Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Current Applications and Benefits of Polymeric Nanocarriers for the Management of Skin Disorders

Author(s): Maria Bernadete Riemma Pierre*

Volume 29, Issue 38, 2022

Published on: 02 August, 2022

Page: [5949 - 5964] Pages: 16

DOI: 10.2174/0929867329666220525141021

Price: $65

conference banner
Abstract

Preparations for topical application are highly important for therapeutic and cosmetic use since the skin has an extensive and accessible application area. Among the many advantages, this route avoids the systemic effects of the substances and, therefore, fewer adverse reactions are observed. However, the skin is an organ with a remarkable barrier effect, which can compromise the administration of pharmacologically / cosmetologically active molecules. Thus, the skin permeability of substances is a challenge that is only achieved through the preparation of formulations capable of overcoming that same barrier. Nanotechnology was introduced in the pharmaceutical and cosmetic areas to enable the development of systems for the delivery of substances and the optimization of already existing formulations. Among the several benefits and advantages of nanotechnology for topical application is the increased penetration of the drug in the skin, the improvement of the stability of the active, decrease in the active substances (reducing the possible toxic effects and allergic reactions caused by the high concentration of these compounds), and even the intensification of the drug action. This manuscript reviews the topical delivery technologies based on polymeric nanocarriers (PNC) as nanoparticles (NP) and nanogels (NG) and their benefits for better efficacy in most common cutaneous disorders. It starts with skin properties, the aspects for the penetration of active ingredients in the skin and cutaneous penetration challenges, followed by a summary of strategies for skin penetration/permeation of drugs. Then, the focus of the current research was to review NPs and NGs explored for skin disorders management published during the last years.

Keywords: Polymeric nanocarriers, cutaneous delivery, topical application, skin disorders, nanogels, nanoparticles.

[1]
Friedman, A. Nanodermatology: The giant role of nanotechnology in diagnosis and treatment of skin disease. In: Nanomedicine in Drug Delivery; CRC Press: USA, 2013; pp. 90-113.
[2]
Uchechi, O.; Ogbonna, J.D.; Attama, A.A. Nanoparticles for dermal and transdermal drug delivery. Appl. Nanotechnol. Drug Deliv., 2014, 4, 193-227.
[http://dx.doi.org/10.5772/58672]
[3]
Papakostas, D.; Rancan, F.; Sterry, W.; Blume-Peytavi, U.; Vogt, A. Nanoparticles in dermatology. Arch. Dermatol. Res., 2011, 303(8), 533-550.
[http://dx.doi.org/10.1007/s00403-011-1163-7] [PMID: 21837474]
[4]
Gupta, M.; Agrawal, U.; Vyas, S.P. Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opin. Drug Deliv., 2012, 9(7), 783-804.
[http://dx.doi.org/10.1517/17425247.2012.686490] [PMID: 22559240]
[5]
Vanić, Ž. Phospholipid vesicles for enhanced drug delivery in dermatology. J. Drug Discov. Develop. Deliv., 2015, 2(1), 1-9.
[6]
Zhang, Z.; Tsai, P.C.; Ramezanli, T.; Michniak-Kohn, B.B. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2013, 5(3), 205-218.
[http://dx.doi.org/10.1002/wnan.1211] [PMID: 23386536]
[7]
Ng, K.W.; Lau, W.M. Skin deep: The basics of human skin structure and drug penetration. In: Percutaneous penetration enhancers chemical methods in penetration enhancement; Springer: Berlin, Heidelberg, 2015; pp. 3-11.
[http://dx.doi.org/10.1007/978-3-662-45013-0_1]
[8]
Hadgraft, J.; Lane, M.E. Skin: The ultimate interface. Phys. Chem. Chem. Phys., 2011, 13(12), 5215-5222.
[http://dx.doi.org/10.1039/c0cp02943b] [PMID: 21350740]
[9]
Bolzinger, M.A.; Briançon, S.; Pelletier, J.; Chevalier, Y. Penetration of drugs through skin, a complex rate-controlling membrane. Curr. Opin. Colloid Interface Sci., 2012, 17(3), 156-165.
[http://dx.doi.org/10.1016/j.cocis.2012.02.001]
[10]
Korinth, G.; Wellner, T.; Schaller, K.H.; Drexler, H. Potential of the octanol-water partition coefficient (logP) to predict the dermal penetration behaviour of amphiphilic compounds in aqueous solutions. Toxicol. Lett., 2012, 215(1), 49-53.
[http://dx.doi.org/10.1016/j.toxlet.2012.09.013] [PMID: 23026264]
[11]
Prow, T.W.; Grice, J.E.; Lin, L.L.; Faye, R.; Butler, M.; Becker, W.; Wurm, E.M.; Yoong, C.; Robertson, T.A.; Soyer, H.P.; Roberts, M.S. Nanoparticles and microparticles for skin drug delivery. Adv. Drug Deliv. Rev., 2011, 63(6), 470-491.
[http://dx.doi.org/10.1016/j.addr.2011.01.012] [PMID: 21315122]
[12]
Lademann, J.; Richter, H.; Schanzer, S.; Knorr, F.; Meinke, M.; Sterry, W.; Patzelt, A. Penetration and storage of particles in human skin: Perspectives and safety aspects. Eur. J. Pharm. Biopharm., 2011, 77(3), 465-468.
[http://dx.doi.org/10.1016/j.ejpb.2010.10.015] [PMID: 21056659]
[13]
Yu, Z.; Meng, X.; Zhang, S.; Chen, Y.; Zhang, Z.; Zhang, Y. Recent progress in transdermal nanocarriers and their surface modifications. Molecules, 2021, 26(11), 3093.
[http://dx.doi.org/10.3390/molecules26113093] [PMID: 34064297]
[14]
Elmowafy, M. Skin penetration/permeation success determinants of nanocarriers: Pursuit of a perfect formulation. Colloids Surf. B Biointerfaces, 2021, 203, 111748.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111748] [PMID: 33853001]
[15]
Lane, M.E. Skin penetration enhancers. Int. J. Pharm., 2013, 447(1-2), 12-21.
[http://dx.doi.org/10.1016/j.ijpharm.2013.02.040] [PMID: 23462366]
[16]
Karadzovska, D.; Brooks, J.D.; Monteiro-Riviere, N.A.; Riviere, J.E. Predicting skin permeability from complex vehicles. Adv. Drug Deliv. Rev., 2013, 65(2), 265-277.
[http://dx.doi.org/10.1016/j.addr.2012.01.019] [PMID: 22342772]
[17]
Law, R.M.; Ngo, M.A.; Maibach, H.I. Twenty clinically pertinent factors/observations for percutaneous absorption in humans. Am. J. Clin. Dermatol., 2020, 21(1), 85-95.
[http://dx.doi.org/10.1007/s40257-019-00480-4] [PMID: 31677110]
[18]
Dąbrowska, A.K.; Spano, F.; Derler, S.; Adlhart, C.; Spencer, N.D.; Rossi, R.M. The relationship between skin function, barrier properties, and body-dependent factors. Skin Res. Technol., 2018, 24(2), 165-174.
[http://dx.doi.org/10.1111/srt.12424] [PMID: 29057509]
[19]
Goyal, R.; Macri, L.K.; Kaplan, H.M.; Kohn, J. Nanoparticles and nanofibers for topical drug delivery. J. Control. Release, 2016, 240, 77-92.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.049] [PMID: 26518723]
[20]
Zoabi, A.; Touitou, E.; Margulis, K. Recent advances in nanomaterials for dermal and transdermal applications. Colloids and Interfaces, 2021, 5(1), 18.
[http://dx.doi.org/10.3390/colloids5010018]
[21]
Crucho, C.I.C.; Barros, M.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater. Sci. Eng. C, 2017, 80, 771-784.
[http://dx.doi.org/10.1016/j.msec.2017.06.004] [PMID: 28866227]
[22]
Zhou, X.; Hao, Y.; Yuan, L.; Pradhan, S.; Shrestha, K.; Pradhan, O.; Liu, H.; Li, W. Nano-formulations for transdermal drug delivery: A review. Chin. Chem. Lett., 2018, 29(12), 1713-1724.
[http://dx.doi.org/10.1016/j.cclet.2018.10.037]
[23]
Barua, S.; Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today, 2014, 9(2), 223-243.
[http://dx.doi.org/10.1016/j.nantod.2014.04.008] [PMID: 25132862]
[24]
Iqbal, B.; Ali, J.; Baboota, S. Recent advances and development in epidermal and dermal drug deposition enhancement technology. Int. J. Dermatol., 2018, 57(6), 646-660.
[http://dx.doi.org/10.1111/ijd.13902] [PMID: 29430629]
[25]
Zhang, H.; Zhai, Y.; Wang, J.; Zhai, G. New progress and prospects: The application of nanogel in drug delivery. Mater. Sci. Eng. C, 2016, 60, 560-568.
[http://dx.doi.org/10.1016/j.msec.2015.11.041] [PMID: 26706564]
[26]
Çelebi, N.; Ermiş, S.; Özkan, S. Development of topical hydrogels of terbinafine hydrochloride and evaluation of their antifungal activity. Drug Dev. Ind. Pharm., 2015, 41(4), 631-639.
[http://dx.doi.org/10.3109/03639045.2014.891129] [PMID: 24576265]
[27]
Li, Y.; Maciel, D.; Rodrigues, J.; Shi, X.; Tomás, H. Biodegradable polymer nanogels for drug/nucleic acid delivery. Chem. Rev., 2015, 115(16), 8564-8608.
[http://dx.doi.org/10.1021/cr500131f] [PMID: 26259712]
[28]
Javadzadeh, Y.; Bahari, L.A. Therapeutic nanostructures for dermal and transdermal drug delivery. In: Nano-and Microscale Drug Delivery Systems; Elsevier, 2017; pp. 131-146.
[http://dx.doi.org/10.1016/B978-0-323-52727-9.00008-X]
[29]
Dorwal, D. Nanogels as novel and versatile pharmaceuticals. Int. J. Pharm. Pharm. Sci., 2012, 4, 67-74.
[30]
Cuggino, J.C.; Blanco, E.R.O.; Gugliotta, L.M.; Alvarez Igarzabal, C.I.; Calderón, M. Crossing biological barriers with nanogels to improve drug delivery performance. J. Control. Release, 2019, 307, 221-246.
[http://dx.doi.org/10.1016/j.jconrel.2019.06.005] [PMID: 31175895]
[31]
Zaenglein, A.L. Acne Vulgaris. N. Engl. J. Med., 2018, 379(14), 1343-1352.
[http://dx.doi.org/10.1056/NEJMcp1702493] [PMID: 30281982]
[32]
Latter, G.; Grice, J.E.; Mohammed, Y.; Roberts, M.S.; Benson, H.A.E. Targeted topical delivery of retinoids in the management of acne vulgaris: Current formulations and novel delivery systems. Pharmaceutics, 2019, 11(10), 490.
[http://dx.doi.org/10.3390/pharmaceutics11100490] [PMID: 31554188]
[33]
Patel, R.; Prabhu, P. Nanocarriers as versatile delivery systems for effective management of acne. Int. J. Pharm., 2020, 579, 119140.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119140] [PMID: 32061843]
[34]
Verma, S.; Utreja, P.; Kumar, L. Nanotechnological carriers for treatment of acne. Recent Patents Anti-Infect. Drug Disc., 2018, 13(2), 105-126.
[http://dx.doi.org/10.2174/1574891X13666180918114349] [PMID: 30227825]
[35]
Reis, C.P.; Martinho, N.; Rosado, C.; Fernandes, A.S.; Roberto, A. Design of polymeric nanoparticles and its applications as drug delivery systems for acne treatment. Drug Dev. Ind. Pharm., 2014, 40(3), 409-417.
[http://dx.doi.org/10.3109/03639045.2013.767826] [PMID: 23480566]
[36]
Domínguez-Delgado, C.L.; Rodríguez-Cruz, I.M.; Escobar-Chávez, J.J.; Calderón-Lojero, I.O.; Quintanar-Guerrero, D.; Ganem, A. Preparation and characterization of triclosan nanoparticles intended to be used for the treatment of acne. Eur. J. Pharm. Biopharm., 2011, 79(1), 102-107.
[http://dx.doi.org/10.1016/j.ejpb.2011.01.017] [PMID: 21295142]
[37]
Tolentino, S.; Pereira, M.N.; Cunha-Filho, M.; Gratieri, T.; Gelfuso, G.M. Targeted clindamycin delivery to pilosebaceous units by chitosan or hyaluronic acid nanoparticles for improved topical treatment of acne vulgaris. Carbohydr. Polym., 2021, 253(253), 117295.
[http://dx.doi.org/10.1016/j.carbpol.2020.117295] [PMID: 33278954]
[38]
Reis, C.P.; Gomes, A.; Rijo, P.; Candeias, S.; Pinto, P.; Baptista, M.; Martinho, N.; Ascensão, L. Development and evaluation of a novel topical treatment for acne with azelaic acid-loaded nanoparticles. Microsc. Microanal., 2013, 19(5), 1141-1150.
[http://dx.doi.org/10.1017/S1431927613000536] [PMID: 23673203]
[39]
Abd-Allah, H.; Abdel-Aziz, R.T.A.; Nasr, M. Chitosan nanoparticles making their way to clinical practice: A feasibility study on their topical use for acne treatment. Int. J. Biol. Macromol., 2020, 156, 262-270.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.040] [PMID: 32289418]
[40]
Pan-In, P.; Wongsomboon, A.; Kokpol, C.; Chaichanawongsaroj, N.; Wanichwecharungruang, S. Depositing α-mangostin nanoparticles to sebaceous gland area for acne treatment. J. Pharmacol. Sci., 2015, 129(4), 226-232.
[http://dx.doi.org/10.1016/j.jphs.2015.11.005] [PMID: 26701606]
[41]
Ramezanli, T.; Zhang, Z.; Michniak-Kohn, B.B. Development and characterization of polymeric nanoparticle-based formulation of adapalene for topical acne therapy. Nanomedicine, 2017, 13(1), 143-152.
[http://dx.doi.org/10.1016/j.nano.2016.08.008] [PMID: 27565687]
[42]
Ramezanli, T.; Michniak-Kohn, B.B. Development and characterization of a topical gel formulation of adapalene-tyrospheres and assessment of its clinical efficacy. Mol. Pharm., 2018, 15(9), 3813-3822.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00318] [PMID: 29996653]
[43]
Sallam, M.A.; Marín Boscá, M.T. Mechanistic analysis of human skin distribution and follicular targeting of adapalene-loaded biodegradable Nanospheres with an insight into hydrogel matrix influence, in vitro skin irritation, and in vivo tolerability. J. Pharm. Sci., 2017, 106(10), 3140-3149.
[http://dx.doi.org/10.1016/j.xphs.2017.05.038] [PMID: 28603018]
[44]
Friedman, A.J.; Phan, J.; Schairer, D.O.; Champer, J.; Qin, M.; Pirouz, A.; Blecher-Paz, K.; Oren, A.; Liu, P.T.; Modlin, R.L.; Kim, J. Antimicrobial and anti-inflammatory activity of chitosan-alginate nanoparticles: A targeted therapy for cutaneous pathogens. J. Invest. Dermatol., 2013, 133(5), 1231-1239.
[http://dx.doi.org/10.1038/jid.2012.399] [PMID: 23190896]
[45]
Chandrashekhar, B.S.; Anitha, M.; Ruparelia, M.; Vaidya, P.; Aamir, R.; Shah, S.; Thilak, S.; Aurangabadkar, S.; Pal, S.; Saraswat, A.; Sanmukhani, J.J. Tretinoin nanogel 0.025% versus conventional gel 0.025% in patients with acne vulgaris: A randomized, active controlled, multicentre, parallel group, phase IV clinical trial. J. Clin. Diagn. Res., 2015, 9(1), WC04-WC09.
[http://dx.doi.org/10.7860/JCDR/2015/10663.5469] [PMID: 25738069]
[46]
Parekh, K.; Mehta, T.A.; Dhas, N.; Kumar, P.; Popat, A. Emerging nanomedicines for the treatment of atopic dermatitis. AAPS PharmSciTech, 2021, 22(2), 55.
[http://dx.doi.org/10.1208/s12249-021-01920-3] [PMID: 33486609]
[47]
Yu, K.; Wang, Y.; Wan, T.; Zhai, Y.; Cao, S.; Ruan, W.; Wu, C.; Xu, Y. Tacrolimus nanoparticles based on chitosan combined with nicotinamide: Enhancing percutaneous delivery and treatment efficacy for atopic dermatitis and reducing dose. Int. J. Nanomedicine, 2017, 13, 129-142.
[http://dx.doi.org/10.2147/IJN.S150319] [PMID: 29317821]
[48]
Siddique, M.I.; Katas, H.; Amin, M.C.I.M.; Ng, S.F.; Zulfakar, M.H.; Jamil, A. In-vivo dermal pharmacokinetics, efficacy, and safety of skin targeting nanoparticles for corticosteroid treatment of atopic dermatitis. Int. J. Pharm., 2016, 507(1-2), 72-82.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.005] [PMID: 27154252]
[49]
Pandey, M.; Choudhury, H.; Gunasegaran, T.A.P.; Nathan, S.S.; Md, S.; Gorain, B.; Tripathy, M.; Hussain, Z. Hyaluronic acid-modified betamethasone encapsulated polymeric nanoparticles: Fabrication, characterisation, in vitro release kinetics, and dermal targeting. Drug Deliv. Transl. Res., 2019, 9(2), 520-533.
[http://dx.doi.org/10.1007/s13346-018-0480-1] [PMID: 29488170]
[50]
Rosado, C.; Silva, C.; Reis, C.P. Hydrocortisone-loaded poly(ε-caprolactone) nanoparticles for atopic dermatitis treatment. Pharm. Dev. Technol., 2013, 18(3), 710-718.
[http://dx.doi.org/10.3109/10837450.2012.712537] [PMID: 22889124]
[51]
Zhuo, F.; Abourehab, M.A.S.; Hussain, Z. Hyaluronic acid decorated tacrolimus-loaded nanoparticles: Efficient approach to maximize dermal targeting and anti-dermatitis efficacy. Carbohydr. Polym., 2018, 197, 478-489.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.023] [PMID: 30007638]
[52]
Hussain, Z.; Katas, H.; Mohd Amin, M.C.; Kumolosasi, E.; Sahudin, S. Downregulation of immunological mediators in 2,4-dinitrofluorobenzene-induced atopic dermatitis-like skin lesions by hydrocortisone-loaded chitosan nanoparticles. Int. J. Nanomedicine, 2014, 9, 5143-5156.
[PMID: 25395851]
[53]
Jung, S.M.; Yoon, G.H.; Lee, H.C.; Jung, M.H.; Yu, S.I.; Yeon, S.J.; Min, S.K.; Kwon, Y.S.; Hwang, J.H.; Shin, H.S. Thermodynamic insights and conceptual design of skin-sensitive chitosan coated ceramide/plga nanodrug for regeneration of stratum corneum on atopic dermatitis. Sci. Rep., 2015, 5(1), 18089.
[http://dx.doi.org/10.1038/srep18089] [PMID: 26666701]
[54]
Hussain, Z.; Katas, H.; Amin, M.C.I.M.; Kumulosasi, E.; Sahudin, S. Antidermatitic perspective of hydrocortisone as chitosan nanocarriers: An ex vivo and in vivo assessment using an NC/Nga mouse model. J. Pharm. Sci., 2013, 102(3), 1063-1075.
[http://dx.doi.org/10.1002/jps.23446] [PMID: 23303620]
[55]
Hussain, Z.; Katas, H.; Mohd Amin, M.C.; Kumolosasi, E.; Buang, F.; Sahudin, S. Self-assembled polymeric nanoparticles for percutaneous co-delivery of hydrocortisone/hydroxytyrosol: An ex vivo and in vivo study using an NC/Nga mouse model. Int. J. Pharm., 2013, 444(1-2), 109-119.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.024] [PMID: 23337632]
[56]
Siddique, M.I.; Katas, H.; Amin, M.C.I.M.; Ng, S.F.; Zulfakar, M.H.; Buang, F.; Jamil, A. Minimization of local and systemic adverse effects of topical glucocorticoids by nanoencapsulation: In vivo safety of hydrocortisone–hydroxytyrosol loaded chitosan nanoparticles. J. Pharm. Sci., 2015, 104(12), 4276-4286.
[http://dx.doi.org/10.1002/jps.24666] [PMID: 26447747]
[57]
Siddique, M.I.; Katas, H.; Jamil, A.; Mohd Amin, M.C.I.; Ng, S.F.; Zulfakar, M.H.; Nadeem, S.M. Potential treatment of atopic dermatitis: Tolerability and safety of cream containing nanoparticles loaded with hydrocortisone and hydroxytyrosol in human subjects. Drug Deliv. Transl. Res., 2019, 9(2), 469-481.
[http://dx.doi.org/10.1007/s13346-017-0439-7] [PMID: 29159691]
[58]
Md, S.; Kuldeep Singh, J.K.A.; Waqas, M.; Pandey, M.; Choudhury, H.; Habib, H.; Hussain, F.; Hussain, Z. Nanoencapsulation of betamethasone valerate using high pressure homogenization-solvent evaporation technique: Optimization of formulation and process parameters for efficient dermal targeting. Drug Dev. Ind. Pharm., 2019, 45(2), 323-332.
[http://dx.doi.org/10.1080/03639045.2018.1542704] [PMID: 30404554]
[59]
Shah, P.P.; Desai, P.R.; Patel, A.R.; Singh, M.S. Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs. Biomaterials, 2012, 33(5), 1607-1617.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.011] [PMID: 22118820]
[60]
Nett, J.E.; Andes, D.R. Antifungal agents: Spectrum of activity, pharmacology, and clinical indications. Infect. Dis. Clin. North Am., 2016, 30(1), 51-83.
[http://dx.doi.org/10.1016/j.idc.2015.10.012] [PMID: 26739608]
[61]
Ashley, E.S.D.; Lewis, R.; Lewis, J.S.; Martin, C.; Andes, D. Pharmacology of systemic antifungal agents. Clin. Infect. Dis., 2006, 43(Suppl. 1), S28-S39.
[http://dx.doi.org/10.1086/504492]
[62]
Glujoy, M.; Salerno, C.; Bregni, C.; Carlucci, A.M. Percutaneous drug delivery systems for improving antifungal therapy effectiveness: A review. Int. J. Pharm. Pharm. Sci., 2014, 6, 8-16.
[63]
Soliman, G.M. Nanoparticles as safe and effective delivery systems of antifungal agents: Achievements and challenges. Int. J. Pharm., 2017, 523(1), 15-32.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.019] [PMID: 28323096]
[64]
Flores, F.C.; Rosso, R.S.; Cruz, L.; Beck, R.C.; Silva, C.B. An innovative polysaccharide nanobased nail formulation for improvement of onychomycosis treatment. Eur. J. Pharm. Sci., 2017, 100, 56-63.
[http://dx.doi.org/10.1016/j.ejps.2016.12.043] [PMID: 28063967]
[65]
Jaromin, A.; Zarnowski, R.; Piętka-Ottlik, M.; Andes, D.R.; Gubernator, J. Topical delivery of ebselen encapsulated in biopolymeric nanocapsules: Drug repurposing enhanced antifungal activity. Nanomedicine (Lond.), 2018, 13(10), 1139-1155.
[http://dx.doi.org/10.2217/nnm-2017-0337] [PMID: 29873597]
[66]
Wang, F.; Yang, P.; Choi, J.S.; Antovski, P.; Zhu, Y.; Xu, X.; Kuo, T.H.; Lin, L.E.; Kim, D.N.H.; Huang, P.C.; Xu, H.; Lee, C.F.; Wang, C.; Hsu, C.C.; Chen, K.; Weiss, P.S.; Tseng, H.R. Cross-linked fluorescent supramolecular nanoparticles for intradermal controlled release of antifungal drug—A therapeutic approach for onychomycosis. ACS Nano, 2018, 12(7), 6851-6859.
[http://dx.doi.org/10.1021/acsnano.8b02099] [PMID: 29851454]
[67]
Paralikar, P. Fabrication of ketoconazole nanoparticles and their activity against Malassezia furfur. Nusantara Biosci., 2015, 7(1), 2-15.
[68]
Farooq, U.; Rasul, A.; Sher, M.; Qadir, M.I.; Nazir, I.; Mehmood, Y.; Riaz, H.; Shah, P.A.; Jamil, Q.A.; Khan, B.A. Development, characterization and evaluation of anti-fungal activity of miconazole based nanogel prepared from biodegradable polymer. Pak. J. Pharm. Sci., 2020, 33(1(Special)), 449-457.
[PMID: 32173643]
[69]
de Carvalho, S.Y.B.; Almeida, R.R.; Pinto, N.A.R.; de Mayrinck, C.; Vieira, S.S.; Haddad, J.F.; Leitão, A.A.; Guimarães, L.G.L. Encapsulation of essential oils using cinnamic acid grafted chitosan nanogel: Preparation, characterization and antifungal activity. Int. J. Biol. Macromol., 2021, 166(166), 902-912.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.247] [PMID: 33147435]
[70]
Rajput, R.L.; Narkhede, J.S.; Mujumdar, A.; Naik, J.B. Synthesis and evaluation of luliconazole loaded biodegradable nanogels prepared by pH-responsive Poly (acrylic acid) grafted Sodium Carboxymethyl Cellulose using amine based cross linker for topical targeting: In vitro and ex vivo assessment. Polymer-Plastics Technol. Mater., 2020, 59(15), 1654-1666.
[http://dx.doi.org/10.1080/25740881.2020.1759633]
[71]
Aljuffali, A; Huang, CH.; Fang, J.Y. Nanomedical strategies for targeting skin microbiomes. Current Drug Metabolism, 2015, 16(4), 255-271.
[72]
Salatin, S.; Lotfipour, F.; Jelvehgari, M. A brief overview on nano-sized materials used in the topical treatment of skin and soft tissue bacterial infections. Expert Opin. Drug Deliv., 2019, 16(12), 1313-1331.
[http://dx.doi.org/10.1080/17425247.2020.1693998] [PMID: 31738622]
[73]
Blecher, K.; Nasir, A.; Friedman, A. The growing role of nanotechnology in combating infectious disease. Virulence, 2011, 2(5), 395-401.
[http://dx.doi.org/10.4161/viru.2.5.17035] [PMID: 21921677]
[74]
Valizadeh, H.; Mohammadi, G.; Ehyaei, R.; Milani, M.; Azhdarzadeh, M.; Zakeri-Milani, P.; Lotfipour, F. Antibacterial activity of clarithromycin loaded PLGA nanoparticles. Pharmazie, 2012, 67(1), 63-68.
[PMID: 22393833]
[75]
Hasan, N.; Cao, J.; Lee, J.; Hlaing, S.P.; Oshi, M.A.; Naeem, M.; Ki, M.H.; Lee, B.L.; Jung, Y.; Yoo, J.W. Bacteria-targeted clindamycin loaded polymeric nanoparticles: Effect of surface charge on nanoparticle adhesion to MRSA, antibacterial activity, and wound healing. Pharmaceutics, 2019, 11(5), 236.
[http://dx.doi.org/10.3390/pharmaceutics11050236] [PMID: 31096709]
[76]
Ong, T.H.; Chitra, E.; Ramamurthy, S.; Ling, C.C.S.; Ambu, S.P.; Davamani, F. Cationic chitosan-propolis nanoparticles alter the zeta potential of S. epidermidis, inhibit biofilm formation by modulating gene expression and exhibit synergism with antibiotics. PLoS One, 2019, 14(2), e0213079.
[http://dx.doi.org/10.1371/journal.pone.0213079] [PMID: 30818374]
[77]
Han, C.; Goodwine, J.; Romero, N.; Steck, K.S.; Sauer, K.; Doiron, A. Enzyme-encapsulating polymeric nanoparticles: A potential adjunctive therapy in Pseudomonas aeruginosa biofilm-associated infection treatment. Colloids Surf. B Biointerfaces, 2019, 184, 110512.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110512] [PMID: 31563809]
[78]
Takahashi, C.; Hattori, Y.; Yagi, S.; Murai, T.; Takai, C.; Ogawa, N.; Tanemura, M.; Fuji, M.; Kawashima, Y.; Yamamoto, H. Optimization of ionic liquid-incorporated PLGA nanoparticles for treatment of biofilm infections. Mater. Sci. Eng. C, 2019, 97, 78-83.
[http://dx.doi.org/10.1016/j.msec.2018.11.079] [PMID: 30678968]
[79]
Montanari, E.; Mancini, P.; Galli, F.; Varani, M.; Santino, I.; Coviello, T.; Mosca, L.; Matricardi, P.; Rancan, F.; Di Meo, C. Biodistribution and intracellular localization of hyaluronan and its nanogels. A strategy to target intracellular S. aureus in persistent skin infections. J. Control. Release, 2020, 326, 1-12.
[http://dx.doi.org/10.1016/j.jconrel.2020.06.007] [PMID: 32553788]
[80]
Kłodzińska, S.N.; Pletzer, D.; Rahanjam, N.; Rades, T.; Hancock, R.E.W.; Nielsen, H.M. Hyaluronic acid-based nanogels improve in vivo compatibility of the anti-biofilm peptide DJK-5. Nanomedicine, 2019, 20, 102022.
[http://dx.doi.org/10.1016/j.nano.2019.102022] [PMID: 31170510]
[81]
Anjum, S.; Gupta, A.; Sharma, D.; Dalal, P.; Gupta, B. Skin compatibility and antimicrobial studies on biofunctionalized polypropylene fabric. Mater. Sci. Eng. C, 2016, 69, 1043-1050.
[http://dx.doi.org/10.1016/j.msec.2016.08.009] [PMID: 27612801]
[82]
Claesen, J. Topical antiseptics and the skin microbiota. J. Invest. Dermatol., 2018, 138(10), 2106-2107.
[http://dx.doi.org/10.1016/j.jid.2018.06.001] [PMID: 30244719]
[83]
McDonnell, G.E. Antisepsis, Disinfection, and Sterilization: Types, Action, and Resistance; ASM Press: Washington, DC, USA, 2007.
[http://dx.doi.org/10.1128/9781555816445]
[84]
Hoang, T.P.N.; Ghori, M.U.U.; Conway, B.R. Topical antiseptic formulations for skin and soft tissue infections. Pharmaceutics, 2021, 13(4), 558.
[http://dx.doi.org/10.3390/pharmaceutics13040558] [PMID: 33921124]
[85]
Lee, J.D.; Lee, J.Y.; Kwack, S.J.; Shin, C.Y.; Jang, H.J.; Kim, H.Y.; Kim, M.K.; Seo, D.W.; Lee, B.M.; Kim, K.B. Risk assessment of triclosan, a cosmetic preservative. Toxicol. Res., 2019, 35(2), 137-154.
[http://dx.doi.org/10.5487/TR.2019.35.2.137] [PMID: 31015896]
[86]
De Marchi, J.G.B.; Jornada, D.S.; Silva, F.K.; Freitas, A.L.; Fuentefria, A.M.; Pohlmann, A.R.; Guterres, S.S. Triclosan resistance reversion by encapsulation in chitosan-coated-nanocapsule containing α-bisabolol as core: Development of wound dressing. Int. J. Nanomedicine, 2017, 12, 7855-7868.
[http://dx.doi.org/10.2147/IJN.S143324] [PMID: 29123398]
[87]
Wais, U.; Nawrath, M.M.; Jackson, A.W.; Zhang, H. Triclosan nanoparticles via emulsion-freeze-drying for enhanced antimicrobial activity. Colloid Polym. Sci., 2018, 296(5), 951-960.
[http://dx.doi.org/10.1007/s00396-018-4312-0]
[88]
Davachi, S.M.; Kaffashi, B. Preparation and characterization of poly l-lactide/triclosan nanoparticles for specific antibacterialand medical applications. Int. J. Polym. Mater., 2015, 64(10), 497-508.
[http://dx.doi.org/10.1080/00914037.2014.977897]
[89]
Flores, F.C.; de Lima, J.A.; Ribeiro, R.F.; Alves, S.H.; Rolim, C.M.B.; Beck, R.C.R.; da Silva, C.B. Antifungal activity of nanocapsule suspensions containing tea tree oil on the growth of Trichophyton rubrum. Mycopathologia, 2013, 175(3-4), 281-286.
[http://dx.doi.org/10.1007/s11046-013-9622-7] [PMID: 23392821]
[90]
Flores, F.C.; De Lima, J.A.; Da Silva, C.R.; Benvegnú, D.; Ferreira, J.; Burger, M.E.; Beck, R.C.; Rolim, C.M.; Rocha, M.I.; Da Veiga, M.L.; Da Silva, C.B. Hydrogels containing nanocapsules and nanoemulsions of tea tree oil provide antiedematogenic effect and improved skin wound healing. J. Nanosci. Nanotechnol., 2015, 15(1), 800-809.
[http://dx.doi.org/10.1166/jnn.2015.9176] [PMID: 26328444]
[91]
Kettel, M.J.; Heine, E.; Schaefer, K.; Moeller, M. Chlorhexidine loaded cyclodextrin containing PMMA nanogels as antimicrobial coating and delivery systems. Macromol. Biosci., 2017, 17(2), 1600230.
[http://dx.doi.org/10.1002/mabi.201600230] [PMID: 27647823]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy