Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Antioxidant and Hepatoprotective Activities of Acacia jacquemontii Stem Extract against High-fat and CCl4-induced Liver Injury in Rat’s Model

Author(s): Maria Daud, Wafa Majeed*, Ambreen Mehmood Awan, Bilal Aslam, Muhammad Abdullah, Mahnoor Syed, Hafsa Iqbal, Alishbah Roobi, Hafiza Arooj Kanwal and Noreen Aslam

Volume 23, Issue 1, 2023

Published on: 03 October, 2022

Page: [77 - 85] Pages: 9

DOI: 10.2174/1871530322666220623122633

Price: $65

Abstract

Background: Chronic liver injury leads to liver inflammation and fibrosis, activating myofibroblasts in the liver and secreting extracellular matrix proteins that make the fibrous scar.

Objectives: The purpose of our study was to characterize the polyphenolic content present in Acacia jacquemontii stem and evaluate its antioxidant and hepatoprotective activity.

Methods: The phenolic contents in Acacia jacquemontii polyphenolic extract (AJPPE) were characterized using high-performance liquid chromatography (HPLC). The hepatoprotective and antioxidant activity of AJPPE were determined through biochemical parameters (ALT, AST, and ALP), lipid profile (TC, TG, HDL, and LDL), antioxidant biomarkers (SOD, LPO, GSH, and CAT), anti-fibrotic activity (collagen deposition), and histopathological analysis.

Results: HPLC analysis of AJPPE showed the presence of polyphenols, including chlorogenic acid, P-coumaric acid, caffeic acid, and kaempferol, in a remarkable therapeutic range. Results of the in vivo analysis showed a significant decrease in the level of lipid profile, including LDL (low-density lipoprotein), TC (total cholesterol), triglycerides, liver function markers (AST, ALT, and ALP), collagen deposition and significantly increased the level of anti-oxidative biomarkers (CAT, SOD, LPO, and GSH) by using AJPPE.

Conclusion: The above-mentioned results have shown that AJPPE possesses significant antioxidative and hepatoprotective effects. Furthermore, histopathological results also supported the antioxidant and hepatoprotective potential of AJPPE.

Keywords: Liver fibrosis, AJPPE, polyphenolic extract, antioxidant, HPLC, hepatoprotective activity.

Graphical Abstract

[1]
Kerbert, A.J.C.; Gupta, S.; Alabsawy, E.; Dobler, I.; Lønsmann, I.; Hall, A.; Nielsen, S.H.; Nielsen, M.J.; Gronbaek, H.; Amoros, À.; Yeung, D.; Macnaughtan, J.; Mookerjee, R.P.; Macdonald, S.; Andreola, F.; Moreau, R.; Arroyo, V.; Angeli, P.; Leeming, D.J.; Treem, W.; Karsdal, M.A.; Jalan, R. Biomarkers of extracellular matrix formation are associated with acute-on-chronic liver failure. JHEP Rep., 2021, 3(6), 100355.
[http://dx.doi.org/10.1016/j.jhepr.2021.100355] [PMID: 34805815]
[2]
Beringer, A.; Miossec, P. IL-17 and TNF-α co-operation contributes to the proinflammatory response of hepatic stellate cells. Clin. Exp. Immunol., 2019, 198(1), 111-120.
[http://dx.doi.org/10.1111/cei.13316] [PMID: 31102558]
[3]
Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of liver diseases in the world. J. Hepatol., 2019, 70(1), 151-171.
[http://dx.doi.org/10.1016/j.jhep.2018.09.014] [PMID: 30266282]
[4]
Moon, A.M.; Singal, A.G.; Tapper, E.B. Contemporary epidemiology of chronic liver disease and cirrhosis. Clin. Gastroenterol. Hepatol., 2020, 18(12), 2650-2666.
[PMID: 31401364]
[5]
Cheemerla, S.; Balakrishnan, M. Global epidemiology of chronic liver disease. Clin. Liver Dis. (Hoboken), 2021, 17(5), 365-370.
[http://dx.doi.org/10.1002/cld.1061] [PMID: 34136143]
[6]
Arroyave-Ospina, J.C.; Wu, Z.; Geng, Y.; Moshage, H. Role of oxidative stress in the pathogenesis of non-alcoholic fatty liver disease: Implications for prevention and therapy. Antioxidants, 2021, 10(2), 174.
[http://dx.doi.org/10.3390/antiox10020174] [PMID: 33530432]
[7]
Kubota, N.; Kado, S.; Kano, M.; Masuoka, N.; Nagata, Y.; Kobayashi, T.; Miyazaki, K.; Ishikawa, F. A high-fat diet and multiple administration of carbon tetrachloride induces liver injury and pathological features associated with non-alcoholic steatohepatitis in mice. Clin. Exp. Pharmacol. Physiol., 2013, 40(7), 422-430.
[http://dx.doi.org/10.1111/1440-1681.12102] [PMID: 23611112]
[8]
Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; Prakash Mishra, A.; Nigam, M.; El Rayess, Y.; Beyrouthy, M.E.; Polito, L.; Iriti, M.; Martins, N.; Martorell, M.; Docea, A.O.; Setzer, W.N.; Calina, D.; Cho, W.C.; Sharifi-Rad, J. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front. Physiol., 2020, 11, 694.
[http://dx.doi.org/10.3389/fphys.2020.00694] [PMID: 32714204]
[9]
Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 2020, 6(9), e04691.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04691] [PMID: 32964150]
[10]
Rasool, F.; Zulfiqar, M.A.; Hussain, S.M.; Bano, Q.; Rahujo, Z.A.; Naseer, N.S.; Ahmad, N.; Ahmad, S.; Anjum, K. Temporal growth adaptations of Acacia jacquemontii for survival in desert condition of thal. Transylv. Rev., 2016, 5.
[11]
Amoussa, A.M.O.; Sanni, A.; Lagnika, L. Chemical diversity and pharmacological properties of genus Acacia. Asian J. Appl. Sci., 2020, 13, 0-59.
[12]
Saha, S.; Verma, R.J. Antioxidant activity of polyphenolic extract of Terminalia chebula Retzius fruits. J. Taibah Univ. Sci., 2016, 10(6), 805-812.
[http://dx.doi.org/10.1016/j.jtusci.2014.09.003]
[13]
Seal, T. Quantitative HPLC analysis of phenolic acids, flavonoids, and ascorbic acid in four different solvent extracts of two wild edible leaves, Sonchus arvensis and Oenanthe linearis of North-Eastern region in India. J. Appl. Pharm. Sci., 2016, 6(2), 157-166.
[http://dx.doi.org/10.7324/JAPS.2016.60225]
[14]
Majeed, W.; Aslam, B.; Iftikhar, A.; Awan, A.M.; Javed, F.; Daud, M.; Shahab, N.; Syed, M.; Iqbal, H. Acacia nilotica polyphenol extract restores glucose homeostasis by upregulating the insulin secretion and lowering the oxidative stress through down regulation of c-Jun N-terminal Kinase (JNK) signaling cascade. J. King Saud Univ. Sci., 2021, 33(5), 101474.
[http://dx.doi.org/10.1016/j.jksus.2021.101474]
[15]
Shields, V.D.; Heinbockel, T. Introductory chapter: Histological microtechniques. In: Histology; Heinbockel, T.; Shields, V.D., Eds.; Intech Open: London, 2018.
[16]
Kisseleva, T.; Brenner, D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(3), 151-166.
[http://dx.doi.org/10.1038/s41575-020-00372-7] [PMID: 33128017]
[17]
Chen, M.; Suzuki, A.; Borlak, J.; Andrade, R.J.; Lucena, M.I. Drug-induced liver injury: Interactions between drug properties and host factors. J. Hepatol., 2015, 63(2), 503-514.
[http://dx.doi.org/10.1016/j.jhep.2015.04.016] [PMID: 25912521]
[18]
Mitra, S.; De, A.; Chowdhury, A. Epidemiology of non-alcoholic and alcoholic fatty liver diseases. Transl. Gastroenterol. Hepatol., 2020, 5, 16.
[http://dx.doi.org/10.21037/tgh.2019.09.08] [PMID: 32258520]
[19]
Sharma, A.; Nagalli, S. Chronic Liver Disease; StatPearls: Treasure Island, FL, 2020.
[20]
Subhan, N.; Burrows, G.E.; Kerr, P.G.; Obied, H.K. Phytochemistry, ethnomedicine, and pharmacology of acacia. Stud. Nat. Prod. Chem., 2018, 57, 247-326.
[http://dx.doi.org/10.1016/B978-0-444-64057-4.00009-0]
[21]
Li, S.; Tan, H.Y.; Wang, N.; Cheung, F.; Hong, M.; Feng, Y. The potential and action mechanism of polyphenols in the treatment of liver diseases. Oxid. Med. Cell. Longev., 2018, 2018, 8394818.
[http://dx.doi.org/10.1155/2018/8394818] [PMID: 29507653]
[22]
Ullah, H.; Khan, A.; Baig, M.W.; Ullah, N.; Ahmed, N.; Tipu, M.K.; Ali, H.; Khan, S. Poncirin attenuates CCl4-induced liver injury through inhibition of oxidative stress and inflammatory cytokines in mice. BMC Complement. Med. Ther., 2020, 20(1), 1-4.
[23]
Hsu, Y.J.; Wang, C.Y.; Lee, M.C.; Huang, C.C. Hepatoprotection by traditional essence of ginseng against carbon tetrachloride-induced liver damage. Nutrients, 2020, 12(10), 3214.
[http://dx.doi.org/10.3390/nu12103214] [PMID: 33096694]
[24]
Moussa, Z.; Judeh, Z.M.; Ahmed, S.A. Nonenzymatic exogenous and endogenous antioxidants. In: Free Radical Medicine and Biology; Das, K.; Das, S.; Biradar, M.S.; Bobbarala, V.; Tata, S.S., Eds.; Intech Open: London, 2019.
[25]
Sharma, N.; Biswas, S.; Al-Dayan, N.; Alhegaili, A.S.; Sarwat, M. Antioxidant role of kaempferol in prevention of hepatocellular carcinoma. Antioxidants, 2021, 10(9), 1419.
[http://dx.doi.org/10.3390/antiox10091419] [PMID: 34573051]
[26]
Wang, J.; Fang, X.; Ge, L.; Cao, F.; Zhao, L.; Wang, Z.; Xiao, W. Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. PLoS One, 2018, 13(5), e0197563.
[http://dx.doi.org/10.1371/journal.pone.0197563] [PMID: 29771951]
[27]
Jahan, A.; Shams, S.; Ali, S.; Samrana, S.; Ali, A.; Adhikari, A.; Sajid, M.; Ali, A.; Ali, H. Govaniadine ameliorates oxidative stress, inflammation, and kupffer cell activation in carbon tetrachloride-induced hepatotoxicity in rats. ACS Omega, 2021, 6(4), 2462-2472.
[http://dx.doi.org/10.1021/acsomega.0c02261] [PMID: 33553864]
[28]
Prasanna, P.L.; Renu, K.; Valsala Gopalakrishnan, A. New molecular and biochemical insights of doxorubicin-induced hepatotoxicity. Life Sci., 2020, 250, 117599.
[http://dx.doi.org/10.1016/j.lfs.2020.117599] [PMID: 32234491]
[29]
Ighodaro, O.M.; Akinloye, O.A. First-line defense antioxidants-superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defense grid. Alex. J. Med., 2018, 54(4), 287-293.
[http://dx.doi.org/10.1016/j.ajme.2017.09.001]
[30]
Bogahawaththa, S.; Kodithuwakku, S.P.; Wijesundera, K.K.; Siriweera, E.H.; Jayasinghe, L.; Dissanayaka, W.L.; Rajapakse, J.; Herath, C.B.; Tsujita, T.; Wijayagunawardane, M.P.B. Anti-fibrotic and anti-angiogenic activities of Osbeckia octandra leaf extracts in thioacetamide-induced experimental liver cirrhosis. Molecules, 2021, 26(16), 4836.
[http://dx.doi.org/10.3390/molecules26164836] [PMID: 34443423]
[31]
Sekkien, A.; Swilam, N.; Ebada, S.S.; Esmat, A.; El-Khatib, A.H.; Linscheid, M.W.; Singab, A.N. Polyphenols from Tamarix nilotica: LC-ESI-MSn profiling and in vivo antifibrotic activity. Molecules, 2018, 23(6), 1411.
[http://dx.doi.org/10.3390/molecules23061411] [PMID: 29891794]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy