Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Review on In Silico Methods, High-throughput Screening Techniques, and Cell Culture Based In Vitro Assays for SARS-CoV-2

Author(s): Yuksel Cetin*, Seyma Aydinlik*, Aysen Gungor, Tugce Kan, Timucin Avsar and Serdar Durdagi

Volume 29, Issue 38, 2022

Published on: 15 August, 2022

Page: [5925 - 5948] Pages: 24

DOI: 10.2174/0929867329666220627121416

Price: $65

Abstract

The COVID-19 outbreak caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to have high incidence and mortality rate globally. To meet the increasingly growing demand for new therapeutic drugs and vaccines, researchers are developing different diagnostic techniques focused on screening new drugs in clinical use, developing an antibody targeting a SARS-CoV-2 receptor, or interrupting infection/replication mechanisms of SARS-CoV-2. Although many prestigious research publications are addressing this subject, there is no open access platform where all experimental techniques for COVID-19 research can be seen as a whole. Many researchers have accelerated the development of in silico methods, high-throughput screening techniques, and in vitro assays. This development has played an important role in the emergence of improved, innovative strategies, including different antiviral drug development, new drug discovery protocols, combinations of approved drugs, and setting up new drug classes during the COVID-19 outbreak. Hence, the present review discusses the current literature on these modalities, including virtual in silico methods for instant ligand- and target-driven based techniques, nucleic acid amplification tests, and in vitro models based on sensitive cell cultures, tissue equivalents, organoids, and SARS-CoV-2 neutralization systems (lentiviral pseudotype, viral isolates, etc.). This pack of complementary tests informs researchers about the accurate, most relevant emerging techniques available and in vitro assays allow them to understand their strengths and limitations. This review could be a pioneer reference guide for the development of logical algorithmic approaches for new drugs and vaccine strategies against COVID-19.

Keywords: High-throughput screening, SARS-CoV-2, COVID-19, in vitro assay, in silico screening, drug repurposing.

[1]
Khoury, D.S.; Wheatley, A.K.; Ramuta, M.D.; Reynaldi, A.; Cromer, D.; Subbarao, K.; O’Connor, D.H.; Kent, S.J.; Davenport, M.P. Measuring immunity to SARS-CoV-2 infection: Comparing assays and animal models. Nat. Rev. Immunol., 2020, 20(12), 727-738.
[http://dx.doi.org/10.1038/s41577-020-00471-1] [PMID: 33139888]
[2]
Takayama, K. In vitro and animal models for SARS-CoV-2 research. Trends Pharmacol. Sci., 2020, 41(8), 513-517.
[http://dx.doi.org/10.1016/j.tips.2020.05.005] [PMID: 32553545]
[3]
Lundstrom, K. Coronavirus pandemic: Treatment and future prevention. Future Microbiol., 2020, 15(15), 1507-1521.
[http://dx.doi.org/10.2217/fmb-2020-0174] [PMID: 33140657]
[4]
Ou, X.; Liu, Y.; Lei, X.; Li, P.; Mi, D.; Ren, L.; Guo, L.; Guo, R.; Chen, T.; Hu, J.; Xiang, Z.; Mu, Z.; Chen, X.; Chen, J.; Hu, K.; Jin, Q.; Wang, J.; Qian, Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun., 2020, 11(1), 1620.
[http://dx.doi.org/10.1038/s41467-020-15562-9] [PMID: 32221306]
[5]
Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, 181(2), 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[6]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[7]
Duan, L.; Zheng, Q.; Zhang, H.; Niu, Y.; Lou, Y.; Wang, H. The SARS-CoV-2 spike glycoprotein biosynthesis, structure, function, and antigenicity: Implications for the design of spike-based vaccine immunogens. Front. Immunol., 2020, 11, 576622.
[http://dx.doi.org/10.3389/fimmu.2020.576622] [PMID: 33117378]
[8]
Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. J. Adv. Res., 2020, 24, 91-98.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[9]
Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. J. Virol., 2020, 94(7), e00127-20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[10]
Saied, E.M.; El-Maradny, Y.A.; Osman, A.A.; Darwish, A.M.G.; Abo Nahas, H.H.; Niedbała, G.; Piekutowska, M.; Abdel-Rahman, M.A.; Balbool, B.A.; Abdel-Azeem, A.M. A comprehensive review about the molecular structure of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Insights into natural products against COVID-19. Pharmaceutics, 2021, 13(11), 1759.
[http://dx.doi.org/10.3390/pharmaceutics13111759] [PMID: 34834174]
[11]
Malone, B.; Urakova, N.; Snijder, E.J.; Campbell, E.A. Structures and functions of coronavirus replication–transcription complexes and their relevance for SARS-CoV-2 drug design. Nat. Rev. Mol. Cell Biol., 2022, 23(1), 21-39.
[http://dx.doi.org/10.1038/s41580-021-00432-z] [PMID: 34824452]
[12]
Durdagi, S.; Aksoydan, B.; Dogan, B.; Sahin, K.; Shahraki, A.; Birgül-İyison, N. Screening of clinically approved and investigation drugs as potential inhibitors of SARS-CoV-2 main protease and spike receptor-binding domain bound with ACE2 COVID-19 target proteins: A virtual drug repurposing study. ChemRxiv, 2020.
[http://dx.doi.org/10.26434/chemrxiv.12032712.v2]
[13]
Khaldan, A.; Bouamrane, S.; En-Nahli, F.; El-mernissi, R.; El khatabi, K.; Hmamouchi, R.; Maghat, H.; Ajana, M.A.; Sbai, A.; Bouachrine, M.; Lakhlifi, T. Prediction of potential inhibitors of SARS-CoV-2 using 3D-QSAR, molecular docking modeling and ADMET properties. Heliyon, 2021, 7(3), e06603.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06603] [PMID: 33817388]
[14]
Pang, J.; Gao, S.; Sun, Z.; Yang, G. Discovery of small molecule PLpro inhibitor against COVID-19 using structure-based virtual screening, molecular dynamics simulation, and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) calculation. Struct. Chem., 2020, 1-8.
[http://dx.doi.org/10.1007/s11224-020-01665-y] [PMID: 33106741]
[15]
Joshi, T.; Joshi, T.; Sharma, P.; Mathpal, S.; Pundir, H.; Bhatt, V.; Chandra, S. In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(8), 4529-4536.
[http://dx.doi.org/10.26355/eurrev_202004_21036] [PMID: 32373991]
[16]
Ahmad, S.; Waheed, Y.; Ismail, S.; Bhatti, S.; Abbasi, S.W.; Muhammad, K. Structure-based virtual screening identifies multiple stable binding sites at the RecA domains of SARS-CoV-2 helicase enzyme. Molecules, 2021, 26(5), 1446.
[http://dx.doi.org/10.3390/molecules26051446] [PMID: 33800013]
[17]
Wu, Y.; Chang, K.Y.; Lou, L.; Edwards, L.G.; Doma, B.K.; Xie, Z.R. In silico identification of drug candidates against COVID-19. Informatics in Medicine Unlocked, 2020, 21, 100461.
[http://dx.doi.org/10.1016/j.imu.2020.100461] [PMID: 33102688]
[18]
Cava, C.; Bertoli, G.; Castiglioni, I. In silico discovery of candidate drugs against COVID-19. Viruses, 2020, 12(4), 404.
[http://dx.doi.org/10.3390/v12040404] [PMID: 32268515]
[19]
Cuesta, S.A.; Mora, J.R.; Márquez, E.A. In silico screening of the drugbank database to search for possible drugs against SARS-CoV-2. Molecules, 2021, 26(4), 1100.
[http://dx.doi.org/10.3390/molecules26041100] [PMID: 33669720]
[20]
White, M.A.; Lin, W.; Cheng, X. Discovery of COVID-19 inhibitors targeting the SARS-CoV-2 Nsp13 helicase. J. Phys. Chem. Lett., 2020, 11(21), 9144-9151.
[http://dx.doi.org/10.1021/acs.jpclett.0c02421] [PMID: 33052685]
[21]
Cavasotto, C.N.; Aucar, M.G. High-throughput docking using quantum mechanical scoring. Front Chem., 2020, 8(246), 246.
[http://dx.doi.org/10.3389/fchem.2020.00246] [PMID: 32373579]
[22]
Bharti, R.; Shukla, S.K. Molecules against COVID-19: An in silico approach for drug development. J. Electron. Sci. Technol., , 2021, 19(1), 100095.
[http://dx.doi.org/10.1016/j.jnlest.2021.100095]
[23]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from COVID-19 virus and discovery of its inhibitors. Nature, 2020, 582, 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[24]
Ray, M.; Sarkar, S.; Rath, S.N. Druggability for COVID-19: In silico discovery of potential drug compounds against nucleocapsid (N) protein of SARS-CoV-2. Genomics Inform., 2020, 18(4), e43.
[http://dx.doi.org/10.5808/GI.2020.18.4.e43] [PMID: 33412759]
[25]
Shah, B.; Modi, P.; Sagar, S.R. In silico studies on therapeutic agents for COVID-19: Drug repurposing approach. Life Sci., 2020, 252, 117652.
[http://dx.doi.org/10.1016/j.lfs.2020.117652] [PMID: 32278693]
[26]
Tachoua, W.; Kabrine, M.; Mushtaq, M.; Ul-Haq, Z. An in-silico evaluation of COVID-19 main protease with clinically approved drugs. J. Mol. Graph. Model., 2020, 101, 107758.
[http://dx.doi.org/10.1016/j.jmgm.2020.107758] [PMID: 33007575]
[27]
Taguchi, Y.; Turki, T. A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor decomposition-based unsupervised feature extraction. PLoS One, 2020, 15(9), e0238907.
[http://dx.doi.org/10.1371/journal.pone.0238907] [PMID: 32915876]
[28]
Chu, D.K.W.; Pan, Y.; Cheng, S.M.S.; Hui, K.P.Y.; Krishnan, P.; Liu, Y.; Ng, D.Y.M.; Wan, C.K.C.; Yang, P.; Wang, Q.; Peiris, M.; Poon, L.L.M. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin. Chem., 2020, 66(4), 549-555.
[http://dx.doi.org/10.1093/clinchem/hvaa029] [PMID: 32031583]
[29]
Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.W.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; Mulders, D.G.J.C.; Haagmans, B.L.; van der Veer, B.; van den Brink, S.; Wijsman, L.; Goderski, G.; Romette, J.L.; Ellis, J.; Zambon, M.; Peiris, M.; Goossens, H.; Reusken, C.; Koopmans, M.P.G.; Drosten, C. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill., 2020, 25(3)
[http://dx.doi.org/10.2807/1560-7917.ES.2020.25.3.2000045] [PMID: 31992387]
[30]
Chan, J.F.W.; Yip, C.C.Y.; To, K.K.W.; Tang, T.H.C.; Wong, S.C.Y.; Leung, K.H.; Fung, A.Y.F.; Ng, A.C.K.; Zou, Z.; Tsoi, H.W.; Choi, G.K.Y.; Tam, A.R.; Cheng, V.C.C.; Chan, K.H.; Tsang, O.T.Y.; Yuen, K.Y. Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-PCR assay validated in vitro and with clinical specimens. J. Clin. Microbiol., 2020, 58(5), e00310-20.
[http://dx.doi.org/10.1128/JCM.00310-20] [PMID: 32132196]
[31]
Ching, L.; Chang, S.P.; Nerurkar, V.R. COVID-19 special column: Principles behind the technology for detecting SARS-CoV-2, the cause of COVID-19. Hawaii J. Health Soc. Welf., 2020, 79(5), 136-142.
[PMID: 32432217]
[32]
Ushikubo, H. The principle of LAMP method-A simple and rapid gene amplification method. Uirusu, 2004, 54(1), 107-112.
[http://dx.doi.org/10.2222/jsv.54.107] [PMID: 15449911]
[33]
Dao Thi, V.L.; Herbst, K.; Boerner, K.; Meurer, M.; Kremer, L.P.M.; Kirrmaier, D.; Freistaedter, A.; Papagiannidis, D.; Galmozzi, C.; Stanifer, M.L.; Boulant, S.; Klein, S.; Chlanda, P.; Khalid, D.; Barreto Miranda, I.; Schnitzler, P.; Kräusslich, H.G.; Knop, M.; Anders, S. A colorimetric RT-LAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples. Sci. Transl. Med., 2020, 12(556), eabc7075.
[http://dx.doi.org/10.1126/scitranslmed.abc7075] [PMID: 32719001]
[34]
Wei, S.; Kohl, E.; Djandji, A.; Morgan, S.; Whittier, S.; Mansukhani, M.; Hod, E.; D’Alton, M.; Suh, Y.; Williams, Z. Direct diagnostic testing of SARS-CoV-2 without the need for prior RNA extraction. Sci. Rep., 2021, 11(1), 2402.
[http://dx.doi.org/10.1038/s41598-021-81487-y] [PMID: 33510181]
[35]
Broughton, J.P.; Deng, X.; Yu, G.; Fasching, C.L.; Servellita, V.; Singh, J.; Miao, X.; Streithorst, J.A.; Granados, A.; Sotomayor-Gonzalez, A.; Zorn, K.; Gopez, A.; Hsu, E.; Gu, W.; Miller, S.; Pan, C.Y.; Guevara, H.; Wadford, D.A.; Chen, J.S.; Chiu, C.Y. CRISPR–Cas12-based detection of SARS-CoV-2. Nat. Biotechnol., 2020, 38(7), 870-874.
[http://dx.doi.org/10.1038/s41587-020-0513-4] [PMID: 32300245]
[36]
Guo, L.; Sun, X.; Wang, X.; Liang, C.; Jiang, H.; Gao, Q.; Dai, M.; Qu, B.; Fang, S.; Mao, Y.; Chen, Y.; Feng, G.; Gu, Q.; Wang, R.R.; Zhou, Q.; Li, W. SARS-CoV-2 detection with CRISPR diagnostics. Cell Discov., 2020, 6(1), 34.
[http://dx.doi.org/10.1038/s41421-020-0174-y] [PMID: 32435508]
[37]
Rauch, J.N.; Valois, E.; Solley, S.C.; Braig, F.; Lach, R.S.; Audouard, M.; Ponce-Rojas, J.C.; Costello, M.S.; Baxter, N.J.; Kosik, K.S.; Arias, C.; Alvear, D.A.; Wilson, M.Z.A. A scalable, easy-to-deploy, protocol for Cas13-based detection of SARS-CoV-2 genetic material. J. Clin. Microbiol., 2021, 59(4), e02402-e02420.
[http://dx.doi.org/10.1128/JCM.02402-20]
[38]
Geurtsvankessel, C.H.; Okba, N.M.A.; Igloi, Z.; Embregts, C.W.E.; Laksono, B.M.; Leijten, L.; Rahamat-Langendoen, J.; van den Akker, J.P.C.; van Kampen, J.J.A.; van der Eijk, A.A.; Van Binnendijk, R.S.; Haagmans, B.; Koopmans, M. Towards the next phase: Evaluation of serological assays for diagnostics and exposure assessment. MedRxiv, 2020.
[http://dx.doi.org/10.1101/2020.04.23.20077156]
[39]
Harvala, H.; Robb, M.L.; Watkins, N.; Ijaz, S.; Dicks, S.; Patel, M.; Supasa, P.; Wanwisa, D.; Liu, C.; Mongkolsapaya, J.; Bown, A.; Bailey, D.; Vipond, R.; Grayson, N.; Temperton, N.; Gupta, S.; Ploeg, R.J.; Bolton, J.; Fyfe, A.; Gopal, R.; Simmonds, P.; Screaton, G.; Thompson, C.; Brooks, T.; Zambon, M.; Miflin, G.; Roberts, D.J. Convalescent plasma therapy for the treatment of patients with COVID-19: Assessment of methods available for antibody detection and their correlation with neutralising antibody levels. Transfus. Med., 2021, 31(3), 167-175.
[http://dx.doi.org/10.1111/tme.12746] [PMID: 33333627]
[40]
Premkumar, L.; Segovia-Chumbez, B.; Jadi, R.; Martinez, D.R.; Raut, R.; Markmann, A.J.; Cornaby, C.; Bartelt, L.; Weiss, S.; Park, Y.; Edwards, C.E.; Weimer, E.; Scherer, E.M.; Rouphael, N.; Edupuganti, S.; Weiskopf, D.; Tse, L.V.; Hou, Y.J.; Margolis, D.; Sette, A.; Collins, M.H.; Schmitz, J.; Baric, R.S.; de Silva, A.M. The receptor-binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Sci. Immunol., 2020, 5(48), eabc8413.
[http://dx.doi.org/10.1126/sciimmunol.abc8413] [PMID: 32527802]
[41]
Grzelak, L.; Temmam, S.; Planchais, C.; Demeret, C.; Tondeur, L.; Huon, C.; Guivel-Benhassine, F.; Staropoli, I.; Chazal, M.; Dufloo, J.; Planas, D.; Buchrieser, J.; Rajah, M.M.; Robinot, R.; Porrot, F.; Albert, M.; Chen, K.Y.; Crescenzo-Chaigne, B.; Donati, F.; Anna, F.; Souque, P.; Gransagne, M.; Bellalou, J.; Nowakowski, M.; Backovic, M.; Bouadma, L.; Le Fevre, L.; Le Hingrat, Q.; Descamps, D.; Pourbaix, A.; Laouénan, C.; Ghosn, J.; Yazdanpanah, Y.; Besombes, C.; Jolly, N.; Pellerin-Fernandes, S.; Cheny, O.; Ungeheuer, M.N.; Mellon, G.; Morel, P.; Rolland, S.; Rey, F.A.; Behillil, S.; Enouf, V.; Lemaitre, A.; Créach, M.A.; Petres, S.; Escriou, N.; Charneau, P.; Fontanet, A.; Hoen, B.; Bruel, T.; Eloit, M.; Mouquet, H.; Schwartz, O.; van der Werf, S. A comparison of four serological assays for detecting anti–SARS-CoV-2 antibodies in human serum samples from different populations. Sci. Transl. Med., 2020, 12(559), eabc3103.
[http://dx.doi.org/10.1126/scitranslmed.abc3103] [PMID: 32817357]
[42]
Hanson, Q.M.; Wilson, K.M.; Shen, M.; Itkin, Z.; Eastman, R.T.; Shinn, P.; Hall, M.D. Targeting ACE2–RBD interaction as a platform for COVID-19 therapeutics: Development and drug-repurposing screen of an AlphaLISA proximity assay. ACS Pharmacol. Transl. Sci., 2020, 3(6), 1352-1360.
[http://dx.doi.org/10.1021/acsptsci.0c00161] [PMID: 33330843]
[43]
Juraszek, J.; Rutten, L.; Blokland, S.; Bouchier, P.; Voorzaat, R.; Ritschel, T.; Bakkers, M.J.G.; Renault, L.L.R.; Langedijk, J.P.M. Stabilizing the closed SARS-CoV-2 spike trimer. Nat. Commun., 2021, 12(1), 244.
[http://dx.doi.org/10.1038/s41467-020-20321-x] [PMID: 33431842]
[44]
Wang, D.; He, S.; Wang, X.; Yan, Y.; Liu, J.; Wu, S.; Liu, S.; Lei, Y.; Chen, M.; Li, L.; Zhang, J.; Zhang, L.; Hu, X.; Zheng, X.; Bai, J.; Zhang, Y.; Zhang, Y.; Song, M.; Tang, Y. Rapid lateral flow immunoassay for the fluorescence detection of SARS-CoV-2 RNA. Nat. Biomed. Eng., 2020, 4(12), 1150-1158.
[http://dx.doi.org/10.1038/s41551-020-00655-z] [PMID: 33273714]
[45]
Serrano, M.M.; Rodríguez, D.N.; Palop, N.T.; Arenas, R.O.; Córdoba, M.M.; Mochón, M.D.O.; Cardona, C.G. Comparison of commercial lateral flow immunoassays and ELISA for SARS-CoV-2 antibody detection. J. Clin. Virol., 2020, 129, 104529.
[http://dx.doi.org/10.1016/j.jcv.2020.104529] [PMID: 32659710]
[46]
Yuen, C.K.; Lam, J.Y.; Wong, W.M.; Mak, L.F.; Wang, X.; Chu, H.; Cai, J.P.; Jin, D.Y.; To, K.K.W.; Chan, J.F.W.; Yuen, K.Y.; Kok, K.H. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerg. Microbes Infect., 2020, 9(1), 1418-1428.
[http://dx.doi.org/10.1080/22221751.2020.1780953] [PMID: 32529952]
[47]
Shu, T.; Huang, M.; Wu, D.; Ren, Y.; Zhang, X.; Han, Y.; Mu, J.; Wang, R.; Qiu, Y.; Zhang, D.Y.; Zhou, X. SARS-Coronavirus-2 Nsp13 possesses NTPase and RNA helicase activities that can be inhibited by bismuth salts. Virol. Sin., 2020, 35(3), 321-329.
[http://dx.doi.org/10.1007/s12250-020-00242-1] [PMID: 32500504]
[48]
Jang, K.J.; Jeong, S.; Kang, D.Y.; Sp, N.; Yang, Y.M.; Kim, D.E. A high ATP concentration enhances the cooperative translocation of the SARS coronavirus helicase nsP13 in the unwinding of duplex RNA. Sci. Rep., 2020, 10(1), 4481.
[http://dx.doi.org/10.1038/s41598-020-61432-1] [PMID: 32161317]
[49]
Dzimianski, J.V.; Lorig-Roach, N.; O’Rourke, S.M.; Alexander, D.L.; Kimmey, J.M.; DuBois, R.M. Rapid and sensitive detection of SARS-CoV-2 antibodies by biolayer interferometry. Sci. Rep., 2020, 10(1), 21738.
[http://dx.doi.org/10.1038/s41598-020-78895-x] [PMID: 33303951]
[50]
Tian, X.; Li, C.; Huang, A.; Xia, S.; Lu, S.; Shi, Z.; Lu, L.; Jiang, S.; Yang, Z.; Wu, Y.; Ying, T. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg. Microbes Infect., 2020, 9(1), 382-385.
[http://dx.doi.org/10.1080/22221751.2020.1729069] [PMID: 32065055]
[51]
Cui, F.; Zhou, H.S. Diagnostic methods and potential portable biosensors for coronavirus disease 2019. Biosens. Bioelectron., 2020, 165, 112349.
[http://dx.doi.org/10.1016/j.bios.2020.112349] [PMID: 32510340]
[52]
Yang, J.; Wang, W.; Chen, Z.; Lu, S.; Yang, F.; Bi, Z.; Bao, L.; Mo, F.; Li, X.; Huang, Y.; Hong, W.; Yang, Y.; Zhao, Y.; Ye, F.; Lin, S.; Deng, W.; Chen, H.; Lei, H.; Zhang, Z.; Luo, M.; Gao, H.; Zheng, Y.; Gong, Y.; Jiang, X.; Xu, Y.; Lv, Q.; Li, D.; Wang, M.; Li, F.; Wang, S.; Wang, G.; Yu, P.; Qu, Y.; Yang, L.; Deng, H.; Tong, A.; Li, J.; Wang, Z.; Yang, J.; Shen, G.; Zhao, Z.; Li, Y.; Luo, J.; Liu, H.; Yu, W.; Yang, M.; Xu, J.; Wang, J.; Li, H.; Wang, H.; Kuang, D.; Lin, P.; Hu, Z.; Guo, W.; Cheng, W.; He, Y.; Song, X.; Chen, C.; Xue, Z.; Yao, S.; Chen, L.; Ma, X.; Chen, S.; Gou, M.; Huang, W.; Wang, Y.; Fan, C.; Tian, Z.; Shi, M.; Wang, F.S.; Dai, L.; Wu, M.; Li, G.; Wang, G.; Peng, Y.; Qian, Z.; Huang, C.; Lau, J.Y.N.; Yang, Z.; Wei, Y.; Cen, X.; Peng, X.; Qin, C.; Zhang, K.; Lu, G.; Wei, X. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature, 2020, 586(7830), 572-577.
[http://dx.doi.org/10.1038/s41586-020-2599-8] [PMID: 32726802]
[53]
Qiu, G.; Gai, Z.; Tao, Y.; Schmitt, J.; Kullak-Ublick, G.A.; Wang, J. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano, 2020, 14(5), 5268-5277.
[http://dx.doi.org/10.1021/acsnano.0c02439] [PMID: 32281785]
[54]
Jatschka, J.; Dathe, A.; Csáki, A.; Fritzsche, W.; Stranik, O. Propagating and localized surface plasmon resonance sensing — A critical comparison based on measurements and theory. Sens. Biosensing Res., 2016, 7, 62-70.
[http://dx.doi.org/10.1016/j.sbsr.2016.01.003]
[55]
Mauriz, E. Recent progress in plasmonic biosensing schemes for virus detection. Sensors , 2020, 20(17), 4745.
[http://dx.doi.org/10.3390/s20174745] [PMID: 32842601]
[56]
Lei, Z.; Jian, M.; Li, X.; Wei, J.; Meng, X.; Wang, Z. Biosensors and bioassays for determination of matrix metalloproteinases: State of the art and recent advances. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(16), 3261-3291.
[http://dx.doi.org/10.1039/C9TB02189B] [PMID: 31750853]
[57]
Wang, C.; Wang, C.; Wang, X.; Wang, K.; Zhu, Y.; Rong, Z.; Wang, W.; Xiao, R.; Wang, S. Magnetic SERS strip for sensitive and simultaneous detection of respiratory viruses. ACS Appl. Mater. Interfaces, 2019, 11(21), 19495-19505.
[http://dx.doi.org/10.1021/acsami.9b03920] [PMID: 31058488]
[58]
Asif, M.; Ajmal, M.; Ashraf, G.; Muhammad, N.; Aziz, A.; Iftikhar, T.; Wang, J.; Liu, H. The role of biosensors in coronavirus disease-2019 outbreak. Curr. Opin. Electrochem., 2020, 23, 174-184.
[http://dx.doi.org/10.1016/j.coelec.2020.08.011] [PMID: 32984642]
[59]
Liang, K.H.; Chang, T.J.; Wang, M.L.; Tsai, P.H.; Lin, T.H.; Wang, C.T.; Yang, D.M. Novel biosensor platforms for the detection of coronavirus infection and severe acute respiratory syndrome coronavirus 2. J. Chin. Med. Assoc., 2020, 83(8), 701-703.
[http://dx.doi.org/10.1097/JCMA.0000000000000337] [PMID: 32349033]
[60]
Chen, S.; Chen, L.; Luo, H.; Sun, T.; Chen, J.; Ye, F.; Cai, J.; Shen, J.; Shen, X.; Jiang, H. Enzymatic activity characterization of SARS coronavirus 3C-like protease by fluorescence resonance energy transfer technique1. Acta Pharmacol. Sin., 2005, 26(1), 99-106.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00010.x] [PMID: 15659121]
[61]
Ma, C.; Sacco, M.D.; Hurst, B.; Townsend, J.A.; Hu, Y.; Szeto, T.; Zhang, X.; Tarbet, B.; Marty, M.T.; Chen, Y.; Wang, J. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res., 2020, 30(8), 678-692.
[http://dx.doi.org/10.1038/s41422-020-0356-z] [PMID: 32541865]
[62]
Barceló, D. Wastewater-based epidemiology to monitor COVID-19 outbreak: Present and future diagnostic methods to be in your radar. Case Studies in Chemical and Environmental Engineering, 2020, 2, 100042.
[http://dx.doi.org/10.1016/j.cscee.2020.100042]
[63]
Kang, B.; Lee, Y.; Lim, J.; Yong, D.; Ki Choi, Y.; Woo Yoon, S.; Seo, S.; Jang, S.; Uk Son, S.; Kang, T.; Jung, J.; Lee, K.S.; Kim, M.H.; Lim, E.K. FRET-based hACE2 receptor mimic peptide conjugated nanoprobe for simple detection of SARS-CoV-2. Chem. Eng. J., 2022, 442, 136143.
[http://dx.doi.org/10.1016/j.cej.2022.136143] [PMID: 35382003]
[64]
Seo, G.; Lee, G.; Kim, M.J.; Baek, S.H.; Choi, M.; Ku, K.B.; Lee, C.S.; Jun, S.; Park, D.; Kim, H.G.; Kim, S.J.; Lee, J.O.; Kim, B.T.; Park, E.C.; Kim, S.I. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano, 2020, 14(4), 5135-5142.
[http://dx.doi.org/10.1021/acsnano.0c02823] [PMID: 32293168]
[65]
Gupta, R.; Sagar, P.; Priyadarshi, N.; Kaul, S.; Sandhir, R.; Rishi, V.; Singhal, N.K. Nanotechnology-based approaches for the detection of SARS-CoV-2. Front. Nanote. dmol., , 2020, 2(6), 589832.
[http://dx.doi.org/10.3389/fnano.2020.589832]
[66]
Poljak, M.; Kocjan, B.J. Commercially available assays for multiplex detection of alpha human papillomaviruses. Expert Rev. Anti Infect. Ther., 2010, 8(10), 1139-1162.
[http://dx.doi.org/10.1586/eri.10.104] [PMID: 20954880]
[67]
Liu, J.; Jalali, M.; Mahshid, S.; Wachsmann-Hogiu, S. Are plasmonic optical biosensors ready for use in point-of-need applications? Analyst , 2020, 145(2), 364-384.
[http://dx.doi.org/10.1039/C9AN02149C] [PMID: 31832630]
[68]
Campbell, K.; Huet, A.C.; Charlier, C.; Higgins, C.; Delahaut, P.; Elliott, C.T. Comparison of ELISA and SPR biosensor technology for the detection of paralytic shellfish poisoning toxins. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(32), 4079-4089.
[http://dx.doi.org/10.1016/j.jchromb.2009.10.023] [PMID: 19926541]
[69]
Nguyen, H.; Park, J.; Kang, S.; Kim, M. Surface plasmon resonance: A versatile technique for biosensor applications. Sensors , 2015, 15(5), 10481-10510.
[http://dx.doi.org/10.3390/s150510481] [PMID: 25951336]
[70]
Liu, J.; Cao, R.; Xu, M.; Wang, X.; Zhang, H.; Hu, H.; Li, Y.; Hu, Z.; Zhong, W.; Wang, M. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov., 2020, 6(1), 16.
[http://dx.doi.org/10.1038/s41421-020-0156-0] [PMID: 32194981]
[71]
Zost, S.J.; Gilchuk, P.; Case, J.B.; Binshtein, E.; Chen, R.E.; Nkolola, J.P.; Schäfer, A.; Reidy, J.X.; Trivette, A.; Nargi, R.S.; Sutton, R.E.; Suryadevara, N.; Martinez, D.R.; Williamson, L.E.; Chen, E.C.; Jones, T.; Day, S.; Myers, L.; Hassan, A.O.; Kafai, N.M.; Winkler, E.S.; Fox, J.M.; Shrihari, S.; Mueller, B.K.; Meiler, J.; Chandrashekar, A.; Mercado, N.B.; Steinhardt, J.J.; Ren, K.; Loo, Y.M.; Kallewaard, N.L.; McCune, B.T.; Keeler, S.P.; Holtzman, M.J.; Barouch, D.H.; Gralinski, L.E.; Baric, R.S.; Thackray, L.B.; Diamond, M.S.; Carnahan, R.H.; Crowe, J.E., Jr Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature, 2020, 584(7821), 443-449.
[http://dx.doi.org/10.1038/s41586-020-2548-6] [PMID: 32668443]
[72]
Amanat, F.; White, K.M.; Miorin, L.; Strohmeier, S.; McMahon, M.; Meade, P.; Liu, W.C.; Albrecht, R.A.; Simon, V.; Martinez-Sobrido, L.; Moran, T.; García-Sastre, A.; Krammer, F. An in vitro microneutralization assay for SARS-CoV-2 serology and drug screening. Curr. Protoc. Microbiol., 2020, 58(1), e108.
[http://dx.doi.org/10.1002/cpmc.108] [PMID: 32585083]
[73]
Tan, C.W.; Chia, W.N.; Qin, X.; Liu, P.; Chen, M.I.C.; Tiu, C.; Hu, Z.; Chen, V.C.W.; Young, B.E.; Sia, W.R.; Tan, Y.J.; Foo, R.; Yi, Y.; Lye, D.C.; Anderson, D.E.; Wang, L.F. A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2–spike protein–protein interaction. Nat. Biotechnol., 2020, 38(9), 1073-1078.
[http://dx.doi.org/10.1038/s41587-020-0631-z] [PMID: 32704169]
[74]
Abe, K.T.; Li, Z.; Samson, R.; Samavarchi-Tehrani, P.; Valcourt, E.J.; Wood, H.; Budylowski, P.; Dupuis, A.P., II; Girardin, R.C.; Rathod, B.; Wang, J.H.; Barrios-Rodiles, M.; Colwill, K.; McGeer, A.J.; Mubareka, S.; Gommerman, J.L.; Durocher, Y.; Ostrowski, M.; McDonough, K.A.; Drebot, M.A.; Drews, S.J.; Rini, J.M.; Gingras, A.C. A simple protein-based surrogate neutralization assay for SARS-CoV-2. JCI Insight, 2020, 5(19), e142362.
[http://dx.doi.org/10.1172/jci.insight.142362] [PMID: 32870820]
[75]
Roy, V.; Fischinger, S.; Atyeo, C.; Slein, M.; Loos, C.; Balazs, A.; Luedemann, C.; Astudillo, M.G.; Yang, D.; Wesemann, D.R.; Charles, R.; Lafrate, A.J.; Feldman, J.; Hauser, B.; Caradonna, T.; Miller, T.E.; Murali, M.R.; Baden, L.; Nilles, E.; Ryan, E.; Lauffenburger, D.; Beltran, W.G.; Alter, G. SARS-CoV-2-specific ELISA development. J. Immunol. Methods, 2020, 484-485, 112832.
[http://dx.doi.org/10.1016/j.jim.2020.112832] [PMID: 32780998]
[76]
Xie, X.; Muruato, A.; Lokugamage, K.G.; Narayanan, K.; Zhang, X.; Zou, J.; Liu, J.; Schindewolf, C.; Bopp, N.E.; Aguilar, P.V.; Plante, K.S.; Weaver, S.C.; Makino, S.; LeDuc, J.W.; Menachery, V.D.; Shi, P.Y. An infectious cDNA clone of SARS-CoV-2. Cell Host Microbe, 2020, 27(5), 841-848.e3.
[http://dx.doi.org/10.1016/j.chom.2020.04.004] [PMID: 32289263]
[77]
Muruato, A. E.; Fontes-Garfias, C. R.; Ren, P.; Garcia-Blanco, M. A.; Menachery, V. D.; Xie, X.; Shi, P.-Y.A. High-throughput neutralizing antibody assay for COVID-19 diagnosis and vaccine evaluation. Nat. Commun., 2020, 11(1), 4059.
[http://dx.doi.org/10.1038/s41467-020-17892-0]
[78]
Perera, R.A.P.M.; Mok, C.K.P.; Tsang, O.T.Y.; Lv, H.; Ko, R.L.W.; Wu, N.C.; Yuan, M.; Leung, W.S.; Chan, J.M.C.; Chik, T.S.H.; Choi, C.Y.C.; Leung, K.; Chan, K.H.; Chan, K.C.K.; Li, K.C.; Wu, J.T.; Wilson, I.A.; Monto, A.S.; Poon, L.L.M.; Peiris, M. Serological assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), March 2020. Euro Surveill., 2020, 25(16), pii 2000-421.
[http://dx.doi.org/10.2807/1560-7917.ES.2020.25.16.2000421] [PMID: 32347204]
[79]
Zhu, Y.; Yu, D.; Yan, H.; Chong, H.; He, Y. Design of potent membrane fusion inhibitors against SARS-CoV-2, an emerging coronavirus with high fusogenic activity. J. Virol., 2020, 94(14), e00635-20.
[http://dx.doi.org/10.1128/JVI.00635-20] [PMID: 32376627]
[80]
Nie, J.; Li, Q.; Wu, J.; Zhao, C.; Hao, H.; Liu, H.; Zhang, L.; Nie, L.; Qin, H.; Wang, M.; Lu, Q.; Li, X.; Sun, Q.; Liu, J.; Fan, C.; Huang, W.; Xu, M.; Wang, Y. Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2. Emerg. Microbes Infect., 2020, 9(1), 680-686.
[http://dx.doi.org/10.1080/22221751.2020.1743767] [PMID: 32207377]
[81]
Manenti, A.; Maggetti, M.; Casa, E.; Martinuzzi, D.; Torelli, A.; Trombetta, C.M.; Marchi, S.; Montomoli, E. Evaluation of SARS-CoV-2 neutralizing antibodies using a CPE-based colorimetric live virus micro-neutralization assay in human serum samples. J. Med. Virol., 2020, 92(10), 2096-2104.
[http://dx.doi.org/10.1002/jmv.25986] [PMID: 32383254]
[82]
Chu, H.; Chan, J.F.W.; Yuen, T.T.T.; Shuai, H.; Yuan, S.; Wang, Y.; Hu, B.; Yip, C.C.Y.; Tsang, J.O.L.; Huang, X.; Chai, Y.; Yang, D.; Hou, Y.; Chik, K.K.H.; Zhang, X.; Fung, A.Y.F.; Tsoi, H.W.; Cai, J.P.; Chan, W.M.; Ip, J.D.; Chu, A.W.H.; Zhou, J.; Lung, D.C.; Kok, K.H.; To, K.K.W.; Tsang, O.T.Y.; Chan, K.H.; Yuen, K.Y. Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: An observational study. Lancet Microbe, 2020, 1(1), e14-e23.
[http://dx.doi.org/10.1016/S2666-5247(20)30004-5] [PMID: 32835326]
[83]
Harcourt, J.; Tamin, A.; Lu, X.; Kamili, S.; Sakthivel, S.K.; Murray, J.; Queen, K.; Tao, Y.; Paden, C.R.; Zhang, J.; Li, Y.; Uehara, A.; Wang, H.; Goldsmith, C.; Bullock, H.A.; Wang, L.; Whitaker, B.; Lynch, B.; Gautam, R.; Schindewolf, C.; Lokugamage, K.G.; Scharton, D.; Plante, J.A.; Mirchandani, D.; Widen, S.G.; Narayanan, K.; Makino, S.; Ksiazek, T.G.; Plante, K.S.; Weaver, S.C.; Lindstrom, S.; Tong, S.; Menachery, V.D.; Thornburg, N.J. Isolation and characterization of SARS-CoV-2 from the first US COVID-19 patient. BioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.03.02.972935]
[84]
Matsuyama, S.; Nagata, N.; Shirato, K.; Kawase, M.; Takeda, M.; Taguchi, F. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J. Virol., 2010, 84(24), 12658-12664.
[http://dx.doi.org/10.1128/JVI.01542-10] [PMID: 20926566]
[85]
Lancaster, M.A.; Knoblich, J.A. Organogenesis in a dish: Modeling development and disease using organoid technologies. Science , 2014, 345(6194), 1247125.
[http://dx.doi.org/10.1126/science.1247125]
[86]
Monteil, V.; Kwon, H.; Prado, P.; Hagelkrüys, A.; Wimmer, R.A.; Stahl, M.; Leopoldi, A.; Garreta, E.; Hurtado del Pozo, C.; Prosper, F.; Romero, J.P.; Wirnsberger, G.; Zhang, H.; Slutsky, A.S.; Conder, R.; Montserrat, N.; Mirazimi, A.; Penninger, J.M. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell, 2020, 181(4), 905-913.e7.
[http://dx.doi.org/10.1016/j.cell.2020.04.004] [PMID: 32333836]
[87]
Leng, Z.; Zhu, R.; Hou, W.; Feng, Y.; Yang, Y.; Han, Q.; Shan, G.; Meng, F.; Du, D.; Wang, S.; Fan, J.; Wang, W.; Deng, L.; Shi, H.; Li, H.; Hu, Z.; Zhang, F.; Gao, J.; Liu, H.; Li, X.; Zhao, Y.; Yin, K.; He, X.; Gao, Z.; Wang, Y.; Yang, B.; Jin, R.; Stambler, I.; Lim, L.W.; Su, H.; Moskalev, A.; Cano, A.; Chakrabarti, S.; Min, K.J.; Ellison-Hughes, G.; Caruso, C.; Jin, K.; Zhao, R.C. Transplantation of ACE2- mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis., 2020, 11(2), 216-228.
[http://dx.doi.org/10.14336/AD.2020.0228] [PMID: 32257537]
[88]
Bari, E.; Ferrarotti, I.; Saracino, L.; Perteghella, S.; Torre, M.L.; Corsico, A.G. Mesenchymal stromal cell secretome for severe COVID-19 infections: Premises for the therapeutic use. Cells, 2020, 9(4), 924.
[http://dx.doi.org/10.3390/cells9040924] [PMID: 32283815]
[89]
Lanzoni, G.; Linetsky, E.; Correa, D.; Messinger Cayetano, S.; Alvarez, R.A.; Kouroupis, D.; Alvarez Gil, A.; Poggioli, R.; Ruiz, P.; Marttos, A.C.; Hirani, K.; Bell, C.A.; Kusack, H.; Rafkin, L.; Baidal, D.; Pastewski, A.; Gawri, K.; Leñero, C.; Mantero, A.M.A.; Metalonis, S.W.; Wang, X.; Roque, L.; Masters, B.; Kenyon, N.S.; Ginzburg, E.; Xu, X.; Tan, J.; Caplan, A.I.; Glassberg, M.K.; Alejandro, R.; Ricordi, C. Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: A double-blind, phase 1/2a, randomized controlled trial. Stem Cells Transl. Med., 2021, 10(5), 660-673.
[http://dx.doi.org/10.1002/sctm.20-0472] [PMID: 33400390]
[90]
Hashemian, S.M.R.; Aliannejad, R.; Zarrabi, M.; Soleimani, M.; Vosough, M.; Hosseini, S.E.; Hossieni, H.; Keshel, S.H.; Naderpour, Z.; Hajizadeh-Saffar, E.; Shajareh, E.; Jamaati, H.; Soufi-Zomorrod, M.; Khavandgar, N.; Alemi, H.; Karimi, A.; Pak, N.; Rouzbahani, N.H.; Nouri, M.; Sorouri, M.; Kashani, L.; Madani, H.; Aghdami, N.; Vasei, M.; Baharvand, H. Mesenchymal stem cells derived from perinatal tissues for treatment of critically ill COVID-19-induced ARDS patients: A case series. Stem Cell Res. Ther., 2021, 12(1), 91.
[http://dx.doi.org/10.1186/s13287-021-02165-4] [PMID: 33514427]
[91]
Chen, J.; Hu, C.; Chen, L.; Tang, L.; Zhu, Y.; Xu, X.; Chen, L.; Gao, H.; Lu, X.; Yu, L.; Dai, X.; Xiang, C.; Li, L. Clinical study of mesenchymal stem cell treatment for acute respiratory distress syndrome induced by epidemic influenza A (H7N9) infection: A hint for COVID-19 treatment. Engineering , 2020, 6(10), 1153-1161.
[http://dx.doi.org/10.1016/j.eng.2020.02.006] [PMID: 32292627]
[92]
Sha, Y.; Wu, Y.; Cao, Z.; Xu, X.; Wu, W.; Jiang, D.; Mao, X.; Liu, H.; Zhu, Y.; Gong, R.; Li, W. A convenient cell fusion assay for the study of SARS-CoV entry and inhibition. IUBMB Life, 2006, 58(8), 480-486.
[http://dx.doi.org/10.1080/15216540600820974] [PMID: 16916786]
[93]
Xia, S.; Liu, M.; Wang, C.; Xu, W.; Lan, Q.; Feng, S.; Qi, F.; Bao, L.; Du, L.; Liu, S.; Qin, C.; Sun, F.; Shi, Z.; Zhu, Y.; Jiang, S.; Lu, L. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res., 2020, 30(4), 343-355.
[http://dx.doi.org/10.1038/s41422-020-0305-x] [PMID: 32231345]
[94]
Mirabelli, C.; Wotring, J.W.; Zhang, C.J.; McCarty, S.M.; Fursmidt, R.; Pretto, C.D.; Qiao, Y.; Zhang, Y.; Frum, T.; Kadambi, N.S.; Amin, A.T.; O’Meara, T.R.; Spence, J.R.; Huang, J.; Alysandratos, K.D.; Kotton, D.N.; Handelman, S.K.; Wobus, C.E.; Weatherwax, K.J.; Mashour, G.A.; O’Meara, M.J.; Chinnaiyan, A.M.; Sexton, J.Z.; Mashour, G.A.; O’Meara, M.J.; Chinnaiyan, A.M.; Sexton, J.Z. Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19. Proc. Natl. Acad. Sci. , 2021, 118(36), e2105815118.
[http://dx.doi.org/10.1073/pnas.2105815118] [PMID: 34413211]
[95]
de Melo, B.A.G.; Benincasa, J.C.; Cruz, E.M.; Maricato, J.T.; Porcionatto, M.A. 3D culture models to study SARS-CoV-2 infectivity and antiviral candidates: From spheroids to bioprinting. Biomed. J., 2021, 44(1), 31-42.
[http://dx.doi.org/10.1016/j.bj.2020.11.009] [PMID: 33602633]
[96]
Gu, L.; Schneller, S.W.; Li, Q. Assays for the identification of novel antivirals against bluetongue virus. J. Vis. Exp., 2013, (80), e50-820.
[http://dx.doi.org/10.3791/50820] [PMID: 24145313]
[97]
Wang, S.; Chou, T.W.; Sakhatskyy, P.V.; Huang, S.; Lawrence, J.M.; Cao, H.; Huang, X.; Lu, S. Identification of two neutralizing regions on the severe acute respiratory syndrome coronavirus spike glycoprotein produced from the mammalian expression system. J. Virol., 2005, 79(3), 1906-1910.
[http://dx.doi.org/10.1128/JVI.79.3.1906-1910.2005] [PMID: 15650214]
[98]
Zhang, Y.; Sun, H.; Pei, R.; Mao, B.; Zhao, Z.; Li, H.; Lin, Y.; Lu, K. The SARS-CoV-2 protein ORF3a inhibits fusion of autophagosomes with lysosomes. Cell Discov., 2021, 7(1), 31.
[http://dx.doi.org/10.1038/s41421-021-00268-z] [PMID: 33947832]
[99]
Sargazi, S.; Sheervalilou, R.; Rokni, M.; Shirvaliloo, M.; Shahraki, O.; Rezaei, N. The role of autophagy in controlling SARS-CoV-2 infection: An overview on virophagy-mediated molecular drug targets. Cell Biol. Int., 2021, 45(8), 1599-1612.
[http://dx.doi.org/10.1002/cbin.11609] [PMID: 33818861]
[100]
Gorshkov, K.; Chen, C.Z.; Bostwick, R.; Rasmussen, L.; Xu, M.; Pradhan, M.; Tran, B.N.; Zhu, W.; Shamim, K.; Huang, W.; Hu, X.; Shen, M.; Klumpp-Thomas, C.; Itkin, Z.; Shinn, P.; Simeonov, A.; Michael, S.; Hall, M.D.; Lo, D.C.; Zheng, W. The SARS-CoV-2 cytopathic effect is blocked with autophagy modulators. BioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.05.16.091520]
[101]
Gomez Marti, J.L.; Wells, A.; Brufsky, A.M. Dysregulation of the mevalonate pathway during SARS-CoV-2 infection: An in silico study. J. Med. Virol., 2021, 93(4), 2396-2405.
[http://dx.doi.org/10.1002/jmv.26743] [PMID: 33331649]
[102]
Choi, Y.; Bowman, J.W.; Jung, J.U. Autophagy during viral infection — a double-edged sword. Nat. Rev. Microbiol., 2018, 16(6), 341-354.
[http://dx.doi.org/10.1038/s41579-018-0003-6] [PMID: 29556036]
[103]
A, F.D. Hydroxychloroquine or chloroquine for COVID-19: Drug safety communication - FDA cautions against use outside of the hospital setting or a clinical trial due to risk of heart rhythm problems. Available from: https://www.fda.gov/safety/medical-product-safety-information/hydroxychloroquine-or-chloroquine-COVID-19-drug-safety-communication-fda-cautions-against-use
[104]
Shojaei, S.; Suresh, M.; Klionsky, D.J.; Labouta, H.I.; Ghavami, S. Autophagy and SARS-CoV-2 infection: A possible smart targeting of the autophagy pathway. Virulence, 2020, 11(1), 805-810.
[http://dx.doi.org/10.1080/21505594.2020.1780088] [PMID: 32567972]
[105]
Liu, X.; Drelich, A.; Li, W.; Chen, C.; Sun, Z.; Shi, M.; Adams, C.; Mellors, J.W.; Tseng, C.T.; Dimitrov, D.S. Enhanced elicitation of potent neutralizing antibodies by the SARS-CoV-2 spike receptor binding domain Fc fusion protein in mice. Vaccine, 2020, 38(46), 7205-7212.
[http://dx.doi.org/10.1016/j.vaccine.2020.09.058] [PMID: 33010978]
[106]
Gassen, N.C.; Papies, J.; Bajaj, T.; Dethloff, F.; Emanuel, J.; Weckmann, K.; Heinz, D.E.; Heinemann, N.; Lennarz, M.; Richter, A.; Niemeyer, D.; Corman, V.M.; Giavalisco, P.; Drosten, C.; Müller, M.A. Analysis of SARS-CoV-2- controlled autophagy reveals spermidine, MK-2206, and niclosamide as putative antiviral therapeutics. BioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.04.15.997254]
[107]
Hayn, M.; Hirschenberger, M.; Koepke, L.; Nchioua, R.; Straub, J.H.; Klute, S.; Hunszinger, V.; Zech, F.; Prelli Bozzo, C.; Aftab, W.; Christensen, M.H.; Conzelmann, C.; Müller, J.A.; Srinivasachar Badarinarayan, S.; Stürzel, C.M.; Forne, I.; Stenger, S.; Conzelmann, K.K.; Münch, J.; Schmidt, F.I.; Sauter, D.; Imhof, A.; Kirchhoff, F.; Sparrer, K.M.J. Systematic functional analysis of SARS-CoV-2 proteins uncovers viral innate immune antagonists and remaining vulnerabilities. Cell Rep., 2021, 35(7), 109126.
[http://dx.doi.org/10.1016/j.celrep.2021.109126] [PMID: 33974846]
[108]
Randhawa, P.K.; Scanlon, K.; Rappaport, J.; Gupta, M.K. Modulation of autophagy by SARS-CoV-2: A potential threat for cardiovascular system. Front. Physiol., 2020, 11, 611275.
[http://dx.doi.org/10.3389/fphys.2020.611275] [PMID: 33329064]
[109]
Timiryasova, T.M.; Bonaparte, M.I.; Luo, P.; Zedar, R.; Hu, B.T.; Hildreth, S.W. Optimization and validation of a plaque reduction neutralization test for the detection of neutralizing antibodies to four serotypes of dengue virus used in support of dengue vaccine development. Am. J. Trop. Med. Hyg., 2013, 88(5), 962-970.
[http://dx.doi.org/10.4269/ajtmh.12-0461] [PMID: 23458954]
[110]
Padoan, A.; Bonfante, F.; Sciacovelli, L.; Cosma, C.; Basso, D.; Plebani, M. Evaluation of an ELISA for SARS-CoV-2 antibody testing: Clinical performances and correlation with plaque reduction neutralization titer. Clin. Chem. Lab. Med., 2020, 58(11), e247-e249.
[http://dx.doi.org/10.1515/cclm-2020-1096] [PMID: 32772001]
[111]
Tang, X.C.; Agnihothram, S.S.; Jiao, Y.; Stanhope, J.; Graham, R.L.; Peterson, E.C.; Avnir, Y.; Tallarico, A.S.C.; Sheehan, J.; Zhu, Q.; Baric, R.S.; Marasco, W.A. Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution. Proc. Natl. Acad. Sci. , 2014, 111(19), E2018-E2026.
[http://dx.doi.org/10.1073/pnas.1402074111] [PMID: 24778221]
[112]
Millet, J.K.; Tang, T.; Nathan, L.; Jaimes, J.A.; Hsu, H.L.; Daniel, S.; Whittaker, G.R. Production of pseudotyped particles to study highly pathogenic coronaviruses in a biosafety level 2 setting. J. Vis. Exp., 2019, (145), e59010.
[http://dx.doi.org/10.3791/59010] [PMID: 30882796]
[113]
Sinn, P.L.; Coffin, J.E.; Ayithan, N.; Holt, K.H.; Maury, W. Lentiviral Vectors Pseudotyped with Filoviral Glycoproteins; Springer: New York. 2017, 1628.
[http://dx.doi.org/10.1007/978-1-4939-7116-9_5]
[114]
Li, W.; Drelich, A.; Martinez, D.R.; Gralinski, L.; Chen, C.; Sun, Z.; Schäfer, A.; Leist, S.R.; Liu, X.; Zhelev, D.; Zhang, L.; Peterson, E.C.; Conard, A.; Mellors, J.W.; Tseng, C-T.; Baric, R.S.; Dimitrov, D.S. Rapid selection of a human monoclonal antibody that potently neutralizes SARS-CoV-2 in two animal models. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.05.13.093088]
[115]
Wu, X.; Mao, Q.; Yao, X.; Chen, P.; Chen, X.; Shao, J.; Gao, F.; Yu, X.; Zhu, F.; Li, R.; Li, W.; Liang, Z.; Wang, J.; Lu, F. Development and evaluation of a pseudovirus-luciferase assay for rapid and quantitative detection of neutralizing antibodies against enterovirus 71. PLoS One, 2013, 8(6), e64116.
[http://dx.doi.org/10.1371/journal.pone.0064116] [PMID: 23755115]
[116]
Lei, C.; Qian, K.; Li, T.; Zhang, S.; Fu, W.; Ding, M.; Hu, S. Neutralization of SARS-CoV-2 spike pseudotyped virus by recombinant ACE2-Ig. Nat. Commun., 2020, 11(1), 2070.
[http://dx.doi.org/10.1038/s41467-020-16048-4] [PMID: 32332765]
[117]
Schmidt, F.; Weisblum, Y.; Muecksch, F.; Hoffmann, H.H.; Michailidis, E.; Lorenzi, J.C.C.; Mendoza, P.; Rutkowska, M.; Bednarski, E.; Gaebler, C.; Agudelo, M.; Cho, A.; Wang, Z.; Gazumyan, A.; Cipolla, M.; Caskey, M.; Robbiani, D.F.; Nussenzweig, M.C.; Rice, C.M.; Hatziioannou, T.; Bieniasz, P.D. Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. J. Exp. Med., 2020, 217(11), e20201181.
[http://dx.doi.org/10.1084/jem.20201181] [PMID: 32692348]
[118]
Xiong, H.L.; Wu, Y.T.; Cao, J.L.; Yang, R.; Liu, Y.X.; Ma, J.; Qiao, X.Y.; Yao, X.Y.; Zhang, B.H.; Zhang, Y.L.; Hou, W.H.; Shi, Y.; Xu, J.J.; Zhang, L.; Wang, S.J.; Fu, B.R.; Yang, T.; Ge, S.X.; Zhang, J.; Yuan, Q.; Huang, B.Y.; Li, Z.Y.; Zhang, T.Y.; Xia, N.S. Robust neutralization assay based on SARS-CoV-2 S-protein-bearing vesicular stomatitis virus (VSV) pseudovirus and ACE2-overexpressing BHK21 cells. Emerg. Microbes Infect., 2020, 9(1), 2105-2113.
[http://dx.doi.org/10.1080/22221751.2020.1815589] [PMID: 32893735]
[119]
Letko, M.; Marzi, A.; Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol., 2020, 5(4), 562-569.
[http://dx.doi.org/10.1038/s41564-020-0688-y] [PMID: 32094589]
[120]
Crawford, K.H.D.; Eguia, R.; Dingens, A.S.; Loes, A.N.; Malone, K.D.; Wolf, C.R.; Chu, H.Y.; Tortorici, M.A.; Veesler, D.; Murphy, M.; Pettie, D.; King, N.P.; Balazs, A.B.; Bloom, J.D. Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 spike protein for neutralization assays. Viruses, 2022, 94, 1641-1649.
[http://dx.doi.org/10.3390/v12050513] [PMID: 32384820]
[121]
Kumar, S.; Thambiraja, T.S.; Karuppanan, K.; Subramaniam, G. Omicron and delta variant of SARS-CoV-2: A comparative computational study of spike protein. J. Med. Virol., 2022, 94, 1641-1649.
[http://dx.doi.org/10.1002/jmv.27526] [PMID: 34914115]
[122]
Raman, R.; Patel, K.J.; Ranjan, K. COVID-19: Unmasking emerging SARS-CoV-2 variants, vaccines and therapeutic strategies. Biomolecules, 2021, 11(7), 993.
[http://dx.doi.org/10.3390/biom11070993] [PMID: 34356617]
[123]
Callaway, E. Beyond Omicron: What’s next for COVID’s viral evolution. Nature, 2021, 600(7888), 204-207.
[http://dx.doi.org/10.1038/d41586-021-03619-8] [PMID: 34876665]
[124]
European Centre for Disease Prevention. Methods for the Detection and Identification of SARS-CoV-2 Variants, March 2021; World Health Organization: Regional Office for Europe, 2021. Available from: https://apps.who.int/iris/handle/10665/340067

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy