[http://dx.doi.org/10.4172/2167-065X.1000117]
[173]
Masuzaki H, Paterson J, Shinyama H, et al. A transgenic model of visceral obesity and the metabolic syndrome. Science 2001; 294(5549): 2166-70.
[http://dx.doi.org/10.1126/science.1066285] [PMID: 11739957]
[174]
Stulnig TM, Waldhäusl W. 11β-Hydroxysteroid dehydrogenase Type 1 in obesity and Type 2 diabetes. Diabetologia 2004; 47(1): 1-11.
[http://dx.doi.org/10.1007/s00125-003-1284-4] [PMID: 14652720]
[175]
Lambillotte C, Gilon P, Henquin JC. Direct glucocorticoid inhibition of insulin secretion. An in Vitro study of dexamethasone effects in mouse islets. J Clin Invest 1997; 99(3): 414-23.
[http://dx.doi.org/10.1172/JCI119175] [PMID: 9022074]
[176]
Hanson RW, Reshef L. Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression. Annu Rev Biochem 1997; 66(1): 581-611.
[http://dx.doi.org/10.1146/annurev.biochem.66.1.581] [PMID: 9242918]
[177]
Yoon JC, Puigserver P, Chen G, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 2001; 413(6852): 131-8.
[http://dx.doi.org/10.1038/35093050] [PMID: 11557972]
[178]
Herzig S, Long F, Jhala US, et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 2001; 413(6852): 179-83.
[http://dx.doi.org/10.1038/35093131] [PMID: 11557984]
[179]
Geer EB, Islam J, Buettner C. Mechanisms of glucocorticoid-induced insulin resistance: Focus on adipose tissue function and lipid me-tabolism. Endocrinol Metab Clin 2014; 43(1): 75-102.
[http://dx.doi.org/10.1016/j.ecl.2013.10.005] [PMID: 24582093]
[180]
Hauner H, Schmid P, Pfeiffer E-F. Glucocorticoids and insulin promote the differentiation of human adipocyte precursor cells into fat cells. J Clin Endocrinol Metab 1987; 64(4): 832-5.
[http://dx.doi.org/10.1210/jcem-64-4-832] [PMID: 3546356]
[181]
Hintzpeter J, Stapelfeld C, Loerz C, Martin HJ, Maser E. Green tea and one of its constituents, Epigallocatechine-3-gallate, are potent inhibitors of human 11β-hydroxysteroid dehydrogenase type 1. PLoS One 2014; 9(1): e84468.
[http://dx.doi.org/10.1371/journal.pone.0084468] [PMID: 24404164]
[182]
Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF. A family of human receptors structurally related to Drosophila toll. Proc Natl Acad Sci 1998; 95(2): 588-93.
[http://dx.doi.org/10.1073/pnas.95.2.588] [PMID: 9435236]
[183]
Oosting M, et al. Innate immunity networks during infection with Borrelia burgdorferi. Crit Rev Microbiol 2014; 42(2): 233-44.
[http://dx.doi.org/10.3109/1040841X.2014.929563] [PMID: 24963691]
[184]
Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006; 124(4): 783-801.
[http://dx.doi.org/10.1016/j.cell.2006.02.015] [PMID: 16497588]
[185]
Huang SM, Bisogno T, Trevisani M, et al. An endogenous capsaicin-like substance with high potency at recombinant and native vanil-loid VR1 receptors. Proc Natl Acad Sci 2002; 99(12): 8400-5.
[http://dx.doi.org/10.1073/pnas.122196999] [PMID: 12060783]
[186]
Oliver E, McGillicuddy F, Phillips C, Toomey S, Roche HM. The role of inflammation and macrophage accumulation in the development of obesity-induced type 2 diabetes mellitus and the possible therapeutic effects of long-chain n-3 PUFA. Proc Nutr Soc 2010; 69(2): 232-43.
[http://dx.doi.org/10.1017/S0029665110000042] [PMID: 20158940]
[187]
Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006; 444(7121): 860-7.
[http://dx.doi.org/10.1038/nature05485] [PMID: 17167474]
[188]
Amen OM, Sarker SD, Ghildyal R, Arya A. Endoplasmic reticulum stress activates unfolded protein response signaling and mediates inflammation, obesity, and cardiac dysfunction: Therapeutic and molecular approach. Front Pharmacol 2019; 10: 977.
[http://dx.doi.org/10.3389/fphar.2019.00977] [PMID: 31551782]
[189]
Arya A, Looi CY, Cheah SC, Mustafa MR, Mohd MA. Anti-diabetic effects of Centratherum anthelminticum seeds methanolic fraction on pancreatic cells, β-TC6 and its alleviating role in type 2 diabetic rats. J Ethnopharmacol 2012; 144(1): 22-32.
[http://dx.doi.org/10.1016/j.jep.2012.08.014] [PMID: 22954496]
[190]
Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004; 114(12): 1752-61.
[http://dx.doi.org/10.1172/JCI21625] [PMID: 15599400]
[191]
Ertunc ME, Hotamisligil GS. Lipid signaling and lipotoxicity in metaflammation: Indications for metabolic disease pathogenesis and treatment. J Lipid Res 2016; 57(12): 2099-114.
[http://dx.doi.org/10.1194/jlr.R066514] [PMID: 27330055]
[192]
Watanabe Y, Nagai Y, Honda H, et al. Isoliquiritigenin attenuates adipose tissue inflammation in vitro and adipose tissue fibrosis through inhibition of innate immune responses in mice. Sci Rep 2016; 6(1): 23097.
[http://dx.doi.org/10.1038/srep23097] [PMID: 26975571]
[193]
Afrin R, Arumugam S, Soetikno V, et al. Curcumin ameliorates streptozotocin-induced liver damage through modulation of endoplasmic reticulum stress-mediated apoptosis in diabetic rats. Free Radic Res 2015; 49(3): 279-89.
[http://dx.doi.org/10.3109/10715762.2014.999674] [PMID: 25536420]
[194]
Niu Y, DesMarais TL, Tong Z, Yao Y, Costa M. Oxidative stress alters global histone modification and DNA methylation. Free Radic Biol Med 2015; 82: 22-8.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.01.028] [PMID: 25656994]
[195]
Leo EE, Fernández JJ, Campos MR. Biopeptides with antioxidant and anti-inflammatory potential in the prevention and treatment of diabesity disease. Biomed Pharmacother 2016; 83: 816-26.
[http://dx.doi.org/10.1016/j.biopha.2016.07.051] [PMID: 27501499]
[196]
Lee GY, Han SN. The role of vitamin E in immunity. Nutrients 2018; 10(11): 1614.
[http://dx.doi.org/10.3390/nu10111614] [PMID: 30388871]
[197]
Newsholme P, Haber EP, Hirabara SM, et al. Diabetes associated cell stress and dysfunction: Role of mitochondria and non-mitochondrial ROS production and activity. J Physiol 2007; 9-24.
[http://dx.doi.org/10.1113/jphysiol.2007.135871] [PMID: 17584843]
[198]
Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: From molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal 2010; 12(4): 537-77.
[http://dx.doi.org/10.1089/ars.2009.2531] [PMID: 19650713]
[199]
Schmidt MI, Duncan BB. Diabesity: An inflammatory metabolic condition. 2003; 1120-30.
[http://dx.doi.org/10.1515/CCLM.2003.174]
[200]
Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabe-tes. Diabetes Res Clin Pract 2014; 105(2): 141-50.
[http://dx.doi.org/10.1016/j.diabres.2014.04.006] [PMID: 24798950]
[201]
Capiralla H, Vingtdeux V, Venkatesh J, et al. Identification of potent small-molecule inhibitors of STAT3 with anti-inflammatory proper-ties in RAW 264.7 macrophages. FEBS J 2012; 279(20): 3791-9.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08739.x] [PMID: 22909341]
[202]
Blüher M, Fasshauer M, Tönjes A, Kratzsch J, Schön MR, Paschke R. Association of interleukin-6, C-reactive protein, interleukin-10 and adiponectin plasma concentrations with measures of obesity, insulin sensitivity and glucose metabolism. Exp Clin Endocrinol Diabetes 2005; 113(9): 534-7.
[http://dx.doi.org/10.1055/s-2005-872851] [PMID: 16235156]
[203]
Drummond EM, Harbourne N, Marete E, et al. Inhibition of proinflammatory biomarkers in THP1 macrophages by polyphenols derived from chamomile, meadowsweet and willow bark. Phytother Res 2013; 27(4): 588-94.
[http://dx.doi.org/10.1002/ptr.4753] [PMID: 22711544]
[204]
Yahfoufi N, Alsadi N, Jambi M, Matar C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 2018; 10(11): 1618.
[http://dx.doi.org/10.3390/nu10111618] [PMID: 30400131]
[205]
Teppala S, Shankar A. Association between serum IGF-1 and diabetes among U.S. adults. Diabetes Care 2010; 33(10): 2257-9.
[http://dx.doi.org/10.2337/dc10-0770] [PMID: 20639451]
[206]
Al Hannan F, Culligan KG. Human resistin and the RELM of Inflammation in diabesity. Diabetol Metab Syndr 2015; 7(1): 54.
[http://dx.doi.org/10.1186/s13098-015-0050-3] [PMID: 26097512]
[207]
Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): An overview. J Interferon Cytokine Res 2009; 29(6): 313-26.
[http://dx.doi.org/10.1089/jir.2008.0027] [PMID: 19441883]
[208]
Lewitt MS, Dent MS, Hall K. The insulin-like growth factor system in obesity, insulin resistance and type 2 diabetes mellitus. J Clin Med 2014; 3(4): 1561-74.
[http://dx.doi.org/10.3390/jcm3041561] [PMID: 26237614]
[209]
Furukawa S, Takuya F, Michio S, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004; 487(114): 1752-61.
[http://dx.doi.org/10.1172/JCI21625] [PMID: 15599400]
[210]
Valsania P, Zarich SW, Kowalchuk GJ, Kosinski E, Warram JH, Krolewski AS. Severity of coronary artery disease in young patients with insulin-dependent diabetes mellitus. Am Heart J 1991; 122(3 Pt 1): 695-700.
[http://dx.doi.org/10.1016/0002-8703(91)90513-H] [PMID: 1764129]
[211]
Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 2001; 7(8): 947-53.
[http://dx.doi.org/10.1038/90992] [PMID: 11479628]
[212]
Maeda N, Shimomura I, Kishida K, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 2002; 8(7): 731-7.
[http://dx.doi.org/10.1038/nm724] [PMID: 12068289]
[213]
Fujita K, Nishizawa H, Funahashi T, Shimomura I, Shimabukuro M. Systemic oxidative stress is associated with visceral fat accumula-tion and the metabolic syndrome. Circ J 2006; 70(11): 1437-42.
[http://dx.doi.org/10.1253/circj.70.1437] [PMID: 17062967]
[214]
Ortiz V, Alemán G, Escamilla-Del-Arenal M, Recillas-Targa F, Torres N, Tovar AR. Promoter characterization and role of CRE in the basal transcription of the rat SNAT2 gene. Am J Physiol Endocrinol Metab 2011; 300(6): E1092-102.
[http://dx.doi.org/10.1152/ajpendo.00459.2010] [PMID: 21386061]
[215]
Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, et al. Inflammation, oxidative stress, and obesity. Int J Mol Sci 2011; 12(5): 3117-32.
[http://dx.doi.org/10.3390/ijms12053117] [PMID: 21686173]
[216]
Matsuoka TA, Zhao L, Artner I, et al. Members of the large Maf transcription family regulate insulin gene transcription in islet β cells. Mol Cell Biol 2003; 23(17): 6049-62.
[http://dx.doi.org/10.1128/MCB.23.17.6049-6062.2003] [PMID: 12917329]
[217]
Jeong HJ, Koo HN, Na HJ, et al. Inhibition of TNF-α and IL-6 production by Aucubin through blockade of NF-kappaB activation RBL-2H3 mast cells. Cytokine 2002; 18(5): 252-9.
[http://dx.doi.org/10.1006/cyto.2002.0894] [PMID: 12161100]
[218]
Mustafa R, Muzamal I, Robert V, Henrie AAJ, Korthout N. Phytochemicals as a potential source for TNF-α inhibitors. Phytochem Rev 2013; 12(1): 65-93.
[219]
Mukherjee R, Jow L, Croston GE, Paterniti JR. Identification, characterization, and tissue distribution of human Peroxisome Proliferator-Activated Receptor (PPAR) isoforms PPARgamma2 versus PPARgamma1 and activation with retinoid X receptor agonists and antago-nists. J Biol Chem 1997; 272(12): 8071-6.
[http://dx.doi.org/10.1074/jbc.272.12.8071] [PMID: 9065481]
[220]
Ohashi M, Gamo K, Oyama T, Miyachi H. Peroxisome Proliferator-Activated Receptor gamma (PPARγ) has multiple binding points that accommodate ligands in various conformations: Structurally similar PPARγ partial agonists bind to PPARγ LBD in different confor-mations. Bioorg Med Chem Lett 2015; 25(14): 2758-62.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.025] [PMID: 26025876]
[221]
Kojetin DJ, Burris TP. Small molecule modulation of nuclear receptor conformational dynamics: Implications for function and drug discovery. Mol Pharmacol 2013; 83(1): 1-8.
[http://dx.doi.org/10.1124/mol.112.079285] [PMID: 22869589]
[222]
Farce A, Renault N, Chavatte P. Structural insight into PPARgamma ligands binding. Curr Med Chem 2009; 16(14): 1768-89.
[http://dx.doi.org/10.2174/092986709788186165] [PMID: 19442144]
[223]
Pirat C, Farce A, Lebègue N, et al. Targeting peroxisome proliferator-activated receptors (PPARs): Development of modulators. J Med Chem 2012; 55(9): 4027-61.
[http://dx.doi.org/10.1021/jm101360s] [PMID: 22260081]
[224]
Kuwabara N, Oyama T, Tomioka D, et al. Peroxisome proliferator-activated receptors (PPARs) have multiple binding points that ac-commodate ligands in various conformations: Phenylpropanoic acid-type PPAR ligands bind to PPAR in different conformations, de-pending on the subtype. J Med Chem 2012; 55(2): 893-902.
[http://dx.doi.org/10.1021/jm2014293] [PMID: 22185225]
[225]
Guasch L, Sala E, Valls C, et al. Structural insights for the design of new PPARgamma partial agonists with high binding affinity and low transactivation activity. J Comput Aided Mol Des 2011; 25(8): 717-28.
[http://dx.doi.org/10.1007/s10822-011-9446-9] [PMID: 21691811]
[226]
Lalloyer F, Staels B. Fibrates, glitazones, and peroxisome proliferator-activated receptors. Arterioscler Thromb Vasc Biol 2010; 30(5): 894-9.
[http://dx.doi.org/10.1161/ATVBAHA.108.179689] [PMID: 20393155]
[227]
Medina-Gomez G, Gray SL, Yetukuri L, et al. PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and pe-ripheral lipid metabolism. PLoS Genet 2007; 3(4): e64.
[228]
FG Cicero A. Colletti A. Effects of carotenoids on health: Are all the same? Results from clinical trials. Curr Pharm Des 2017; 23(17): 2422-7.
[http://dx.doi.org/10.2174/1381612823666170207095459] [PMID: 28176669]
[229]
Choi JH, Boström P, Estall JL. Anti-600 diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5 2010; 601: 451-6.
[230]
Ramírez-Espinosa JJ, Rios MY, López-Martínez S, et al. Antidiabetic activity of some pentacyclic acid triterpenoids, role of PTP-1B: In vitro, in silico, and in vivo approaches. Eur J Med Chem 2011; 46(6): 2243-51.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.005] [PMID: 21453996]
[231]
Zhang ZY, Dodd GT, Tiganis T. Protein tyrosine phosphatases in hypothalamic insulin and leptin signaling. Trends Pharmacol Sci 2015; 36(10): 661-74.
[http://dx.doi.org/10.1016/j.tips.2015.07.003] [PMID: 26435211]
[232]
Romsicki Y, Reece M, Gauthier JY, Asante-Appiah E, Kennedy BP. Protein tyrosine phosphatase-1B dephosphorylation of the insulin receptor occurs in a perinuclear endosome compartment in human embryonic kidney 293 cells. J Biol Chem 2004; 279(13): 12868-75.
[http://dx.doi.org/10.1074/jbc.M309600200] [PMID: 14722096]
[233]
Roy AF, Benomar Y, Bailleux V, et al. Lack of cross-desensitization between leptin and prolactin signaling pathways despite the induc-tion of suppressor of cytokine signaling 3 and PTP-1B. J Endocrinol 2007; 195(2): 341-50.
[http://dx.doi.org/10.1677/JOE-07-0321] [PMID: 17951545]
[234]
Lund IK, Hansen JA, Andersen HS, Møller NP, Billestrup N. Mechanism of protein tyrosine phosphatase 1B-mediated inhibition of leptin signalling. J Mol Endocrinol 2005; 34(2): 339-51.
[http://dx.doi.org/10.1677/jme.1.01694] [PMID: 15821101]
[235]
Verma M, Gupta SJ, Chaudhary A, Garg VK. Protein tyrosine phosphatase 1B inhibitors as antidiabetic agents - A brief review. Bioorg Chem 2017; 70: 267-83.
[http://dx.doi.org/10.1016/j.bioorg.2016.12.004] [PMID: 28043717]
[236]
Ali I. Rahisuddin, Kishwar S, Haque A. et al. Natural products: Human friendly anti-cancer medications. Egypt Pharm J (NRC) 2010; 9(2): 133-79.
[237]
Abdelhak Z, Hamid K, Kam A, et al. The pentacyclic triterpenoids in herbal medicines and their pharmacological activities in diabetes and diabetic complications. Curr Med Chem 2013; 20(7): 908-31.
[238]
Sangeetha KN, Sujatha S, Muthusamy VS, et al. Current trends in small molecule discovery targeting key cellular signaling events to-wards the combined management of diabetes and obesity. Bioinformation 2017; 13(12): 394-9.
[http://dx.doi.org/10.6026/97320630013394] [PMID: 29379255]
[239]
Sato Y, Itagaki S, Kurokawa T, et al. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int J Pharm 2011; 403(1-2): 136-8.
[http://dx.doi.org/10.1016/j.ijpharm.2010.09.035] [PMID: 20933071]
[240]
Gao L, Yue R, Xu J, et al. Pt-PEDOT/rGO nanocomposites: One-pot preparation and superior electrochemical sensing performance for caffeic acid in tea. J Electroanal Chem (Lausanne) 2018; 816: 14-20.
[http://dx.doi.org/10.1016/j.jelechem.2018.03.024]
[241]
Abdul-Ghani MA, Norton L, Defronzo RA. Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabe-tes. Endocr Rev 2011; 32(4): 515-31.
[http://dx.doi.org/10.1210/er.2010-0029] [PMID: 21606218]
[242]
Ferrannini E, Solini A. SGLT2 inhibition in diabetes mellitus: Rationale and clinical prospects. Nat Rev Endocrinol 2012; 8(8): 495-502.
[http://dx.doi.org/10.1038/nrendo.2011.243] [PMID: 22310849]
[243]
Wright EM, Hirayama BA, Loo DF. Active sugar transport in health and disease. J Intern Med 2007; 261(1): 32-43.
[http://dx.doi.org/10.1111/j.1365-2796.2006.01746.x] [PMID: 17222166]
[244]
Opie LH. Sodium glucose co-transporter 2 (SGLT2) inhibitors: New among antidiabetic drugs. Cardiovasc Drugs Ther 2014; 28(4): 331-4.
[http://dx.doi.org/10.1007/s10557-014-6522-0] [PMID: 24825435]
[245]
Yaribeygi H, Sathyapalan T, Maleki M, Jamialahmadi T, Sahebkar A. Molecular mechanisms by which SGLT2 inhibitors can induce insulin sensitivity in diabetic milieu: A mechanistic review. Life Sci 2020; 240: 117090.
[http://dx.doi.org/10.1016/j.lfs.2019.117090] [PMID: 31765648]
[246]
Pereira MJ, Eriksson JW. Emerging role of SGLT-2 inhibitors for the treatment of obesity. Drugs 2019; 79(3): 219-30.
[http://dx.doi.org/10.1007/s40265-019-1057-0] [PMID: 30701480]
[247]
Zhao Y, Xu L, Tian D, et al. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: A meta-analysis of randomized controlled trials. Diabetes Obes Metab 2018; 20(2): 458-62.
[http://dx.doi.org/10.1111/dom.13101] [PMID: 28846182]
[248]
Yakovleva T, Sokolov V, Chu L, et al. Comparison of the urinary glucose excretion contributions of SGLT2 and SGLT1: A quantitative systems pharmacology analysis in healthy individuals and patients with type 2 diabetes treated with SGLT2 inhibitors. Diabetes Obes Metab 2019; 21(12): 2684-93.
[http://dx.doi.org/10.1111/dom.13858] [PMID: 31423699]
[249]
Bingley PJ, Bonifacio E, Mueller PW. Diabetes antibody standardization program: First assay proficiency evaluation. Diabetes 2003; 52(5): 1128-36.
[http://dx.doi.org/10.2337/diabetes.52.5.1128] [PMID: 12716742]
[250]
Choi CI. Sodium-glucose cotransporter 2 (SGLT2) inhibitors from natural products: Discovery of next-generation antihyperglycemic agents. Molecules 2016; 21(9): 1136.
[http://dx.doi.org/10.3390/molecules21091136] [PMID: 27618891]
[251]
Kang JG, Park CY. Anti-obesity drugs: A review about their effects and safety. Diabetes Metab J 2012; 36(1): 13-25.
[http://dx.doi.org/10.4093/dmj.2012.36.1.13] [PMID: 22363917]
[252]
Glazer G. Long-term pharmacotherapy of obesity 2000: A review of efficacy and safety. Arch Intern Med 2001; 161(15): 1814-24.
[http://dx.doi.org/10.1001/archinte.161.15.1814] [PMID: 11493122]
[253]
Hads DS. Rimonabant May Cause Psychiatric Adverse Events. Reactions 2007; 1179: 24.
[254]
Chaudhury A, Duvoor C, Reddy Dendi VS, et al. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus manage-ment. Front Endocrinol (Lausanne) 2017; 8: 6.
[http://dx.doi.org/10.3389/fendo.2017.00006] [PMID: 28167928]
[255]
Cory H, Passarelli S, Szeto J, Tamez M, Mattei J. The role of polyphenols in human health and food systems: A mini-review. Front Nutr 2018; 5: 87.
[http://dx.doi.org/10.3389/fnut.2018.00087] [PMID: 30298133]
[256]
Mennen LI, Walker R, Bennetau-Pelissero C, Scalbert A. Risks and safety of polyphenol consumption. Am J Clin Nutr 2005; 81(1)(Suppl.): 326S-9S.
[http://dx.doi.org/10.1093/ajcn/81.1.326S] [PMID: 15640498]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy