Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Utility of Indian Fruits in Cancer Prevention and Treatment: Time to Undertake Translational and Bedside Studies

Author(s): Pankaj Prabhakar, Giriyapura Srikantachar Pavankumar, Shamprasad Varija Raghu, Suresh Rao, Krishna Prasad, Thomas George and Manjeshwar Shrinath Baliga*

Volume 28, Issue 19, 2022

Published on: 21 June, 2022

Page: [1543 - 1560] Pages: 18

DOI: 10.2174/1381612828666220601151931

Price: $65

conference banner
Abstract

The World Health Organization predicts a 70% increase in cancer incidents in developing nations over the next decade, and it will be the second leading cause of death worldwide. Traditional plant-based medicine systems play an important role against various diseases and provide health care to a large section of the population in developing countries. Indigenous fruits and their bioactive compounds with beneficial effects like antioxidant, antiproliferative, and immunomodulatory are shown to be useful in preventing the incidence of cancer. India is one of the biodiversity regions and is native to numerous flora and fauna in the world. Of the many fruiting trees indigenous to India, Mango (Mangifera indica), Black plum (Eugenia jambolana or Syzygium jambolana), Indian gooseberry (Emblica officinalis or Phyllanthus emblica), kokum (Garcinia indica or Brindonia indica), stone apple or bael (Aegle marmelos), Jackfruit (Artocarpus heterophyllus), Karaunda (Carissa carandas) and Phalsa (Grewia asiatica), Monkey Jackfruit (Artocarpus lakoocha) and Elephant apple (Dillenia indica) have been shown to be beneficial in preventing cancer and in the treatment of cancer in validated preclinical models of study. In this review, efforts are also made to collate the fruits' anticancer effects and the important phytochemicals. Efforts are also made to address the underlying mechanism/s responsible for the beneficial effects of these fruits in cancer prevention and treatment. These fruits have been a part of the diet, are non-toxic, and easily acceptable for human application. The plants and some of their phytochemicals possess diverse medicinal properties. The authors propose that future studies should be directed at detailed studies with various preclinical models of study with both composite fruit extract/juice and the individual phytochemicals. Additionally, translational studies should be planned with the highly beneficial, well-investigated and pharmacologically multifactorial amla to understand its usefulness as a cancer preventive in the high-risk population and as a supportive agent in cancer survivors. The outcome of both preclinical and clinical studies will be useful for patients, the healthcare fraternity, pharmaceutical, and agro-based sectors.

Keywords: Chemoprevention, Mangifera indica, Emblica officinalis, Phyllanthus emblica, Eugenia jambolana, Garcinia indica, Aegle marmelos, Grewia asiatica, Artocarpus lakoocha, Dillenia indica.

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Zarocostas J. Global cancer cases and deaths are set to rise by 70% in next 20 years. BMJ 2010; 340: c3041.
[http://dx.doi.org/10.1136/bmj.c3041] [PMID: 20530560]
[3]
Kuruppu AI, Paranagama P, Goonasekara CL. Medicinal plants commonly used against cancer in traditional medicine formulae in Sri Lanka. Saudi Pharm J 2019; 27(4): 565-73.
[http://dx.doi.org/10.1016/j.jsps.2019.02.004] [PMID: 31061626]
[4]
Mentella MC, Scaldaferri F, Ricci C, Gasbarrini A, Miggiano GAD. Cancer and mediterranean diet: a review. Nutrients 2019; 11(9): 2059.
[http://dx.doi.org/10.3390/nu11092059] [PMID: 31480794]
[5]
Mucci LA, Wedren S, Tamimi RM, Trichopoulos D, Adami HO. The role of gene-environment interaction in the aetiology of human cancer: Examples from cancers of the large bowel, lung and breast. J Intern Med 2001; 249(6): 477-93.
[http://dx.doi.org/10.1046/j.1365-2796.2001.00839.x] [PMID: 11422654]
[6]
Rudolph A, Chang-Claude J, Schmidt MK. Gene-environment interaction and risk of breast cancer. Br J Cancer 2016; 114(2): 125-33.
[http://dx.doi.org/10.1038/bjc.2015.439] [PMID: 26757262]
[7]
Irigaray P, Newby JA, Clapp R, et al. Lifestyle-related factors and environmental agents causing cancer: An overview. Biomed Pharmacother 2007; 61: 640-58.
[http://dx.doi.org/10.1016/j.biopha.2007.10.006]
[8]
Loeb KR, Loeb LA. Significance of multiple mutations in cancer. Carcinogenesis 2000; 21(3): 379-85.
[http://dx.doi.org/10.1093/carcin/21.3.379] [PMID: 10688858]
[9]
Montano D. Chemical and biological work-related risks across occupations in Europe: A review. J Occup Med Toxicol 2014; 9(1): 28.
[http://dx.doi.org/10.1186/1745-6673-9-28] [PMID: 25071862]
[10]
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Biological agents. Volume 100 B. A review of human carcinogens. IARC Monogr Eval Carcinog Risks Hum 2012; 100(Pt B): 1-441.
[11]
Rodgers KM, Udesky JO, Rudel RA, Brody JG. Environmental chemicals and breast cancer: An updated review of epidemiological literature informed by biological mechanisms. Environ Res 2018; 160: 152-82.
[http://dx.doi.org/10.1016/j.envres.2017.08.045] [PMID: 28987728]
[12]
Parsa N. Environmental factors inducing human cancers. Iran J Public Health 2012; 41(11): 1-9.
[PMID: 23304670]
[13]
Raghu SV, Kudva AK, Rao S, Prasad K, Mudgal J, Baliga MS. Dietary agents in mitigating chemotherapy-related cognitive impairment (chemobrain or chemofog): First review addressing the benefits, gaps, challenges and ways forward. Food Funct 2021; 12(22): 11132-53.
[http://dx.doi.org/10.1039/D1FO02391H] [PMID: 34704580]
[14]
Nahleh Z, Bhatti NS, Mal M. How to reduce your cancer risk: Mechanisms and myths. Int J Gen Med 2011; 4: 277-87.
[http://dx.doi.org/10.2147/IJGM.S18657] [PMID: 21556314]
[15]
Anand P, Kunnumakkara AB, Sundaram C, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 2008; 25(9): 2097-116.
[http://dx.doi.org/10.1007/s11095-008-9661-9] [PMID: 18626751]
[16]
Omara T, Kiprop AK, Ramkat RC, et al. Medicinal plants used in traditional management of cancer in uganda: a review of ethnobotanical surveys, phytochemistry, and anticancer studies. Evid Based Complement Alternat Med 2020; 2020: 3529081.
[http://dx.doi.org/10.1155/2020/3529081] [PMID: 32256639]
[17]
Baliga MS, Jimmy R, Thilakchand KR, et al. Ocimum sanctum L (Holy Basil or Tulsi) and its phytochemicals in the prevention and treatment of cancer. Nutr Cancer 2013; 65(sup1)(Suppl. 1): 26-35.
[http://dx.doi.org/10.1080/01635581.2013.785010] [PMID: 23682780]
[18]
Bazzan AJ, Newberg AB, Cho WC, Monti DA. Diet and nutrition in cancer survivorship and palliative care. Evid Based Complement Alternat Med 2013; 2013: 917647.
[http://dx.doi.org/10.1155/2013/917647]
[19]
De Cicco P, Catani MV, Gasperi V, Sibilano M, Quaglietta M, Savini I. Nutrition and breast cancer: a literature review on prevention, treatment and recurrence. Nutrients 2019; 11(7): E1514.
[http://dx.doi.org/10.3390/nu11071514] [PMID: 31277273]
[20]
Willcox DC, Scapagnini G, Willcox BJ. Healthy aging diets other than the Mediterranean: A focus on the Okinawan diet. Mech Ageing Dev 2014; 136-137: 148-62.
[http://dx.doi.org/10.1016/j.mad.2014.01.002] [PMID: 24462788]
[21]
Kotecha R, Takami A, Espinoza JL. Dietary phytochemicals and cancer chemoprevention: A review of the clinical evidence. Oncotarget 2016; 7(32): 52517-29.
[http://dx.doi.org/10.18632/oncotarget.9593] [PMID: 27232756]
[22]
Aghajanpour M, Nazer MR, Obeidavi Z, Akbari M, Ezati P, Kor NM. Functional foods and their role in cancer prevention and health promotion: A comprehensive review. Am J Cancer Res 2017; 7(4): 740-69.
[PMID: 28469951]
[23]
Donaldson MS. Nutrition and cancer: A review of the evidence for an anti-cancer diet. Nutr J 2004; 3(1): 19.
[http://dx.doi.org/10.1186/1475-2891-3-19] [PMID: 15496224]
[24]
Dela Cruz CS, Tanoue LT, Matthay RA. Lung cancer: Epidemiology, etiology, and prevention. Clin Chest Med 2011; 32(4): 605-44.
[http://dx.doi.org/10.1016/j.ccm.2011.09.001] [PMID: 22054876]
[25]
Grundy A, Poirier AE, Khandwala F, McFadden A, Friedenreich CM, Brenner DR. Cancer incidence attributable to insufficient fibre consumption in Alberta in 2012. CMAJ Open 2017; 5(1): E7-E13.
[http://dx.doi.org/10.9778/cmajo.20160043] [PMID: 28401112]
[26]
Jansen MC, Bueno-de-Mesquita HB, Feskens EJ, Streppel MT, Kok FJ, Kromhout D. Quantity and variety of fruit and vegetable consumption and cancer risk. Nutr Cancer 2004; 48(2): 142-8.
[http://dx.doi.org/10.1207/s15327914nc4802_3] [PMID: 15231448]
[27]
Key TJ. Fruit and vegetables and cancer risk. Br J Cancer 2011; 104(1): 6-11.
[http://dx.doi.org/10.1038/sj.bjc.6606032] [PMID: 21119663]
[28]
Kumar VV, Swamy M, Akhtar MS. Anticancer plants and their conservation strategies: An update. Anticancer plants: Properties and Application. Springer: Singapore 2018.
[29]
Kudva AK, Raghu SV, Rao S, et al. Indian indigenous fruits as radioprotective agents: past, present and future. Anticancer Agents Med Chem 2022; 22(1): 53-63.
[PMID: 34229590]
[30]
Goswami HK, Ram HK. Ancient food habits dictate that food can be medicine but medicine cannot be “food”!!. Medicines (Basel) 2017; 4(4): 4.
[http://dx.doi.org/10.3390/medicines4040082] [PMID: 29137206]
[31]
Baliga-Rao MS, Rao S, Rao P. Use of Indian indigenous fruits in cancer prevention and treatment. In: Akhtar MS, Swamy MK, Eds. Anticancer plants: Properties and application. Singapore: Springer Singapore 2018; 1: pp. 57-76.
[32]
Shah KA, Patel MB, Patel RJ, Parmar PK. Mangifera indica (mango). Pharmacogn Rev 2010; 4(7): 42-8.
[http://dx.doi.org/10.4103/0973-7847.65325] [PMID: 22228940]
[33]
Lauricella M, Emanuele S, Calvaruso G, Giuliano M, D’Anneo A. Multifaceted health benefits of mangifera indica l. (mango): The inestimable value of orchards recently planted in sicilian rural areas. Nutrients 2017; 9(5): 9.
[http://dx.doi.org/10.3390/nu9050525] [PMID: 28531110]
[34]
Saleem M, Tanvir M, Akhtar MF, Iqbal M, Saleem A. Antidiabetic potential of mangifera indica l. cv. anwar ratol leaves: medicinal application of food wastes. Medicina (Kaunas) 2019; 55(7): 55.
[http://dx.doi.org/10.3390/medicina55070353] [PMID: 31323919]
[35]
Pardo-Andreu GL, Sánchez-Baldoquín C, Avila-González R, et al. Interaction of Vimang (Mangifera indica L. extract) with Fe(III) improves its antioxidant and cytoprotecting activity. Pharmacol Res 2006; 54(5): 389-95.
[http://dx.doi.org/10.1016/j.phrs.2006.08.001] [PMID: 17000117]
[36]
Lebaka VR, Wee YJ, Ye W, Korivi M. Nutritional composition and bioactive compounds in three different parts of mango fruit. Int J Environ Res Public Health 2021; 18(2): 18.
[http://dx.doi.org/10.3390/ijerph18020741] [PMID: 33467139]
[37]
Noratto GD, Bertoldi MC, Krenek K, Talcott ST, Stringheta PC, Mertens-Talcott SU. Anticarcinogenic effects of polyphenolics from mango (Mangifera indica) varieties. J Agric Food Chem 2010; 58(7): 4104-12.
[http://dx.doi.org/10.1021/jf903161g] [PMID: 20205391]
[38]
Schmidt M, Rohe A, Platzer C, Najjar A, Erdmann F, Sippl W. Regulation of G2/M transition by inhibition of WEE1 and PKMYT1 kinases. Molecules 2017; 22(12): 22.
[http://dx.doi.org/10.3390/molecules22122045] [PMID: 29168755]
[39]
Nguyen HX, Do TN, Le TH, et al. Chemical constituents of mangifera indica and their antiausterity activity against the PANC-1 human pancreatic cancer cell line. J Nat Prod 2016; 79(8): 2053-9.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00381] [PMID: 27466882]
[40]
Rajabi S, Maresca M, Yumashev AV, Choopani R, Hajimehdipoor H. The most competent plant-derived natural products for targeting apoptosis in cancer therapy. Biomolecules 2021; 11(4): 11.
[http://dx.doi.org/10.3390/biom11040534] [PMID: 33916780]
[41]
Kim H, Kim H, Mosaddik A, Gyawali R, Ahn KS, Cho SK. Induction of apoptosis by ethanolic extract of mango peel and comparative analysis of the chemical constitutes of mango peel and flesh. Food Chem 2012; 133(2): 416-22.
[http://dx.doi.org/10.1016/j.foodchem.2012.01.053] [PMID: 25683414]
[42]
Corrales-Bernal A, Amparo Urango L, Rojano B, Maldonado ME. In vivo and in vivo effects of mango pulp (Mangifera indica cv. Azucar) in colon carcinogenesis]. Arch Latinoam Nutr 2014; 64(1): 16-23.
[PMID: 25796713]
[43]
Percival SS, Talcott ST, Chin ST, Mallak AC, Lounds-Singleton A, Pettit-Moore J. Neoplastic transformation of BALB/3T3 cells and cell cycle of HL-60 cells are inhibited by mango (Mangifera indica L.) juice and mango juice extracts. J Nutr 2006; 136(5): 1300-4.
[http://dx.doi.org/10.1093/jn/136.5.1300] [PMID: 16614420]
[44]
Li Y, Li S, Meng X, Gan RY, Zhang JJ, Li HB. Dietary natural products for prevention and treatment of breast cancer. Nutrients 2017; 9(7): 9.
[http://dx.doi.org/10.3390/nu9070728] [PMID: 28698459]
[45]
Prasad S, Kalra N, Shukla Y. Induction of apoptosis by lupeol and mango extract in mouse prostate and LNCaP cells. Nutr Cancer 2008; 60(1): 120-30.
[http://dx.doi.org/10.1080/01635580701613772] [PMID: 18444143]
[46]
Khan N, Adhami VM, Mukhtar H. Apoptosis by dietary agents for prevention and treatment of prostate cancer. Endocr Relat Cancer 2010; 17(1): R39-52.
[http://dx.doi.org/10.1677/ERC-09-0262] [PMID: 19926708]
[47]
Yoshimi N, Matsunaga K, Katayama M, et al. The inhibitory effects of mangiferin, a naturally occurring glucosylxanthone, in bowel carcinogenesis of male F344 rats. Cancer Lett 2001; 163(2): 163-70.
[http://dx.doi.org/10.1016/S0304-3835(00)00678-9] [PMID: 11165750]
[48]
Morozkina SN, Nhung Vu TH, Generalova YE, Snetkov PP, Uspenskaya MV. Mangiferin as new potential anti-cancer agent and mangiferin-integrated polymer systems-a novel research direction. Biomolecules 2021; 11(1): 11.
[http://dx.doi.org/10.3390/biom11010079] [PMID: 33435313]
[49]
Yang G, Shang X, Cui G, Zhao L, Zhao H, Wang N. Mangiferin attenuated diethynitrosamine-induced hepatocellular carcinoma in sprague-dawley rats via alteration of oxidative stress and apoptotic pathway. J Environ Pathol Toxicol Oncol 2019; 38(1): 1-12.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2018027392] [PMID: 30806285]
[50]
Rajendran P, Rengarajan T, Nishigaki I, Ekambaram G, Sakthisekaran D. Potent chemopreventive effect of mangiferin on lung carcinogenesis in experimental Swiss albino mice. J Cancer Res Ther 2014; 10(4): 1033-9.
[http://dx.doi.org/10.4103/0973-1482.137966] [PMID: 25579550]
[51]
Song JH, Bae EY, Choi G, et al. Protective effect of mango (Mangifera indica L.) against UVB-induced skin aging in hairless mice. Photodermatol Photoimmunol Photomed 2013; 29(2): 84-9.
[http://dx.doi.org/10.1111/phpp.12030] [PMID: 23458392]
[52]
Lei J, Zhou C, Hu H, et al. Mangiferin aglycone attenuates radiation-induced damage on human intestinal epithelial cells. J Cell Biochem 2012; 113(8): 2633-42.
[http://dx.doi.org/10.1002/jcb.24138] [PMID: 22422649]
[53]
Jagetia GC, Venkatesha VA. Effect of mangiferin on radiation-induced micronucleus formation in cultured human peripheral blood lymphocytes. Environ Mol Mutagen 2005; 46(1): 12-21.
[http://dx.doi.org/10.1002/em.20124] [PMID: 15795888]
[54]
Gold-Smith F, Fernandez A, Bishop K. Mangiferin and cancer: mechanisms of action. Nutrients 2016; 8(7): 8.
[http://dx.doi.org/10.3390/nu8070396] [PMID: 27367721]
[55]
Sarkar A, Sreenivasan Y, Ramesh GT, Manna SK. beta-D-Glucoside suppresses tumor necrosis factor-induced activation of nuclear transcription factor kappaB but potentiates apoptosis. J Biol Chem 2004; 279(32): 33768-81.
[http://dx.doi.org/10.1074/jbc.M403424200] [PMID: 15161907]
[56]
Peng ZG, Yao YB, Yang J, Tang YL, Huang X. Mangiferin induces cell cycle arrest at G2/M phase through ATR-Chk1 pathway in HL-60 leukemia cells. Genet Mol Res 2015; 14(2): 4989-5002.
[http://dx.doi.org/10.4238/2015.May.12.2] [PMID: 25966274]
[57]
Telang M, Dhulap S, Mandhare A, Hirwani R. Therapeutic and cosmetic applications of mangiferin: A patent review. Expert Opin Ther Pat 2013; 23(12): 1561-80.
[http://dx.doi.org/10.1517/13543776.2013.836182] [PMID: 24066838]
[58]
Mahmoud-Awny M, Attia AS, Abd-Ellah MF, El-Abhar HS. Mangiferin mitigates gastric ulcer in ischemia/ reperfused rats: involvement of PPAR-γ, NF-κB and Nrf2/HO-1 signaling pathways. PLoS One 2015; 10(7): e0132497.
[http://dx.doi.org/10.1371/journal.pone.0132497] [PMID: 26196679]
[59]
Pan LL, Wang AY, Huang YQ, Luo Y, Ling M. Mangiferin induces apoptosis by regulating Bcl-2 and Bax expression in the CNE2 nasopharyngeal carcinoma cell line. Asian Pac J Cancer Prev 2014; 15(17): 7065-8.
[http://dx.doi.org/10.7314/APJCP.2014.15.17.7065] [PMID: 25227792]
[60]
Tanaka T, Shnimizu M, Moriwaki H. Cancer chemoprevention by carotenoids. Molecules 2012; 17(3): 3202-42.
[http://dx.doi.org/10.3390/molecules17033202] [PMID: 22418926]
[61]
Prasad N, Sabarwal A, Yadav UCS, Singh RP. Lupeol induces S-phase arrest and mitochondria-mediated apoptosis in cervical cancer cells. J Biosci 2018; 43(2): 249-61.
[http://dx.doi.org/10.1007/s12038-018-9743-8] [PMID: 29872014]
[62]
Lauricella M, Lo Galbo V, Cernigliaro C, et al. The anti-cancer effect of mangifera indica l. peel extract is associated to γH2AX-mediated apoptosis in colon cancer cells. Antioxidants 2019; 8(10): 8.
[http://dx.doi.org/10.3390/antiox8100422] [PMID: 31546694]
[63]
Baliga MS, Dsouza JJ. Amla (Emblica officinalis Gaertn), a wonder berry in the treatment and prevention of cancer. Eur J Cancer Prev 2011; 20(3): 225-39.
[http://dx.doi.org/10.1097/CEJ.0b013e32834473f4] [PMID: 21317655]
[64]
Variya BC, Bakrania AK, Patel SS. Emblica officinalis (Amla): A review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. Pharmacol Res 2016; 111: 180-200.
[http://dx.doi.org/10.1016/j.phrs.2016.06.013] [PMID: 27320046]
[65]
Imran M, Salehi B, Sharifi-Rad J, et al. Kaempferol: a key emphasis to its anticancer potential. Molecules 2019; 24(12): 24.
[http://dx.doi.org/10.3390/molecules24122277] [PMID: 31248102]
[66]
Rauf A, Imran M, Khan IA, et al. Anticancer potential of quercetin: A comprehensive review. Phytother Res 2018; 32(11): 2109-30.
[http://dx.doi.org/10.1002/ptr.6155] [PMID: 30039547]
[67]
Ceci C, Lacal PM, Tentori L, De Martino MG, Miano R, Graziani G. Experimental evidence of the antitumor, antimetastatic and antiangiogenic activity of ellagic acid. Nutrients 2018; 10(11): 10.
[http://dx.doi.org/10.3390/nu10111756] [PMID: 30441769]
[68]
Kahkeshani N, Farzaei F, Fotouhi M, et al. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran J Basic Med Sci 2019; 22(3): 225-37.
[PMID: 31156781]
[69]
Khan MT, Lampronti I, Martello D, et al. Identification of pyrogallol as an antiproliferative compound present in extracts from the medicinal plant Emblica officinalis: Effects on in vitro cell growth of human tumor cell lines. Int J Oncol 2002; 21(1): 187-92.
[http://dx.doi.org/10.3892/ijo.21.1.187] [PMID: 12063567]
[70]
Jose JK, Kuttan G, Kuttan R. Antitumour activity of Emblica officinalis. J Ethnopharmacol 2001; 75(2-3): 65-9.
[http://dx.doi.org/10.1016/S0378-8741(00)00378-0] [PMID: 11297836]
[71]
De A, De A, Sharma R, Suo W, Sharma M. Sensitization of carboplatinum- and taxol-resistant high-grade serous ovarian cancer cells carrying p53, BRCA1/2 mutations by emblica officinalis (amla) via multiple targets. J Cancer 2020; 11(7): 1927-39.
[http://dx.doi.org/10.7150/jca.36919] [PMID: 32194804]
[72]
Lambertini E, Piva R, Khan MT, et al. Effects of extracts from Bangladeshi medicinal plants on in vitro proliferation of human breast cancer cell lines and expression of estrogen receptor alpha gene. Int J Oncol 2004; 24(2): 419-23.
[http://dx.doi.org/10.3892/ijo.24.2.419] [PMID: 14719119]
[73]
Pinmai K, Chunlaratthanabhorn S, Ngamkitidechakul C, Soonthornchareon N, Hahnvajanawong C. Synergistic growth inhibitory effects of Phyllanthus emblica and Terminalia bellerica extracts with conventional cytotoxic agents: Doxorubicin and cisplatin against human hepatocellular carcinoma and lung cancer cells. World J Gastroenterol 2008; 14(10): 1491-7.
[http://dx.doi.org/10.3748/wjg.14.1491] [PMID: 18330936]
[74]
Zhao T, Sun Q, Marques M, Witcher M. Anticancer Properties of Phyllanthus emblica (Indian Gooseberry). Oxid Med Cell Longev 2015; 2015: 950890.
[http://dx.doi.org/10.1155/2015/950890] [PMID: 26180601]
[75]
Rajeshkumar NV, Pillai MR, Kuttan R. Induction of apoptosis in mouse and human carcinoma cell lines by Emblica officinalis polyphenols and its effect on chemical carcinogenesis. J Exp Clin Cancer Res 2003; 22(2): 201-12.
[PMID: 12866570]
[76]
Penolazzi L, Lampronti I, Borgatti M, et al. Induction of apoptosis of human primary osteoclasts treated with extracts from the medicinal plant Emblica officinalis. BMC Complement Altern Med 2008; 8(1): 59.
[http://dx.doi.org/10.1186/1472-6882-8-59] [PMID: 18973662]
[77]
Piva R, Penolazzi L, Borgatti M, et al. Apoptosis of human primary osteoclasts treated with molecules targeting nuclear factor-kappaB. Ann N Y Acad Sci 2009; 1171(1): 448-56.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04906.x] [PMID: 19723088]
[78]
Sumantran VN, Boddul S, Koppikar SJ, et al. Differential growth inhibitory effects of W. somnifera root and E. officinalis fruits on CHO cells. Phytother Res 2007; 21(5): 496-9.
[http://dx.doi.org/10.1002/ptr.2120] [PMID: 17357174]
[79]
Zhang YJ, Nagao T, Tanaka T, Yang CR, Okabe H, Kouno I. Antiproliferative activity of the main constituents from Phyllanthus emblica. Biol Pharm Bull 2004; 27(2): 251-5.
[http://dx.doi.org/10.1248/bpb.27.251] [PMID: 14758047]
[80]
Yang CJ, Wang CS, Hung JY, et al. Pyrogallol induces G2-M arrest in human lung cancer cells and inhibits tumor growth in an animal model. Lung Cancer 2009; 66(2): 162-8.
[http://dx.doi.org/10.1016/j.lungcan.2009.01.016] [PMID: 19233505]
[81]
Guo X, Ni J, Liu X, Xue J, Wang X. Phyllanthus emblica L. fruit extract induces chromosomal instability and suppresses necrosis in human colon cancer cells. Int J Vitam Nutr Res 2013; 83(5): 271-80.
[http://dx.doi.org/10.1024/0300-9831/a000169] [PMID: 25305222]
[82]
Yahayo W, Supabphol A, Supabphol R. Suppression of human fibrosarcoma cell metastasis by Phyllanthus emblica extract in vitro. Asian Pac J Cancer Prev 2013; 14(11): 6863-7.
[http://dx.doi.org/10.7314/APJCP.2013.14.11.6863] [PMID: 24377618]
[83]
Guo X, Wang X. phyllanthus emblica fruit extract activates spindle assembly checkpoint, prevents mitotic aberrations and genomic instability in human colon epithelial NCM460 cells. Int J Mol Sci 2016; 17(9): 17.
[http://dx.doi.org/10.3390/ijms17091437] [PMID: 27598149]
[84]
Wang CC, Yuan JR, Wang CF, et al. Anti-inflammatory effects of phyllanthus emblica l on benzopyrene-induced precancerous lung lesion by regulating the IL-1β/miR-101/Lin28B signaling pathway. Integr Cancer Ther 2017; 16(4): 505-15.
[http://dx.doi.org/10.1177/1534735416659358] [PMID: 27562754]
[85]
Zhu X, Wang J, Ou Y, Han W, Li H. Polyphenol extract of Phyllanthus emblica (PEEP) induces inhibition of cell proliferation and triggers apoptosis in cervical cancer cells. Eur J Med Res 2013; 18(1): 46.
[http://dx.doi.org/10.1186/2047-783X-18-46] [PMID: 24245877]
[86]
De A, Powers B, De A, et al. Emblica officinalis extract downregulates pro-angiogenic molecules via upregulation of cellular and exosomal miR-375 in human ovarian cancer cells. Oncotarget 2016; 7(21): 31484-500.
[http://dx.doi.org/10.18632/oncotarget.8966] [PMID: 27129171]
[87]
Hari KKB, Sabu MC, Lima PS, Kuttan R. Modulation of haematopoetic system and antioxidant enzymes by Emblica officinalis gaertn and its protective role against gamma-radiation induced damages in mice. J Radiat Res (Tokyo) 2004; 45(4): 549-55.
[http://dx.doi.org/10.1269/jrr.45.549] [PMID: 15635265]
[88]
Sancheti G, Jindal A, Kumari R, Goyal PK. Chemopreventive action of emblica officinalis on skin carcinogenesis in mice. Asian Pac J Cancer Prev 2005; 6(2): 197-201.
[PMID: 16101333]
[89]
Jeena KJ, Joy KL, Kuttan R. Effect of Emblica officinalis, Phyllanthus amarus and Picrorrhiza kurroa on N-nitrosodiethylamine induced hepatocarcinogenesis. Cancer Lett 1999; 136(1): 11-6.
[http://dx.doi.org/10.1016/S0304-3835(98)00294-8] [PMID: 10211933]
[90]
Krishnaveni M, Mirunalini S. Chemopreventive efficacy of Phyllanthus emblica L. (amla) fruit extract on 7,12-dimethylbenz(a)anthracene induced oral carcinogenesis--a dose-response study. Environ Toxicol Pharmacol 2012; 34(3): 801-10.
[http://dx.doi.org/10.1016/j.etap.2012.09.006] [PMID: 23058484]
[91]
Dhir H, Roy AK, Sharma A, Talukder G. Modification of clastogenicity of lead and aluminium in mouse bone marrow cells by dietary ingestion of Phyllanthus emblica fruit extract. Mutat Res 1990; 241(3): 305-12.
[http://dx.doi.org/10.1016/0165-1218(90)90029-2] [PMID: 2366810]
[92]
Dhir H, Agarwal K, Sharma A, Talukder G. Modifying role of Phyllanthus emblica and ascorbic acid against nickel clastogenicity in mice. Cancer Lett 1991; 59(1): 9-18.
[http://dx.doi.org/10.1016/0304-3835(91)90129-6] [PMID: 1878862]
[93]
Ghosh A, Sharma A, Talukder G. Relative protection given by extract of Phyllanthus emblica fruit and an equivalent amount of vitamin C against a known clastogen--caesium chloride. Food Chem Toxicol 1992; 30(10): 865-9.
[http://dx.doi.org/10.1016/0278-6915(92)90052-M] [PMID: 1427509]
[94]
Baliga MS, Bhat HP, Baliga BRV, Wilson R, Palatty PL. Phytochemistry, traditional uses and pharmacology of Eugenia jambolana Lam. (black plum): A review. Food Res Int 2011; 44(7): 1776-89.
[http://dx.doi.org/10.1016/j.foodres.2011.02.007]
[95]
Baliga MS. Anticancer, chemopreventive and radioprotective potential of black plum (Eugenia jambolana lam.). Asian Pac J Cancer Prev 2011; 12(1): 3-15.
[PMID: 21517226]
[96]
Charepalli V, Reddivari L, Vadde R, Walia S, Radhakrishnan S, Vanamala JK. Eugenia jambolana (Java Plum) fruit extract exhibits anti-cancer activity against early stage Human HCT-116 colon cancer cells and colon cancer stem cells. Cancers (Basel) 2016; 8(3): 8.
[http://dx.doi.org/10.3390/cancers8030029] [PMID: 26927179]
[97]
Li L, Adams LS, Chen S, Killian C, Ahmed A, Seeram NP. Eugenia jambolana Lam. berry extract inhibits growth and induces apoptosis of human breast cancer but not non-tumorigenic breast cells. J Agric Food Chem 2009; 57(3): 826-31.
[http://dx.doi.org/10.1021/jf803407q] [PMID: 19166352]
[98]
Ezhilarasan D, Apoorva VS, Ashok Vardhan N. Syzygium cumini extract induced reactive oxygen species-mediated apoptosis in human oral squamous carcinoma cells. J Oral Pathol Med 2019; 48(2): 115-21.
[PMID: 30451321]
[99]
Aqil F, Gupta A, Munagala R, et al. Antioxidant and antiproliferative activities of anthocyanin/ellagitannin-enriched extracts from Syzygium cumini L. (Jamun, the Indian Blackberry). Nutr Cancer 2012; 64(3): 428-38.
[http://dx.doi.org/10.1080/01635581.2012.657766] [PMID: 22420901]
[100]
Chandran R, George BP, Abrahamse H. Anti-Proliferative, analgesic and anti-inflammatory properties of syzygium mundagam bark methanol extract. Molecules 2020; 25(12): 2900.
[http://dx.doi.org/10.3390/molecules25122900] [PMID: 32599705]
[101]
Khodavirdipour A, Zarean R, Safaralizadeh R. Evaluation of the anti-cancer effect of syzygium cumini ethanolic extract on HT-29 colorectal cell line. J Gastrointest Cancer 2021; 52(2): 575-81.
[http://dx.doi.org/10.1007/s12029-020-00439-3] [PMID: 32506290]
[102]
Goyal PK, Verma P, Sharma P, Parmar J, Agarwal A. Evaluation of anti-cancer and anti-oxidative potential of Syzygium Cumini against benzo[a]pyrene (BaP) induced gastric carcinogenesis in mice. Asian Pac J Cancer Prev 2010; 11(3): 753-8.
[PMID: 21039048]
[103]
Jagetia GC, Shetty PC, Vidyasagar MS. Inhibition of radiation-induced DNA damage by jamun, Syzygium cumini, in the cultured splenocytes of mice exposed to different doses of γ-radiation. Integr Cancer Ther 2012; 11(2): 141-53.
[http://dx.doi.org/10.1177/1534735411413261] [PMID: 21733986]
[104]
Jagetia GC, Baliga MS, Venkatesh P. Influence of seed extract of Syzygium Cumini (Jamun) on mice exposed to different doses of gamma-radiation. J Radiat Res (Tokyo) 2005; 46(1): 59-65.
[http://dx.doi.org/10.1269/jrr.46.59] [PMID: 15802860]
[105]
Jagetia GC, Baliga MS. Syzygium cumini (Jamun) reduces the radiation-induced DNA damage in the cultured human peripheral blood lymphocytes: A preliminary study. Toxicol Lett 2002; 132(1): 19-25.
[http://dx.doi.org/10.1016/S0378-4274(02)00032-2] [PMID: 12084616]
[106]
Jagetia GC, Baliga MS. Evaluation of the radioprotective effect of the leaf extract of Syzygium cumini (Jamun) in mice exposed to a lethal dose of gamma-irradiation. Nahrung 2003; 47(3): 181-5.
[http://dx.doi.org/10.1002/food.200390042] [PMID: 12866620]
[107]
Parmar J, Sharma P, Verma P, Sharma P, Goyal PK. Elimination of deleterious effects of DMBA-induced skin carcinogenesis in mice by Syzygium cumini seed extract. Integr Cancer Ther 2011; 10(3): 289-97.
[http://dx.doi.org/10.1177/1534735410385112] [PMID: 21147816]
[108]
Sharma M, Li L, Celver J, Killian C, Kovoor A, Seeram NP. Effects of fruit ellagitannin extracts, ellagic acid, and their colonic metabolite, urolithin A, on Wnt signaling. J Agric Food Chem 2010; 58(7): 3965-9.
[http://dx.doi.org/10.1021/jf902857v] [PMID: 20014760]
[109]
Giménez-Bastida JA, Ávila-Gálvez MÁ, Espín JC, González-Sarrías A. The gut microbiota metabolite urolithin A, but not other relevant urolithins, induces p53-dependent cellular senescence in human colon cancer cells. Food Chem Toxicol 2020; 139: 111260.
[http://dx.doi.org/10.1016/j.fct.2020.111260] [PMID: 32179165]
[110]
Qiu Z, Wang Y, Zhou B, et al. In vitro antiproliferative and antioxidant effects of urolithin A, the colonic metabolite of ellagic acid, on hepatocellular carcinomas HepG2 cells. Toxicol In Vitro 2015; 29: 1107-15.
[111]
Al-Harbi SA, Abdulrahman AO, Zamzami MA, Khan MI. Urolithins: The gut based polyphenol metabolites of ellagitannins in cancer prevention, a review. Front Nutr 2021; 8: 647582.
[http://dx.doi.org/10.3389/fnut.2021.647582] [PMID: 34164422]
[112]
Ayyanar M, Subash-Babu P. Syzygium cumini (L.) Skeels: A review of its phytochemical constituents and traditional uses. Asian Pac J Trop Biomed 2012; 2(3): 240-6.
[http://dx.doi.org/10.1016/S2221-1691(12)60050-1] [PMID: 23569906]
[113]
Heber D. Multitargeted therapy of cancer by ellagitannins. Cancer Lett 2008; 269(2): 262-8.
[http://dx.doi.org/10.1016/j.canlet.2008.03.043] [PMID: 18468784]
[114]
Aqil F, Jeyabalan J, Munagala R, Singh IP, Gupta RC. Prevention of hormonal breast cancer by dietary jamun. Mol Nutr Food Res 2016; 60(6): 1470-81.
[http://dx.doi.org/10.1002/mnfr.201600013] [PMID: 27030099]
[115]
Ecker A, Araujo Vieira F, de Souza Prestes A, et al. Effect of Syzygium cumini and Bauhinia forficata aqueous-leaf extracts on oxidative and mitochondrial parameters in vitro. EXCLI J 2015; 14: 1219-31.
[PMID: 27152111]
[116]
Kausar H, Jeyabalan J, Aqil F, et al. Berry anthocyanidins synergistically suppress growth and invasive potential of human non-small-cell lung cancer cells. Cancer Lett 2012; 325(1): 54-62.
[http://dx.doi.org/10.1016/j.canlet.2012.05.029] [PMID: 22659736]
[117]
Dhamija I, Parle M, Kumar S. Antidepressant and anxiolytic effects of Garcinia indica fruit rind via monoaminergic pathway. 3 Biotech 2017; 7: 131.
[118]
Ding M, Feng R, Wang SY, et al. Cyanidin-3-glucoside, a natural product derived from blackberry, exhibits chemopreventive and chemotherapeutic activity. J Biol Chem 2006; 281(25): 17359-68.
[http://dx.doi.org/10.1074/jbc.M600861200] [PMID: 16618699]
[119]
Khatib NA, Kiran PM, Patil PA. Evaluation of anti inflammatory activity of garcinia indica fruit rind extracts in wistar rats. Int J Res Ayurveda Pharm 2010; 1: 449-54.
[120]
Tamil Selvi A, Joseph GS, Jayaprakasha GK. Inhibition of growth and aflatoxin production in Aspergillus flavus by Garcinia indica extract and its antioxidant activity. Food Microbiol 2003; 20(4): 455-60.
[http://dx.doi.org/10.1016/S0740-0020(02)00142-9]
[121]
Panda V, Ashar H, Srinath S. Antioxidant and hepatoprotective effect of Garcinia indica fruit rind in ethanol-induced hepatic damage in rodents. Interdiscip Toxicol 2012; 5(4): 207-13.
[http://dx.doi.org/10.2478/v10102-012-0034-1] [PMID: 23554565]
[122]
Baliga S, Bhat H, Pai Jakribettu R, Boloor R. Palatty dP. The chemistry and medicinal uses of the underutilized Indian fruit tree Garcinia indica Choisy (kokum): A review. Food Res Int 2011; 44(7): 1790-9.
[http://dx.doi.org/10.1016/j.foodres.2011.01.064]
[123]
Nayak CA, Rastogi NK, Raghavarao KSMS. Bioactive constituents present in garcinia indica choisy and its potential food applications: a review. Int J Food Prop 2010; 13(3): 441-53.
[http://dx.doi.org/10.1080/10942910802626754]
[124]
Matsumoto K, Akao Y, Kobayashi E, et al. Cytotoxic benzophenone derivatives from Garcinia species display a strong apoptosis-inducing effect against human leukemia cell lines. Biol Pharm Bull 2003; 26(4): 569-71.
[http://dx.doi.org/10.1248/bpb.26.569] [PMID: 12673047]
[125]
Pan MH, Chang WL, Lin-Shiau SY, Ho CT, Lin JK. Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells. J Agric Food Chem 2001; 49(3): 1464-74.
[http://dx.doi.org/10.1021/jf001129v] [PMID: 11312881]
[126]
Arif M, Pradhan SK, Thanuja GR, et al. Mechanism of p300 specific histone acetyltransferase inhibition by small molecules. J Med Chem 2009; 52(2): 267-77.
[http://dx.doi.org/10.1021/jm800657z] [PMID: 19086895]
[127]
Ahmad A, Wang Z, Ali R, et al. Apoptosis-inducing effect of garcinol is mediated by NF-kappaB signaling in breast cancer cells. J Cell Biochem 2010; 109(6): 1134-41.
[PMID: 20108249]
[128]
Saadat N, Gupta SV. Potential role of garcinol as an anticancer agent. J Oncol 2012; 2012: 647206.
[http://dx.doi.org/10.1155/2012/647206] [PMID: 22745638]
[129]
Hong J, Kwon SJ, Sang S, et al. Effects of garcinol and its derivatives on intestinal cell growth: Inhibitory effects and autoxidation-dependent growth-stimulatory effects. Free Radic Biol Med 2007; 42(8): 1211-21.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.01.016] [PMID: 17382202]
[130]
Cheng AC, Tsai ML, Liu CM, et al. Garcinol inhibits cell growth in hepatocellular carcinoma Hep3B cells through induction of ROS-dependent apoptosis. Food Funct 2010; 1(3): 301-7.
[http://dx.doi.org/10.1039/c0fo00134a] [PMID: 21776480]
[131]
Ahmad A, Wang Z, Wojewoda C, et al. Garcinol-induced apoptosis in prostate and pancreatic cancer cells is mediated by NF- kappaB signaling. Front Biosci (Elite Ed) 2011; 3(4): 1483-92.
[PMID: 21622152]
[132]
Koeberle A, Northoff H, Werz O. Identification of 5-lipoxygenase and microsomal prostaglandin E2 synthase-1 as functional targets of the anti-inflammatory and anti-carcinogenic garcinol. Biochem Pharmacol 2009; 77(9): 1513-21.
[http://dx.doi.org/10.1016/j.bcp.2009.02.005] [PMID: 19426689]
[133]
Ahmad A, Sarkar SH, Bitar B, et al. Garcinol regulates EMT and Wnt signaling pathways in vitro and in vivo, leading to anticancer activity against breast cancer cells. Mol Cancer Ther 2012; 11(10): 2193-201.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0232-T] [PMID: 22821148]
[134]
Wang Y, Tsai ML, Chiou LY, Ho CT, Pan MH. Antitumor Activity of Garcinol in Human Prostate Cancer Cells and Xenograft Mice. J Agric Food Chem 2015; 63(41): 9047-52.
[http://dx.doi.org/10.1021/acs.jafc.5b03851] [PMID: 26442822]
[135]
Li F, Shanmugam MK, Chen L, et al. Garcinol, a polyisoprenylated benzophenone modulates multiple proinflammatory signaling cascades leading to the suppression of growth and survival of head and neck carcinoma. Cancer Prev Res (Phila) 2013; 6(8): 843-54.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0070] [PMID: 23803415]
[136]
Mantelingu K, Reddy BA, Swaminathan V, et al. Specific inhibition of p300-HAT alters global gene expression and represses HIV replication. Chem Biol 2007; 14(6): 645-57.
[http://dx.doi.org/10.1016/j.chembiol.2007.04.011] [PMID: 17584612]
[137]
Liao CH, Sang S, Ho CT, Lin JK. Garcinol modulates tyrosine phosphorylation of FAK and subsequently induces apoptosis through down-regulation of Src, ERK, and Akt survival signaling in human colon cancer cells. J Cell Biochem 2005; 96(1): 155-69.
[http://dx.doi.org/10.1002/jcb.20540] [PMID: 16052481]
[138]
Oike T, Ogiwara H, Torikai K, Nakano T, Yokota J, Kohno T. Garcinol, a histone acetyltransferase inhibitor, radiosensitizes cancer cells by inhibiting non-homologous end joining. Int J Radiat Oncol Biol Phys 2012; 84(3): 815-21.
[http://dx.doi.org/10.1016/j.ijrobp.2012.01.017] [PMID: 22417805]
[139]
Aggarwal S, Das SN. Garcinol inhibits tumour cell proliferation, angiogenesis, cell cycle progression and induces apoptosis via NF-κB inhibition in oral cancer. Tumour Biol 2016; 37(6): 7175-84.
[http://dx.doi.org/10.1007/s13277-015-4583-8] [PMID: 26662963]
[140]
Ye X, Yuan L, Zhang L, Zhao J, Zhang CM, Deng HY. Garcinol, an acetyltransferase inhibitor, suppresses proliferation of breast cancer cell line MCF-7 promoted by 17β-estradiol. Asian Pac J Cancer Prev 2014; 15(12): 5001-7.
[http://dx.doi.org/10.7314/APJCP.2014.15.12.5001] [PMID: 24998578]
[141]
Yu SY, Liao CH, Chien MH, Tsai TY, Lin JK, Weng MS. Induction of p21(Waf1/Cip1) by garcinol via downregulation of p38-MAPK signaling in p53-independent H1299 lung cancer. J Agric Food Chem 2014; 62(9): 2085-95.
[http://dx.doi.org/10.1021/jf4037722] [PMID: 24533688]
[142]
Zhou XY, Cao J, Han CM, et al. The C8 side chain is one of the key functional group of Garcinol for its anti-cancer effects. Bioorg Chem 2017; 71: 74-80.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.013] [PMID: 28169002]
[143]
Yoshida K, Tanaka T, Hirose Y, et al. Dietary garcinol inhibits 4-nitroquinoline 1-oxide-induced tongue carcinogenesis in rats. Cancer Lett 2005; 221(1): 29-39.
[http://dx.doi.org/10.1016/j.canlet.2004.08.016] [PMID: 15797624]
[144]
Zhang X, Chen X, Lu Y, et al. Abstract 1600: Chemoprevention of 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster cheek pouch carcinogenesis by topical garcinol through inhibition of 5-lipoxygenase. Cancer Res 2012; 72: 1600-0.
[145]
Tsai ML, Chiou YS, Chiou LY, Ho CT, Pan MH. Garcinol suppresses inflammation-associated colon carcinogenesis in mice. Mol Nutr Food Res 2014; 58(9): 1820-9.
[http://dx.doi.org/10.1002/mnfr.201400149] [PMID: 24981158]
[146]
Venthodika A, Chhikara N, Mann S, Garg MK, Sofi SA, Panghal A. Bioactive compounds of Aegle marmelos L., medicinal values and its food applications: A critical review. Phytother Res 2021; 35(4): 1887-907.
[http://dx.doi.org/10.1002/ptr.6934] [PMID: 33159390]
[147]
Baliga S, Bhat H, Joseph N, Fazal F. Phytochemistry and medicinal uses of the Bael fruit (Aegle marmelos Correa): A concise review. Food Res Int 2011; 44(7): 1768-75.
[http://dx.doi.org/10.1016/j.foodres.2011.02.008]
[148]
Manandhar B, Paudel KR, Sharma B, Karki R. Phytochemical profile and pharmacological activity of Aegle marmelos Linn. J Integr Med 2018; 16(3): 153-63.
[http://dx.doi.org/10.1016/j.joim.2018.04.007] [PMID: 29709412]
[149]
Mishra S. Aegle marmelos (L.) Correa (Bael) and its phytochemicals in the treatment and prevention of cancer. Integr Cancer Ther 2020; 12: 187-96.
[150]
Rahman S, Parvin R. Therapeutic potential of Aegle marmelos (L.)-An overview. Asian Pac J Trop Dis 2014; 4(1): 71-7.
[http://dx.doi.org/10.1016/S2222-1808(14)60318-2]
[151]
Lampronti I, Martello D, Bianchi N, et al. In vivo antiproliferative effects on human tumor cell lines of extracts from the Bangladeshi medicinal plant Aegle marmelos Correa. Phytomedicine 2003; 10(4): 300-8.
[http://dx.doi.org/10.1078/094471103322004794] [PMID: 12809360]
[152]
Moongkarndi P, Kosem N, Luanratana O, Jongsomboonkusol S, Pongpan N. Antiproliferative activity of Thai medicinal plant extracts on human breast adenocarcinoma cell line. Fitoterapia 2004; 75(3-4): 375-7.
[http://dx.doi.org/10.1016/j.fitote.2004.01.010] [PMID: 15158999]
[153]
Bhatti R, Singh J, Saxena AK, Suri N, Ishar MP. Pharmacognostic standardisation and antiproliferative activity of Aegle marmelos (L.) Correa leaves in various human cancer cell lines. Indian J Pharm Sci 2013; 75(6): 628-34.
[PMID: 24591736]
[154]
Agrawal A, Jahan S, Soyal D, Goyal E, Goyal PK. Amelioration of chemical-induced skin carcinogenesis by Aegle marmelos, an Indian medicinal plant, fruit extract. Integr Cancer Ther 2012; 11(3): 257-66.
[http://dx.doi.org/10.1177/1534735411417127] [PMID: 21862519]
[155]
Agrawal A, Verma P, Goyal PK. Chemomodulatory effects of Aegle marmelos against DMBA-induced skin tumorigenesis in Swiss albino mice. Asian Pac J Cancer Prev 2010; 11(5): 1311-4.
[PMID: 21198283]
[156]
Agrawal A, Jahan S, Goyal PK. Chemically induced skin carcinogenesis in mice and its prevention by Aegle marmelos (an Indian medicinal plant) fruit extract. J Environ Pathol Toxicol Oncol 2011; 30(3): 251-9.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v30.i3.80] [PMID: 22126618]
[157]
Khan TH, Sultana S. Effect of Aegle marmelos on DEN initiated and 2-AAF promoted hepatocarcinogenesis: A chemopreventive study. Toxicol Mech Methods 2011; 21(6): 453-62.
[http://dx.doi.org/10.3109/15376516.2011.564677] [PMID: 21417629]
[158]
George SK, Radhakrishnan R, Kumar SS, Sreelekha TT, Balaram P. Chemopreventive efficacy of Aegle marmelos on murine transplantable tumors. Integr Cancer Ther 2014; 13(1): 68-78.
[http://dx.doi.org/10.1177/1534735413490234] [PMID: 23729467]
[159]
Tayarani-Najaran Z, Tayarani-Najaran N, Eghbali S. A review of auraptene as an anticancer agent. Front Pharmacol 2021; 12: 698352.
[http://dx.doi.org/10.3389/fphar.2021.698352] [PMID: 34239445]
[160]
Jagetia GC. Radioprotective potential of plants and herbs against the effects of ionizing radiation. J Clin Biochem Nutr 2007; 40(2): 74-81.
[http://dx.doi.org/10.3164/jcbn.40.74] [PMID: 18188408]
[161]
Baliga MS, Bhat HP, Pereira MM, Mathias N, Venkatesh P. Radioprotective effects of Aegle marmelos (L.) Correa (Bael): A concise review. J Altern Complement Med 2010; 16(10): 1109-16.
[http://dx.doi.org/10.1089/acm.2009.0604] [PMID: 20932194]
[162]
Jagetia GC, Venkatesh P, Baliga MS. Fruit extract of Aegle marmelos protects mice against radiation-induced lethality. Integr Cancer Ther 2004; 3(4): 323-32.
[http://dx.doi.org/10.1177/1534735404270641] [PMID: 15523103]
[163]
Ramakrishna YG, Savithri K, Kist M, Devaraj SN. Aegle marmelos fruit extract attenuates Helicobacter pylori Lipopolysaccharide induced oxidative stress in Sprague Dawley rats. BMC Complement Altern Med 2015; 15(1): 375.
[http://dx.doi.org/10.1186/s12906-015-0915-x] [PMID: 26482072]
[164]
Ranasinghe RASN, Maduwanthi SDT, Marapana RAUJ. Nutritional and Health Benefits of Jackfruit (Artocarpus heterophyllus Lam.): A Review. Int J Food Sci 2019; 2019: 4327183.
[http://dx.doi.org/10.1155/2019/4327183] [PMID: 30723733]
[165]
Wiater A, Paduch R, Trojnar S, et al. The effect of water-soluble polysaccharide from jackfruit (Artocarpus heterophyllus Lam.) on human colon carcinoma cells cultured in vitro. Plants 2020; 9(1): 9.
[http://dx.doi.org/10.3390/plants9010103] [PMID: 31947694]
[166]
Morrison IJ, Zhang J, Lin J, et al. Potential chemopreventive, anticancer and anti-inflammatory properties of a refined artocarpin-rich wood extract of Artocarpus heterophyllus Lam. Sci Rep 2021; 11(1): 6854.
[http://dx.doi.org/10.1038/s41598-021-86040-5] [PMID: 33767225]
[167]
Jagtap UB, Panaskar SN, Bapat VA. Evaluation of antioxidant capacity and phenol content in jackfruit (Artocarpus heterophyllus Lam.) fruit pulp. Plant Foods Hum Nutr 2010; 65(2): 99-104.
[http://dx.doi.org/10.1007/s11130-010-0155-7] [PMID: 20198442]
[168]
Liu YY, Wang T, Yang RX, Tang HX, Qiang L, Liu YP. Anti-inflammatory steroids from the fruits of Artocarpus heterophyllus. Nat Prod Res 2021; 35(18): 3071-7.
[http://dx.doi.org/10.1080/14786419.2019.1693562] [PMID: 31755785]
[169]
Meera M, Ruckmani A, Saravanan R, Lakshmipathy Prabhu R. Anti-inflammatory effect of ethanolic extract of spine, skin and rind of Jack fruit peel - A comparative study. Nat Prod Res 2018; 32(22): 2740-4.
[http://dx.doi.org/10.1080/14786419.2017.1378200] [PMID: 28990815]
[170]
Braz MM, Roque-Barreira MC, Ramalho FS, Oliveira CA, Augusto MJ, Ramalho LN. Inhibition of Hepatocarcinogenesis by ArtinM via Anti-proliferative and Pro-apoptotic Mechanisms. In Vivo 2016; 30(6): 845-52.
[http://dx.doi.org/10.21873/invivo.11004] [PMID: 27815471]
[171]
Baliga S, Arnadi Ramachandrayya S, Haniadka R, D’Souza J, Bhat H. Phytochemistry, nutritional and pharmacological properties of Artocarpus heterophyllus Lam (jackfruit): A review. Food Res Int 2011; 44(7): 1800-11.
[http://dx.doi.org/10.1016/j.foodres.2011.02.035]
[172]
Burci LM, da Silva CB, Rondon JN, et al. Acute and subacute (28 days) toxicity, hemolytic and cytotoxic effect of Artocarpus heterophyllus seed extracts. Toxicol Rep 2018; 6: 1304-8.
[http://dx.doi.org/10.1016/j.toxrep.2018.02.006] [PMID: 31993330]
[173]
Arung ET, Shimizu K, Kondo R. Inhibitory effect of isoprenoid-substituted flavonoids isolated from Artocarpus heterophyllus on melanin biosynthesis. Planta Med 2006; 72(9): 847-50.
[http://dx.doi.org/10.1055/s-2006-931606] [PMID: 16732541]
[174]
Rivera-Aguilar J, Calderon-Santoyo M, González-Cruz E, Ramos Hernández J, Ragazzo-Sanchez J. Encapsulation by electrospraying of anticancer compounds from jackfruit extract (artocarpus heterophyllus lam): identification, characterization and antiproliferative properties. Anticancer Agents Med Chem 2020; 21(4): 523-31.
[PMID: 32753023]
[175]
Anupama N, Madhumitha G, Rajesh KS. Role of dried fruits of Carissa carandas as anti-inflammatory agents and the analysis of phytochemical constituents by GC-MS. BioMed Res Int 2014; 2014: 512369.
[http://dx.doi.org/10.1155/2014/512369] [PMID: 24877106]
[176]
Arung ET, Wicaksono BD, Handoko YA, et al. Cytotoxic effect of artocarpin on T47D cells. J Nat Med 2010; 64(4): 423-9.
[http://dx.doi.org/10.1007/s11418-010-0425-6] [PMID: 20544395]
[177]
Sun G, Zheng Z, Lee MH, et al. Chemoprevention of colorectal cancer by artocarpin, a dietary phytochemical from artocarpus heterophyllus. J Agric Food Chem 2017; 65(17): 3474-80.
[http://dx.doi.org/10.1021/acs.jafc.7b00278] [PMID: 28391699]
[178]
Carvalho FC, Soares SG, Tamarozzi MB, Rego EM, Roque-Barreira MC. The recognition of N-glycans by the lectin ArtinM mediates cell death of a human myeloid leukemia cell line. PLoS One 2011; 6(11): e27892.
[http://dx.doi.org/10.1371/journal.pone.0027892] [PMID: 22132163]
[179]
Li J, Lin Z, Tang X, et al. Oxyresveratrol extracted from Artocarpus heterophyllus Lam. inhibits tyrosinase and age pigments in vitro and in vivo. Food Funct 2020; 11(7): 6595-607.
[http://dx.doi.org/10.1039/D0FO01193B] [PMID: 32648885]
[180]
Zheng ZP, Xu Y, Qin C, et al. Characterization of antiproliferative activity constituents from Artocarpus heterophyllus. J Agric Food Chem 2014; 62(24): 5519-27.
[http://dx.doi.org/10.1021/jf500159z] [PMID: 24854862]
[181]
Khatun M, Habib MR, Rabbi MA, et al. Antioxidant, cytotoxic and antineoplastic effects of Carissa carandas Linn. leaves. Exp Toxicol Pathol 2017; 69(7): 469-76.
[http://dx.doi.org/10.1016/j.etp.2017.03.008] [PMID: 28478952]
[182]
Itankar PR, Lokhande SJ, Verma PR, Arora SK, Sahu RA, Patil AT. Antidiabetic potential of unripe Carissa carandas Linn. fruit extract. J Ethnopharmacol 2011; 135(2): 430-3.
[http://dx.doi.org/10.1016/j.jep.2011.03.036] [PMID: 21439367]
[183]
Ya’u J, Yaro AH, Abubakar MS, Anuka JA, Hussaini IM. Anticonvulsant activity of Carissa edulis (Vahl) (Apocynaceae) root bark extract. J Ethnopharmacol 2008; 120(2): 255-8.
[http://dx.doi.org/10.1016/j.jep.2008.08.029] [PMID: 18822365]
[184]
Bano Z, Begum S, Ali SS, et al. Phytochemicals from Carissa carandas with potent cytotoxic and anti-inflammatory activities. Nat Prod Res 2021; 36(6): 1587-92.
[PMID: 33583281]
[185]
Singh D, Singh M, Yadav E, et al. Attenuation of diethylnitrosamine (DEN) - Induced hepatic cancer in experimental model of Wistar rats by Carissa carandas embedded silver nanoparticles. Biomed Pharmacother 2018; 108: 757-65.
[http://dx.doi.org/10.1016/j.biopha.2018.09.066] [PMID: 30248544]
[186]
Begum S, Azeemi S, Siddiqui B, Sattar S, Choudhary M. Carandinol: First isohopane triterpene from the leaves of Carissa carandas L. and its cytotoxicity against cancer cell lines. Phytochem Lett 2013; 6(1): 91-5.
[http://dx.doi.org/10.1016/j.phytol.2012.11.005]
[187]
Verma K, Shrivastava D, Kumar G. Antioxidant activity and DNA damage inhibition in vitro by a methanolic extract of Carissa carandas (Apocynaceae) leaves. J Taibah Univ Sci 2015; 9(1): 34-40.
[http://dx.doi.org/10.1016/j.jtusci.2014.07.001]
[188]
Singh D, Chaudhary D, Kumar V, Verma A. Amelioration of diethylnitrosamine (DEN) induced renal oxidative stress and inflammation by Carissa carandas embedded silver nanoparticles in rodents. Toxicol Rep 2021; 8: 636-45.
[http://dx.doi.org/10.1016/j.toxrep.2021.03.014] [PMID: 33850732]
[189]
Koley TK, Khan Z, Oulkar D, Singh B, Bhatt BP, Banerjee K. Profiling of polyphenols in phalsa (Grewia asiatica L) fruits based on liquid chromatography high resolution mass spectrometry. J Food Sci Technol 2020; 57(2): 606-16.
[http://dx.doi.org/10.1007/s13197-019-04092-y] [PMID: 32116370]
[190]
Akram Z, Perveen R, Noreen A, et al. Morphological, phytochemical, and pharmacological studies of grewia asiatica: A review. RADS J Pharm Pharmaceut Sci 2019; 7: 53-62.
[191]
Zia-Ul-Haq M, Stanković MS, Rizwan K, Feo VD. Grewia asiatica L., a food plant with multiple uses. Molecules 2013; 18(3): 2663-82.
[http://dx.doi.org/10.3390/molecules18032663] [PMID: 23449066]
[192]
Khatune NA, Rahman BM, Barman RK, Wahed MI. Antidiabetic, antihyperlipidemic and antioxidant properties of ethanol extract of Grewia asiatica Linn. bark in alloxan-induced diabetic rats. BMC Complement Altern Med 2016; 16(1): 295.
[http://dx.doi.org/10.1186/s12906-016-1276-9] [PMID: 27538464]
[193]
Sisodia R, Sharma KV. Hepatoprotective efficacy of Grewia asiatica fruit against oxidative stress in Swiss albino mice. Iranian J Radiation Res (IJRR) 2010; 8: 75-85.
[194]
Shukla R, Sharma DC, Baig MH, et al. Antioxidant, antimicrobial activity and medicinal properties of grewia asiatica l. Med Chem 2016; 12(3): 211-6.
[http://dx.doi.org/10.2174/1573406411666151030110530] [PMID: 26516779]
[195]
Khattab HA, El-Shitany NA, Abdallah IZ, Yousef FM, Alkreathy HM. Antihyperglycemic potential of grewia asiatica fruit extract against streptozotocin-induced hyperglycemia in rats: anti-inflammatory and antioxidant mechanisms. Oxid Med Cell Longev 2015; 2015: 549743.
[http://dx.doi.org/10.1155/2015/549743] [PMID: 26347423]
[196]
Sharma C, Malgaonkar M, Sangvikar S, Murthy S, Pawar S. In vivo evaluation of antimicrobial and antioxidant profile of grewia l. root extracts. J Appl Life Sci Int 2016; 7(1): 1-9.
[http://dx.doi.org/10.9734/JALSI/2016/26748]
[197]
Paviaya US, Kumar P, Wanjari MM, Thenmozhi S, Balakrishnan BR. Analgesic and anti-inflammatory activity of root bark of Grewia asiatica Linn. in rodents. Anc Sci Life 2013; 32(3): 150-5.
[http://dx.doi.org/10.4103/0257-7941.122998] [PMID: 24501443]
[198]
Zia-Ul-Haq M, Shahid S, Muhammad S, Qayum M, Khan I, Ahmad S. Antimalarial, antiemetic and antidiabetic potential of Grewia aslatica L leaves. 2012; 6: 3087-92.
[199]
Paul S, Sharma S, Paliwal S, Kasture S. Protective action of Grewia asiatica (phalsa) berries against scopolamine-induced deficit in learning and memory using behavior paradigms in rats. Orient Pharm Exp Med 2020; 20: 243-53.
[200]
Israr F, Hassan F, Naqvi BS, Azhar I, Jabeen S, Hasan SM. Report: Studies on antibacterial activity of some traditional medicinal plants used in folk medicine. Pak J Pharm Sci 2012; 25(3): 669-74.
[PMID: 22713958]
[201]
Mesaik MA, Ahmed A, Khalid AS, et al. Effect of Grewia asiatica fruit on glycemic index and phagocytosis tested in healthy human subjects. Pak J Pharm Sci 2013; 26(1): 85-9.
[PMID: 23261731]
[202]
Marya B, Dattani K, Patel D, et al. In-vitro cytotoxicity evaluation of aqueous fruit and leaf extracts of Grewia asiatica using MTT Assay. Pharma Chem 2011; 3: 282-7.
[203]
Gupta P, Bhatnagar I, Kim S-K, Verma A, Sharma A. In-vitro cancer cell cytotoxicity and alpha amylase inhibition effect of seven tropical fruit residues. Asian Pac J Trop Biomed 2012; 4: 1-7.
[204]
Singh S, Sharma KV, Sisodia R. Radioprotective Role of Grewia asiatica in Mice Blood. Pharmacologyonline 2007; 2: 32-43.
[205]
Sisodia R, Singh S, Sharma KV, Ahaskar M. Post treatment effect of Grewia asiatica against radiation-induced biochemical alterations in Swiss albino mice. J Environ Pathol Toxicol Oncol 2008; 27(2): 113-21.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v27.i2.40] [PMID: 18540847]
[206]
Sisodia R, Singh S. Biochemical, behavioural and quantitative alterations in cerebellum of Swiss albino mice following irradiation and its modulation by Grewia asiatica. Int J Radiat Biol 2009; 85(9): 787-95.
[http://dx.doi.org/10.1080/09553000903009555] [PMID: 19657863]
[207]
Sharma KV, Sisodia R. Evaluation of the free radical scavenging activity and radioprotective efficacy of Grewia asiatica fruit. J Radiol Prot 2009; 29(3): 429-43.
[http://dx.doi.org/10.1088/0952-4746/29/3/007] [PMID: 19690357]
[208]
Sisodia R, Ahaskar M, Sharma KV, Singh S. Modulation of radiation-induced biochemical changes in cerebrum of Swiss albino mice by Grewia Asiatica. Acta Neurobiol Exp (Warsz) 2008; 68(1): 32-8.
[PMID: 18389012]
[209]
Hossain M, Islam M, Akhtar S, Numan S. Nutritional value and medicinal uses of Monkey Jack fruit (Artocarpus lakoocha). Int Res J Biol Sci 2016; 5: 60-3.
[210]
Bishnoi S, Shinde R, Sarkar PK. Monkey Jack (Artocarpus lakoocha Roxb.): Hope for Sustaining Livelihood. . In: Dutta AK, Mondal B. (Eds.), Fruits for Livelihood: Production Technology and Management Practices Published by Agrobios (India), Jodhpur, India. 2017; 199-213.
[211]
Gautam P, Patel R. Artocarpus lakoocha roxb: An overview. European J Comp Alternative Med 2014; 1: 10-4.
[212]
Islam S, Hasan M, Bhutia S, Perween T, Munsi PS. Importance and potentiality of underutilized lakoocha (artocarpus lakoocha roxb) fruit of tripura. Int J Curr Microbiol Appl Sci 2018; 7(9): 3132-8.
[http://dx.doi.org/10.20546/ijcmas.2018.709.390]
[213]
Sarala P, Krishnamurthy SR. Monkey jack: Underutilized edible medicinal plant, nutritional attributes and traditional foods of Western Ghats, Karnataka, India. Indian J Tradit Knowl 2014; 13: 508-18.
[214]
Ahamad T, Khan M, Ansari W, Khan M. Antioxidant and anticancer activities of selected indian medicinal plant viz., artocarpus lakoocha, kigelia pinnata, and amaranthus viridis. Era’s J Med Res 2020; 7: 46-51.
[215]
Peng KT, Chiang YC, Ko HH, et al. Mechanism of lakoochin a inducing apoptosis of A375.S2 melanoma cells through mitochondrial ROS and MAPKs pathway. Int J Mol Sci 2018; 19(9): 19.
[http://dx.doi.org/10.3390/ijms19092649] [PMID: 30200660]
[216]
Lv T, Jian Z, Li D, Ao R, Zhang X, Yu B. Oxyresveratrol induces apoptosis and inhibits cell viability via inhibition of the STAT3 signaling pathway in Saos‑2 cells. Mol Med Rep 2020; 22(6): 5191-8.
[http://dx.doi.org/10.3892/mmr.2020.11591] [PMID: 33174060]
[217]
Rahman MA, Bishayee K, Sadra A, Huh SO. Oxyresveratrol activates parallel apoptotic and autophagic cell death pathways in neuroblastoma cells. Biochim Biophys Acta, Gen Subj 2017; 1861(2): 23-36.
[http://dx.doi.org/10.1016/j.bbagen.2016.10.025] [PMID: 27815218]
[218]
Radapong S, Chan K, Sarker SD, Ritchie KJ. Oxyresveratrol modulates genes associated with apoptosis, cell cycle control and DNA repair in MCF-7 cells. Front Pharmacol 2021; 12: 694562.
[http://dx.doi.org/10.3389/fphar.2021.694562] [PMID: 34305605]
[219]
Sunilkumar D, Drishya G, Chandrasekharan A, et al. Oxyresveratrol drives caspase-independent apoptosis-like cell death in MDA-MB-231 breast cancer cells through the induction of ROS. Biochem Pharmacol 2020; 173: 113724.
[http://dx.doi.org/10.1016/j.bcp.2019.113724] [PMID: 31756327]
[220]
Lin TA, Lin WS, Chou YC, Nagabhushanam K, Ho CT, Pan MH. Oxyresveratrol inhibits human colon cancer cell migration through regulating epithelial-mesenchymal transition and microRNA. Food Funct 2021; 12(20): 9658-68.
[http://dx.doi.org/10.1039/D1FO01920A] [PMID: 34664597]
[221]
Liu Y, Ren W, Bai Y, et al. Oxyresveratrol prevents murine H22 hepatocellular carcinoma growth and lymph node metastasis via inhibiting tumor angiogenesis and lymphangiogenesis. J Nat Med 2018; 72(2): 481-92.
[http://dx.doi.org/10.1007/s11418-018-1173-2] [PMID: 29350326]
[222]
Yazan SL, Armania N. Dillenia species: A review of the traditional uses, active constituents and pharmacological properties from pre-clinical studies. Pharm Biol 2014; 52(7): 890-7.
[http://dx.doi.org/10.3109/13880209.2013.872672] [PMID: 24766363]
[223]
Singh PA. A review update on dillenia indica f. elongata (MIQ.)MIQ. J Drug Deliv Ther 2016; 6: 62-70.
[224]
Alam MB, Ahmed A, Islam S, et al. Phytochemical characterization of dillenia indica l. bark by paper spray ionization-mass spectrometry and evaluation of its antioxidant potential against t-bhp-induced oxidative stress in RAW 264.7 cells. Antioxidants 2020; 9(11): 1099.
[http://dx.doi.org/10.3390/antiox9111099] [PMID: 33182315]
[225]
Parvin M, Rashid M. Chemical and biological investigations of Dillenia indica Linn. Bangladesh J Pharmacol 2009; 4: 122-5.
[226]
Padmavathi D, Deshpande N, Sarala A. Dillenia indica: A review on morphology, Phytochemistry and pharmacological aspects. Res J Pharm Technol 2011; 4: 1037-9.
[227]
Abdille MH, Singh R, Jayaprakasha G, Jena BS. Antioxidant activity of the extracts from Dillenia fruits. Food Chem 2005; 90(4): 891-6.
[http://dx.doi.org/10.1016/j.foodchem.2004.09.002]
[228]
Kandappa HR, Vadlamudi T, Kb N, Sarma PVGK, Ovs R. Studies on hepatoprotective effect of hexane extract of Dillenia indica against CCl4 induced toxicity and its safety evaluation in wistar albino rats. Res J Pharm Biol Chem Sci 2010; 1: 441-50.
[229]
Islam MM, Sifath-E-Jahan K. Antidiarrheal activity of dillenia indica bark extract. 2013; 682-8.
[230]
Kumar D, Mallick S, Vedasiromoni JR, Pal BC. Anti-leukemic activity of Dillenia indica L. fruit extract and quantification of betulinic acid by HPLC. Phytomedicine 2010; 17(6): 431-5.
[http://dx.doi.org/10.1016/j.phymed.2009.07.010] [PMID: 19679456]
[231]
Raghuvar Gopal DV, Narkar AA, Badrinath Y, Mishra KP, Joshi DS. Betulinic acid induces apoptosis in human chronic myelogenous leukemia (CML) cell line K-562 without altering the levels of Bcr-Abl. Toxicol Lett 2005; 155(3): 343-51.
[http://dx.doi.org/10.1016/j.toxlet.2004.06.015] [PMID: 15649617]
[232]
Li Y, He K, Huang Y, et al. Betulin induces mitochondrial cytochrome c release associated apoptosis in human cancer cells. Mol Carcinog 2010; 49(7): 630-40.
[http://dx.doi.org/10.1002/mc.20638] [PMID: 20564340]
[233]
Wu Q, He J, Fang J, Hong M. Antitumor effect of betulinic acid on human acute leukemia K562 cells in vitro. J Huazhong Univ Sci Technolog Med Sci 2010; 30(4): 453-7.
[http://dx.doi.org/10.1007/s11596-010-0448-y] [PMID: 20714869]
[234]
Aswathy M, Banik K, Parama D, et al. Exploring the cytotoxic effects of the extracts and bioactive triterpenoids from dillenia indica against oral squamous cell carcinoma: a scientific interpretation and validation of indigenous knowledge. ACS Pharmacol Transl Sci 2021; 4(2): 834-47.
[http://dx.doi.org/10.1021/acsptsci.1c00011] [PMID: 33860206]
[235]
Akter R, Uddin SJ, Grice ID, Tiralongo E. Cytotoxic activity screening of Bangladeshi medicinal plant extracts. J Nat Med 2014; 68(1): 246-52.
[http://dx.doi.org/10.1007/s11418-013-0789-5] [PMID: 23846168]
[236]
Singh G, Passsari AK, Leo VV, et al. Evaluation of phenolic content variability along with antioxidant, antimicrobial, and cytotoxic potential of selected traditional medicinal plants from India. Front Plant Sci 2016; 7: 407.
[http://dx.doi.org/10.3389/fpls.2016.00407] [PMID: 27066046]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy