Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Aminopeptidases in Cancer, Biology and Prospects for Pharmacological Intervention

Author(s): Sarah A. Holstein, Caroline A. Heckman, Faith E. Davies, Gareth J. Morgan, Stefan Svensson Gelius and Fredrik Lehmann*

Volume 23, Issue 1, 2023

Published on: 26 August, 2022

Page: [25 - 46] Pages: 22

DOI: 10.2174/1568009622666220623112605

open access plus

Abstract

Aminopeptidases, which catalyze the cleavage of amino acids from the amino terminus of proteins, are widely distributed in the natural world and play a crucial role in cellular processes and functions, including metabolism, signaling, angiogenesis, and immunology. They are also involved in the homeostasis of amino acids and proteins that are required for cellular proliferation. Tumor cells are highly dependent on the exogenous supply of amino acids for their survival, and overexpression of aminopeptidase facilitates rapid tumor cell proliferation. In addition, clinical studies have demonstrated that patients with cancers with high aminopeptidase expression often have poorer outcomes. Emerging evidence supports the rationale of inhibiting aminopeptidase activity as a targeted approach for novel treatment options, as limiting the availability of amino acids can be selectively lethal to tumor cells. While there are agents that directly target aminopeptidases that demonstrate potential as cancer therapies, such as bestatin and tosedostat, more selective and more targeted therapeutic approaches are needed. This article specifically looks at the biological role of aminopeptidases in both normal and cancer processes, and their potential as a biological target for future therapeutic strategies.

When examining previous publications, most do not cover aminopeptidases and their role in cancer processes. Aminopeptidases play a vital role in cell processes and functions; however, their overexpression may lead to a rapid proliferation of tumor cells. Emerging evidence supports the rationale of leveraging aminopeptidase activity as a targeted approach for new oncological treatments. This article specifically looks at the biological role of aminopeptidases in both normal and cancer processes, and their potential as a biological target for future therapeutic strategies.

Keywords: Cancer, peptidase, amino acids, peptidase inhibitor, peptide drug conjugates, metabolism, angiogenesis, unfolded protein response.

Graphical Abstract

[1]
Taylor, A. Aminopeptidases: Structure and function. FASEB J., 1993, 7(2), 290-298.
[http://dx.doi.org/10.1096/fasebj.7.2.8440407] [PMID: 8440407]
[2]
Sanz, Y. Aminopeptidases. Ind. Enzymes, 2007, 243-260.
[3]
Jones, E.W. Three proteolytic systems in the yeast Saccharomyces cerevisiae. J. Biol. Chem., 1991, 266(13), 7963-7966.
[http://dx.doi.org/10.1016/S0021-9258(18)92922-4] [PMID: 2022624]
[4]
Lowther, W.T.; Matthews, B.W. Metallo-aminopeptidases: common functional themes in disparate structural surroundings. Chem. Rev., 2002, 102(12), 4581-4608.
[http://dx.doi.org/10.1021/cr0101757] [PMID: 12475202]
[5]
Bradshaw, R.A. Aminopeptidases. Encyclopedia of Biological Chemistry, 2nd ed; Lennarz, W.J.; Lane, M.D., Eds.; Academic Press: Waltham, 2013, pp. 97-99.
[http://dx.doi.org/10.1016/B978-0-12-378630-2.00002-5]
[6]
Hitzerd, S.M.; Verbrugge, S.E.; Ossenkoppele, G.; Jansen, G.; Peters, G.J. Positioning of aminopeptidase inhibitors in next generation cancer therapy. Amino Acids, 2014, 46(4), 793-808.
[http://dx.doi.org/10.1007/s00726-013-1648-0] [PMID: 24385243]
[7]
Mina-Osorio, P. The moonlighting enzyme CD13: old and new functions to target. Trends Mol. Med., 2008, 14(8), 361-371.
[http://dx.doi.org/10.1016/j.molmed.2008.06.003] [PMID: 18603472]
[8]
Mucha, A.; Drag, M.; Dalton, J.P.; Kafarski, P. Metallo-aminopeptidase inhibitors. Biochimie, 2010, 92(11), 1509-1529.
[http://dx.doi.org/10.1016/j.biochi.2010.04.026] [PMID: 20457213]
[9]
Tomkinson, B. Tripeptidyl-peptidase II: update on an oldie that still counts. Biochimie, 2019, 166, 27-37.
[http://dx.doi.org/10.1016/j.biochi.2019.05.012] [PMID: 31108122]
[10]
Nandan, A.; Nampoothiri, K.M. Therapeutic and biotechnological applications of substrate specific microbial aminopeptidases. Appl. Microbiol. Biotechnol., 2020, 104(12), 5243-5257.
[http://dx.doi.org/10.1007/s00253-020-10641-9] [PMID: 32342144]
[11]
Holz, R.C.; Bzymek, K.P.; Swierczek, S.I. Co-catalytic metallopeptidases as pharmaceutical targets. Curr. Opin. Chem. Biol., 2003, 7(2), 197-206.
[http://dx.doi.org/10.1016/S1367-5931(03)00033-4] [PMID: 12714052]
[12]
Terra, W.R.; Ferreira, C. 11 - Biochemistry and molecular biology of digestion.Insect Molecular Biology and Biochemistry; Gilbert, L.I., Ed.; Academic Press: San Diego, 2012, pp. 365-418.
[http://dx.doi.org/10.1016/B978-0-12-384747-8.10011-X]
[13]
Chen, L.; Lin, Y.L.; Peng, G.; Li, F. Structural basis for multifunctional roles of mammalian aminopeptidase N. Proc. Natl. Acad. Sci. USA, 2012, 109(44), 17966-17971.
[http://dx.doi.org/10.1073/pnas.1210123109] [PMID: 23071329]
[14]
Turner, A.J. Membrane alanyl aminopeptidase. Handbook of Proteolytic Enzymes. Elsevier, 2004, 289-294.
[http://dx.doi.org/10.1016/B978-0-12-079611-3.50077-X]
[15]
Rawlings, N.D.; Barrett, A.J.; Bateman, A. MEROPS: The peptidase database. Nucleic Acids Res., 2010, 38(Database issue)(Suppl. 1), D227-D233.
[http://dx.doi.org/10.1093/nar/gkp971] [PMID: 19892822]
[16]
Lecker, S.H.; Goldberg, A.L.; Mitch, W.E. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J. Am. Soc. Nephrol., 2006, 17(7), 1807-1819.
[http://dx.doi.org/10.1681/ASN.2006010083] [PMID: 16738015]
[17]
Saveanu, L.; van Endert, P. The role of insulin-regulated aminopeptidase in MHC class I antigen presentation. Front. Immunol., 2012, 3, 57.
[http://dx.doi.org/10.3389/fimmu.2012.00057] [PMID: 22566938]
[18]
Mehta, A.M.; Jordanova, E.S.; Corver, W.E.; van Wezel, T.; Uh, H.W.; Kenter, G.G.; Jan Fleuren, G. Single nucleotide polymorphisms in antigen processing machinery component ERAP1 significantly associate with clinical outcome in cervical carcinoma. Genes Chromosomes Cancer, 2009, 48(5), 410-418.
[http://dx.doi.org/10.1002/gcc.20648] [PMID: 19202550]
[19]
Saulle, I.; Vicentini, C.; Clerici, M.; Biasin, M. An overview on ERAP roles in infectious diseases. Cells, 2020, 9(3), E720.
[http://dx.doi.org/10.3390/cells9030720] [PMID: 32183384]
[20]
Cornel, A.M.; Mimpen, I.L.; Nierkens, S. MHC class I downregulation in cancer: Underlying mechanisms and potential targets for cancer immunotherapy. Cancers, 2020, 12(7), E1760.
[http://dx.doi.org/10.3390/cancers12071760] [PMID: 32630675]
[21]
Pepelyayeva, Y.; Rastall, D.P.W.; Aldhamen, Y.A.; O’Connell, P.; Raehtz, S.; Alyaqoub, F.S.; Blake, M.K.; Raedy, A.M.; Angarita, A.M.; Abbas, A.M.; Pereira-Hicks, C.N.; Roosa, S.G.; McCabe, L.; Amalfitano, A. ERAP1 deficient mice have reduced type 1 regulatory T cells and develop skeletal and intestinal features of ankylosing spondylitis. Sci. Rep., 2018, 8(1), 12464.
[http://dx.doi.org/10.1038/s41598-018-30159-5] [PMID: 30127455]
[22]
Wilson, C.; Gibson, A.M.; McDermott, J.R. Purification and characterization of tripeptidylpeptidase-II from post-mortem human brain. Neurochem. Res., 1993, 18(7), 743-749.
[http://dx.doi.org/10.1007/BF00966768] [PMID: 8396212]
[23]
Lu, W.; Zhang, Y.; McDonald, D.O.; Jing, H.; Carroll, B.; Robertson, N.; Zhang, Q.; Griffin, H.; Sanderson, S.; Lakey, J.H.; Morgan, N.V.; Reynard, L.N.; Zheng, L.; Murdock, H.M.; Turvey, S.E.; Hackett, S.J.; Prestidge, T.; Hall, J.M.; Cant, A.J.; Matthews, H.F.; Koref, M.F.; Simon, A.K.; Korolchuk, V.I.; Lenardo, M.J.; Hambleton, S.; Su, H.C. Dual proteolytic pathways govern glycolysis and immune competence. Cell, 2014, 159(7), 1578-1590.
[http://dx.doi.org/10.1016/j.cell.2014.12.001] [PMID: 25525876]
[24]
Stepensky, P.; Rensing-Ehl, A.; Gather, R.; Revel-Vilk, S.; Fischer, U.; Nabhani, S.; Beier, F.; Brümmendorf, T.H.; Fuchs, S.; Zenke, S.; Firat, E.; Pessach, V.M.; Borkhardt, A.; Rakhmanov, M.; Keller, B.; Warnatz, K.; Eibel, H.; Niedermann, G.; Elpeleg, O.; Ehl, S. Early-onset evans syndrome, immunodeficiency, and premature immunosenescence associated with tripeptidyl-peptidase II deficiency. Blood, 2015, 125(5), 753-761.
[http://dx.doi.org/10.1182/blood-2014-08-593202] [PMID: 25414442]
[25]
Reinthaler, E.M.; Graf, E.; Zrzavy, T.; Wieland, T.; Hotzy, C.; Kopecky, C.; Pferschy, S.; Schmied, C.; Leutmezer, F.; Keilani, M.; Lill, C.M.; Hoffjan, S.; Epplen, J.T.; Zettl, U.K.; Hecker, M.; Deutschländer, A.; Meuth, S.G.; Ahram, M.; Mustafa, B.; El-Khateeb, M.; Vilariño-Güell, C.; Sadovnick, A.D.; Zimprich, F.; Tomkinson, B.; Strom, T.; Kristoferitsch, W.; Lassmann, H.; Zimprich, A. TPP2 mutation associated with sterile brain inflammation mimicking MS. Neurol. Genet., 2018, 4(6), e285.
[http://dx.doi.org/10.1212/NXG.0000000000000285] [PMID: 30533531]
[26]
Guzman-Rojas, L.; Rangel, R.; Salameh, A.; Edwards, J.K.; Dondossola, E.; Kim, Y.G.; Saghatelian, A.; Giordano, R.J.; Kolonin, M.G.; Staquicini, F.I.; Koivunen, E.; Sidman, R.L.; Arap, W.; Pasqualini, R. Cooperative effects of aminopeptidase N (CD13) expressed by nonmalignant and cancer cells within the tumor microenvironment. Proc. Natl. Acad. Sci. USA, 2012, 109(5), 1637-1642.
[http://dx.doi.org/10.1073/pnas.1120790109] [PMID: 22307623]
[27]
Yamazaki, T.; Akada, T.; Niizeki, O.; Suzuki, T.; Miyashita, H.; Sato, Y. Puromycin-Insensitive Leucyl-Specific Amino Peptidase (PILSAP) binds and catalyzes PDK1, allowing VEGF-stimulated activation of S6K for endothelial cell proliferation and angiogenesis. Blood, 2004, 104(8), 2345-2352.
[http://dx.doi.org/10.1182/blood-2003-12-4260] [PMID: 15187024]
[28]
Miyashita, H.; Yamazaki, T.; Akada, T.; Niizeki, O.; Ogawa, M.; Nishikawa, S.; Sato, Y. A mouse orthologue of puromycin-insensitive leucyl-specific aminopeptidase is expressed in endothelial cells and plays an important role in angiogenesis. Blood, 2002, 99(9), 3241-3249.
[http://dx.doi.org/10.1182/blood.V99.9.3241] [PMID: 11964289]
[29]
Wang, S.; Xie, H.; Wei, X.; Chen, B.; Zhao, M.; Song, G. Relation between the expression of aminopeptidase N (APN)/CD13 and the clinical significance in osteosarcomas. Int. J. Clin. Exp. Med., 2016, 9(11), 22034-22040.
[30]
Bhagwat, S.V.; Lahdenranta, J.; Giordano, R.; Arap, W.; Pasqualini, R.; Shapiro, L.H. CD13/APN is activated by angiogenic signals and is essential for capillary tube formation. Blood, 2001, 97(3), 652-659.
[http://dx.doi.org/10.1182/blood.V97.3.652] [PMID: 11157481]
[31]
Tucker, L.A.; Zhang, Q.; Sheppard, G.S.; Lou, P.; Jiang, F.; McKeegan, E.; Lesniewski, R.; Davidsen, S.K.; Bell, R.L.; Wang, J. Ectopic expression of methionine aminopeptidase-2 causes cell transformation and stimulates proliferation. Oncogene, 2008, 27(28), 3967-3976.
[http://dx.doi.org/10.1038/onc.2008.14] [PMID: 18264137]
[32]
Ye, Q.Z.; Xie, S.X.; Ma, Z.Q.; Huang, M.; Hanzlik, R.P. Structural basis of catalysis by monometalated methionine aminopeptidase. Proc. Natl. Acad. Sci. USA, 2006, 103(25), 9470-9475.
[http://dx.doi.org/10.1073/pnas.0602433103] [PMID: 16769889]
[33]
Griffith, E.C.; Su, Z.; Niwayama, S.; Ramsay, C.A.; Chang, Y.H.; Liu, J.O. Molecular recognition of angiogenesis inhibitors fumagillin and ovalicin by methionine aminopeptidase 2. Proc. Natl. Acad. Sci. USA, 1998, 95(26), 15183-15188.
[http://dx.doi.org/10.1073/pnas.95.26.15183] [PMID: 9860943]
[34]
Li, X.; Chang, Y.H. Amino-terminal protein processing in Saccharomyces cerevisiae is an essential function that requires two distinct methionine aminopeptidases. Proc. Natl. Acad. Sci. USA, 1995, 92(26), 12357-12361.
[http://dx.doi.org/10.1073/pnas.92.26.12357] [PMID: 8618900]
[35]
Sin, N.; Meng, L.; Wang, M.Q.; Wen, J.J.; Bornmann, W.G.; Crews, C.M. The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2. Proc. Natl. Acad. Sci. USA, 1997, 94(12), 6099-6103.
[http://dx.doi.org/10.1073/pnas.94.12.6099] [PMID: 9177176]
[36]
Kanno, T.; Endo, H.; Takeuchi, K.; Morishita, Y.; Fukayama, M.; Mori, S. High expression of methionine aminopeptidase type 2 in germinal center B cells and their neoplastic counterparts. Lab. Invest., 2002, 82(7), 893-901.
[http://dx.doi.org/10.1097/01.LAB.0000020419.25365.C4] [PMID: 12118091]
[37]
Esa, R.; Steinberg, E.; Dror, D.; Schwob, O.; Khajavi, M.; Maoz, M.; Kinarty, Y.; Inbal, A.; Zick, A.; Benny, O. The role of methionine aminopeptidase 2 in lymphangiogenesis. Int. J. Mol. Sci., 2020, 21(14), E5148.
[http://dx.doi.org/10.3390/ijms21145148] [PMID: 32708166]
[38]
Klemann, C.; Wagner, L.; Stephan, M.; von Hörsten, S. Cut to the chase: a review of CD26/Dipeptidyl Peptidase-4's (DPP4) entanglement in the immune system. Clin. Exp. Immunol., 2016, 185(1), 1-21.
[http://dx.doi.org/10.1111/cei.12781] [PMID: 26919392]
[39]
Shao, S.; Xu, Q.; Yu, X.; Pan, R.; Chen, Y. Dipeptidyl peptidase 4 inhibitors and their potential immune modulatory functions. Pharmacol. Ther., 2020, 209, 107503.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107503] [PMID: 32061923]
[40]
Waumans, Y.; Baerts, L.; Kehoe, K.; Lambeir, A.M.; De Meester, I. The dipeptidyl peptidase family, prolyl oligopeptidase, and prolyl carboxypeptidase in the immune system and inflammatory disease, including atherosclerosis. Front. Immunol., 2015, 6, 387.
[http://dx.doi.org/10.3389/fimmu.2015.00387] [PMID: 26300881]
[41]
Farag, S.S.; Abu Zaid, M.; Schwartz, J.E.; Thakrar, T.C.; Blakley, A.J.; Abonour, R.; Robertson, M.J.; Broxmeyer, H.E.; Zhang, S. Dipeptidyl peptidase 4 inhibition for prophylaxis of acute graft-versus-host disease. N. Engl. J. Med., 2021, 384(1), 11-19.
[http://dx.doi.org/10.1056/NEJMoa2027372] [PMID: 33406328]
[42]
Bishnoi, R.; Hong, Y.R.; Shah, C.; Ali, A.; Skelton, W.P., IV; Huo, J.; Dang, N.H.; Dang, L.H. Dipeptidyl peptidase 4 inhibitors as novel agents in improving survival in diabetic patients with colorectal cancer and lung cancer: a surveillance epidemiology and endpoint research medicare study. Cancer Med., 2019, 8(8), 3918-3927.
[http://dx.doi.org/10.1002/cam4.2278] [PMID: 31124302]
[43]
Havre, P.A.; Abe, M.; Urasaki, Y.; Ohnuma, K.; Morimoto, C.; Dang, N.H. The role of CD26/dipeptidyl peptidase IV in cancer. Front. Biosci., 2008, 13(13), 1634-1645.
[http://dx.doi.org/10.2741/2787] [PMID: 17981655]
[44]
Sato, T.; Tatekoshi, A.; Takada, K.; Iyama, S.; Kamihara, Y.; Jawaid, P.; Rehman, M.U.; Noguchi, K.; Kondo, T.; Kajikawa, S.; Arita, K.; Wada, A.; Murakami, J.; Arai, M.; Yasuda, I.; Dang, N.H.; Hatano, R.; Iwao, N.; Ohnuma, K.; Morimoto, C. DPP8 is a novel therapeutic target for multiple myeloma. Sci. Rep., 2019, 9(1), 18094.
[http://dx.doi.org/10.1038/s41598-019-54695-w] [PMID: 31792328]
[45]
Angevin, E.; Isambert, N.; Trillet-Lenoir, V.; You, B.; Alexandre, J.; Zalcman, G.; Vielh, P.; Farace, F.; Valleix, F.; Podoll, T.; Kuramochi, Y.; Miyashita, I.; Hosono, O.; Dang, N.H.; Ohnuma, K.; Yamada, T.; Kaneko, Y.; Morimoto, C. First-in-human phase 1 of YS110, a monoclonal antibody directed against CD26 in advanced CD26-expressing cancers. Br. J. Cancer, 2017, 116(9), 1126-1134.
[http://dx.doi.org/10.1038/bjc.2017.62] [PMID: 28291776]
[46]
Ali, A.; Fuentes, A.; Skelton, W.P., IV; Wang, Y.; McGorray, S.; Shah, C.; Bishnoi, R.; Dang, L.H.; Dang, N.H. A multi-center retrospective analysis of the effect of DPP4 inhibitors on progression-free survival in advanced airway and colorectal cancers. Mol. Clin. Oncol., 2019, 10(1), 118-124.
[PMID: 30655986]
[47]
Yao, T.W.; Kim, W.S.; Yu, D.M.; Sharbeen, G.; McCaughan, G.W.; Choi, K.Y.; Xia, P.; Gorrell, M.D. A novel role of dipeptidyl peptidase 9 in epidermal growth factor signaling. Mol. Cancer Res., 2011, 9(7), 948-959.
[http://dx.doi.org/10.1158/1541-7786.MCR-10-0272] [PMID: 21622624]
[48]
Yu, D.M.; Wang, X.M.; McCaughan, G.W.; Gorrell, M.D. Extraenzymatic functions of the dipeptidyl peptidase IV-related proteins DP8 and DP9 in cell adhesion, migration and apoptosis. FEBS J., 2006, 273(11), 2447-2460.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05253.x] [PMID: 16704418]
[49]
Lu, C.; Tilan, J.U.; Everhart, L.; Czarnecka, M.; Soldin, S.J.; Mendu, D.R.; Jeha, D.; Hanafy, J.; Lee, C.K.; Sun, J.; Izycka-Swieszewska, E.; Toretsky, J.A.; Kitlinska, J. Dipeptidyl peptidases as survival factors in ewing sarcoma family of tumors: implications for tumor biology and therapy. J. Biol. Chem., 2011, 286(31), 27494-27505.
[http://dx.doi.org/10.1074/jbc.M111.224089] [PMID: 21680731]
[50]
Matheeussen, V.; Waumans, Y.; Martinet, W.; Van Goethem, S.; Van der Veken, P.; Scharpé, S.; Augustyns, K.; De Meyer, G.R.; De Meester, I. Dipeptidyl peptidases in atherosclerosis: expression and role in macrophage differentiation, activation and apoptosis. Basic Res. Cardiol., 2013, 108(3), 350.
[http://dx.doi.org/10.1007/s00395-013-0350-4] [PMID: 23608773]
[51]
Johnson, D.C.; Taabazuing, C.Y.; Okondo, M.C.; Chui, A.J.; Rao, S.D.; Brown, F.C.; Reed, C.; Peguero, E.; de Stanchina, E.; Kentsis, A.; Bachovchin, D.A. DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat. Med., 2018, 24(8), 1151-1156.
[http://dx.doi.org/10.1038/s41591-018-0082-y] [PMID: 29967349]
[52]
Spagnuolo, P.A.; Hurren, R.; Gronda, M.; MacLean, N.; Datti, A.; Basheer, A.; Lin, F.H.; Wang, X.; Wrana, J.; Schimmer, A.D. Inhibition of intracellular dipeptidyl peptidases 8 and 9 enhances parthenolide’s anti-leukemic activity. Leuk., 2013, 27(6), 1236-1244.
[http://dx.doi.org/10.1038/leu.2013.9] [PMID: 23318959]
[53]
Butler, M.; Van Der Meer, L.T.; Van Leeuwen, F.N. Amino acid depletion therapies: starving cancer cells to death. Trends Endocrinol. Metab., 2021, 32(6), 367-381.
[http://dx.doi.org/10.1016/j.tem.2021.03.003] [PMID: 33795176]
[54]
Nikesitch, N.; Ling, S.C. Molecular mechanisms in multiple myeloma drug resistance. J. Clin. Pathol., 2016, 69(2), 97-101.
[http://dx.doi.org/10.1136/jclinpath-2015-203414] [PMID: 26598624]
[55]
Qi, L.; Tsai, B.; Arvan, P. New insights into the physiological role of endoplasmic reticulum-associated degradation. Trends Cell Biol., 2017, 27(6), 430-440.
[http://dx.doi.org/10.1016/j.tcb.2016.12.002] [PMID: 28131647]
[56]
Aponte, P.M.; Caicedo, A. Stemness in cancer: stem cells, cancer stem cells, and their microenvironment. Stem Cells Int., 2017, 2017, 5619472.
[http://dx.doi.org/10.1155/2017/5619472] [PMID: 28473858]
[57]
Miranda, A.; Hamilton, P.T.; Zhang, A.W.; Pattnaik, S.; Becht, E.; Mezheyeuski, A.; Bruun, J.; Micke, P.; de Reynies, A.; Nelson, B.H. Cancer stemness, intratumoral heterogeneity, and immune response across cancers. Proc. Natl. Acad. Sci. USA, 2019, 116(18), 9020-9029.
[http://dx.doi.org/10.1073/pnas.1818210116] [PMID: 30996127]
[58]
Chuang, H.Y.; Jiang, J.K.; Yang, M.H.; Wang, H.W.; Li, M.C.; Tsai, C.Y.; Jhang, Y.Y.; Huang, J.C. Aminopeptidase A initiates tumorigenesis and enhances tumor cell stemness via TWIST1 upregulation in colorectal cancer. Oncotarget, 2017, 8(13), 21266-21280.
[http://dx.doi.org/10.18632/oncotarget.15072] [PMID: 28177885]
[59]
Geng, N.; Zhang, W.; Li, Y.; Li, F. Aspartyl aminopeptidase suppresses proliferation, invasion, and stemness of breast cancer cells via targeting CD44. Anat. Rec., 2019, 302(12), 2178-2185.
[http://dx.doi.org/10.1002/ar.24206] [PMID: 31228326]
[60]
Martínez, J.M.; Prieto, I.; Ramírez, M.J.; Cueva, C.; Alba, F.; Ramírez, M. Aminopeptidase activities in breast cancer tissue. Clin. Chem., 1999, 45(10), 1797-1802.
[http://dx.doi.org/10.1093/clinchem/45.10.1797] [PMID: 10508127]
[61]
Martínez-Martos, J.M.; del Pilar Carrera-González, M.; Dueñas, B.; Mayas, M.D.; García, M.J.; Ramírez-Expósito, M.J. Renin angiotensin system-regulating aminopeptidase activities in serum of pre- and postmenopausal women with breast cancer. Breast, 2011, 20(5), 444-447.
[http://dx.doi.org/10.1016/j.breast.2011.04.008] [PMID: 21596565]
[62]
Ranogajec, I.; Jakić-Razumović, J.; Puzović, V.; Gabrilovac, J. Prognostic value of Matrix Metalloproteinase-2 (MMP-2), Matrix Metalloproteinase-9 (MMP-9) and aminopeptidase N/CD13 in breast cancer patients. Med. Oncol., 2012, 29(2), 561-569.
[http://dx.doi.org/10.1007/s12032-011-9984-y] [PMID: 21611838]
[63]
Pasqualini, R.; Koivunen, E.; Ruoslahti, E. A peptide isolated from phage display libraries is a structural and functional mimic of an RGD-binding site on integrins. J. Cell Biol., 1995, 130(5), 1189-1196.
[http://dx.doi.org/10.1083/jcb.130.5.1189] [PMID: 7657703]
[64]
Pasqualini, R.; Koivunen, E.; Kain, R.; Lahdenranta, J.; Sakamoto, M.; Stryhn, A.; Ashmun, R.A.; Shapiro, L.H.; Arap, W.; Ruoslahti, E. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res., 2000, 60(3), 722-727.
[PMID: 10676659]
[65]
Wickström, M.; Larsson, R.; Nygren, P.; Gullbo, J.; Aminopeptidase, N.; Aminopeptidase, N. CD13) as a target for cancer chemotherapy. Cancer Sci., 2011, 102(3), 501-508.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01826.x] [PMID: 21205077]
[66]
Rutenburg, A.M.; Goldbarg, J.A.; Pineda, E.P. Leucine aminopeptidase activity; observations in patients with cancer of the pancreas and other diseases. N. Engl. J. Med., 1958, 259(10), 469-472.
[http://dx.doi.org/10.1056/NEJM195809042591003] [PMID: 13578084]
[67]
Beninga, J.; Rock, K.L.; Goldberg, A.L. Interferon-gamma can stimulate post-proteasomal trimming of the N terminus of an antigenic peptide by inducing leucine aminopeptidase. J. Biol. Chem., 1998, 273(30), 18734-18742.
[http://dx.doi.org/10.1074/jbc.273.30.18734] [PMID: 9668046]
[68]
Fang, C.; Zhang, J.; Yang, H.; Peng, L.; Wang, K.; Wang, Y.; Zhao, X.; Liu, H.; Dou, C.; Shi, L.; Zhao, C.; Liang, S.; Li, D.; Wang, X. Leucine aminopeptidase 3 promotes migration and invasion of breast cancer cells through upregulation of fascin and matrix metalloproteinases-2/9 expression. J. Cell. Biochem., 2019, 120(3), 3611-3620.
[http://dx.doi.org/10.1002/jcb.27638] [PMID: 30417585]
[69]
Tian, S.Y.; Chen, S.H.; Shao, B.F.; Cai, H.Y.; Zhou, Y.; Zhou, Y.L.; Xu, A.B. Expression of Leucine Aminopeptidase 3 (LAP3) correlates with prognosis and malignant development of Human Hepatocellular Carcinoma (HCC). Int. J. Clin. Exp. Pathol., 2014, 7(7), 3752-3762.
[PMID: 25120751]
[70]
Kuhara, K.; Kitagawa, T.; Baron, B.; Tokuda, K.; Sakamoto, K.; Nagano, H.; Nakamura, K.; Kobayashi, M.; Nagayasu, H.; Kuramitsu, Y. Proteomic analysis of hepatocellular carcinoma tissues with encapsulation shows up-regulation of leucine aminopeptidase 3 and phosphoenolpyruvate carboxykinase 2. Cancer Genomics Proteomics, 2021, 18(3), 307-316.
[http://dx.doi.org/10.21873/cgp.20261] [PMID: 33893083]
[71]
Busek, P.; Vanickova, Z.; Hrabal, P.; Brabec, M.; Fric, P.; Zavoral, M.; Skrha, J.; Kmochova, K.; Laclav, M.; Bunganic, B.; Augustyns, K.; Van Der Veken, P.; Sedo, A. Increased tissue and circulating levels of dipeptidyl peptidase-IV enzymatic activity in patients with pancreatic ductal adenocarcinoma. Pancreatol., 2016, 16(5), 829-838.
[http://dx.doi.org/10.1016/j.pan.2016.06.001] [PMID: 27320722]
[72]
Pang, L.; Zhang, N.; Xia, Y.; Wang, D.; Wang, G.; Meng, X. Serum APN/CD13 as a novel diagnostic and prognostic biomarker of pancreatic cancer. Oncotarget, 2016, 7(47), 77854-77864.
[http://dx.doi.org/10.18632/oncotarget.12835] [PMID: 27788483]
[73]
Vlachostergios, P.J.; Karasavvidou, F.; Kakkas, G.; Moutzouris, G.; Patrikidou, A.; Voutsadakis, I.A.; Daliani, D.D.; Zintzaras, E.; Melekos, M.D.; Papandreou, C.N. Expression of neutral endopeptidase, endothelin-1, and nuclear factor kappa B in prostate cancer: Interrelations and associations with prostate-specific antigen recurrence after radical prostatectomy. Prostate Cancer, 2012, 2012, 452795.
[http://dx.doi.org/10.1155/2012/452795] [PMID: 22666602]
[74]
Voutsadakis, I.A.; Vlachostergios, P.J.; Daliani, D.D.; Karasavvidou, F.; Kakkas, G.; Moutzouris, G.; Melekos, M.D.; Papandreou, C.N. CD10 is inversely associated with nuclear factor-kappa B and predicts biochemical recurrence after radical prostatectomy. Urol. Int., 2012, 88(2), 158-164.
[http://dx.doi.org/10.1159/000335299] [PMID: 22286396]
[75]
Kuo, I.C.; Kao, H.K.; Huang, Y.; Wang, C.I.; Yi, J.S.; Liang, Y.; Liao, C.T.; Yen, T.C.; Wu, C.C.; Chang, K.P. Endoplasmic reticulum aminopeptidase 2 involvement in metastasis of oral cavity squamous cell carcinoma discovered by proteome profiling of primary cancer cells. Oncotarget, 2017, 8(37), 61698-61708.
[http://dx.doi.org/10.18632/oncotarget.18680] [PMID: 28977897]
[76]
Usukura, K.; Kasamatsu, A.; Okamoto, A.; Kouzu, Y.; Higo, M.; Koike, H.; Sakamoto, Y.; Ogawara, K.; Shiiba, M.; Tanzawa, H.; Uzawa, K. Tripeptidyl peptidase II in human oral squamous cell carcinoma. J. Cancer Res. Clin. Oncol., 2013, 139(1), 123-130.
[http://dx.doi.org/10.1007/s00432-012-1307-y] [PMID: 22986808]
[77]
Miettinen, J.J.; Kumari, R.; Traustadottir, G.A.; Huppunen, M.E.; Sergeev, P.; Majumder, M.M.; Schepsky, A.; Gudjonsson, T.; Lievonen, J.; Bazou, D.; Dowling, P.; O Gorman, P.; Slipicevic, A.; Anttila, P.; Silvennoinen, R.; Nupponen, N.N.; Lehmann, F.; Heckman, C.A. Aminopeptidase expression in multiple myeloma associates with disease progression and sensitivity to melflufen. Cancers (Basel), 2021, 13(7), 1527.
[http://dx.doi.org/10.3390/cancers13071527] [PMID: 33810334]
[78]
Kakodkar, P.; More, S.; András, K.; Papakonstantinou, N.; Kelly, S.; Makrooni, M.A.; Ortutay, C.; Szegezdi, E. Aspartic aminopeptidase is a novel biomarker of aggressive chronic lymphocytic leukemia. Cancers, 2020, 12(7), E1876.
[http://dx.doi.org/10.3390/cancers12071876] [PMID: 32664705]
[79]
Craddock, K.J.; Chen, Y.; Brandwein, J.M.; Chang, H. CD13 expression is an independent adverse prognostic factor in adults with philadelphia chromosome negative B cell acute lymphoblastic leukemia. Leuk. Res., 2013, 37(7), 759-764.
[http://dx.doi.org/10.1016/j.leukres.2013.04.006] [PMID: 23643324]
[80]
Krige, D.; Needham, L.A.; Bawden, L.J.; Flores, N.; Farmer, H.; Miles, L.E.; Stone, E.; Callaghan, J.; Chandler, S.; Clark, V.L.; Kirwin-Jones, P.; Legris, V.; Owen, J.; Patel, T.; Wood, S.; Box, G.; Laber, D.; Odedra, R.; Wright, A.; Wood, L.M.; Eccles, S.A.; Bone, E.A.; Ayscough, A.; Drummond, A.H. CHR-2797: An antiproliferative aminopeptidase inhibitor that leads to amino acid deprivation in human leukemic cells. Cancer Res., 2008, 68(16), 6669-6679.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6627] [PMID: 18701491]
[81]
Kim, Y.C.; Guan, K.L. mTOR: A pharmacologic target for autophagy regulation. J. Clin. Invest., 2015, 125(1), 25-32.
[http://dx.doi.org/10.1172/JCI73939] [PMID: 25654547]
[82]
Sekine, K.; Fujii, H.; Abe, F. Induction of apoptosis by bestatin (ubenimex) in human leukemic cell lines. Leuk., 1999, 13(5), 729-734.
[http://dx.doi.org/10.1038/sj.leu.2401388] [PMID: 10374877]
[83]
Umezawa, H.; Aoyagi, T.; Suda, H.; Hamada, M.; Takeuchi, T. Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes. J. Antibiot., 1976, 29(1), 97-99.
[http://dx.doi.org/10.7164/antibiotics.29.97] [PMID: 931798]
[84]
Sawafuji, K.; Miyakawa, Y.; Weisberg, E.; Griffin, J.D.; Ikeda, Y.; Kizaki, M. Aminopeptidase inhibitors inhibit proliferation and induce apoptosis of K562 and STI571-resistant K562 cell lines through the MAPK and GSK-3beta pathways. Leuk. Lymphoma, 2003, 44(11), 1987-1996.
[http://dx.doi.org/10.1080/1042819031000122033] [PMID: 14738154]
[85]
Scornik, O.A.; Botbol, V. Bestatin as an experimental tool in mammals. Curr. Drug Metab., 2001, 2(1), 67-85.
[http://dx.doi.org/10.2174/1389200013338748] [PMID: 11465152]
[86]
Wakita, A.; Ohtake, S.; Takada, S.; Yagasaki, F.; Komatsu, H.; Miyazaki, Y.; Kubo, K.; Kimura, Y.; Takeshita, A.; Adachi, Y.; Kiyoi, H.; Yamaguchi, T.; Yoshida, M.; Ohnishi, K.; Miyawaki, S.; Naoe, T.; Ueda, R.; Ohno, R. Randomized comparison of fixed-schedule versus response-oriented individualized induction therapy and use of ubenimex during and after consolidation therapy for elderly patients with acute myeloid leukemia: the JALSG GML200 Study. Int. J. Hematol., 2012, 96(1), 84-93.
[http://dx.doi.org/10.1007/s12185-012-1105-y] [PMID: 22639053]
[87]
Ichinose, Y.; Genka, K.; Koike, T.; Kato, H.; Watanabe, Y.; Mori, T.; Iioka, S.; Sakuma, A.; Ohta, M. Randomized double-blind placebo-controlled trial of bestatin in patients with resected stage I squamous-cell lung carcinoma. J. Natl. Cancer Inst., 2003, 95(8), 605-610.
[http://dx.doi.org/10.1093/jnci/95.8.605] [PMID: 12697853]
[88]
Reid, A.H.; Protheroe, A.; Attard, G.; Hayward, N.; Vidal, L.; Spicer, J.; Shaw, H.M.; Bone, E.A.; Carter, J.; Hooftman, L.; Harris, A.; De Bono, J.S. A first-in-man phase i and pharmacokinetic study on CHR-2797 (Tosedostat), an inhibitor of M1 aminopeptidases, in patients with advanced solid tumors. Clin. Cancer Res., 2009, 15(15), 4978-4985.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0306] [PMID: 19638462]
[89]
Löwenberg, B.; Morgan, G.; Ossenkoppele, G.J.; Burnett, A.K.; Zachée, P.; Dührsen, U.; Dierickx, D.; Müller-Tidow, C.; Sonneveld, P.; Krug, U.; Bone, E.; Flores, N.; Richardson, A.F.; Hooftman, L.; Jenkins, C.; Zweegman, S.; Davies, F. Phase I/II clinical study of Tosedostat, an inhibitor of aminopeptidases, in patients with acute myeloid leukemia and myelodysplasia. J. Clin. Oncol., 2010, 28(28), 4333-4338.
[http://dx.doi.org/10.1200/JCO.2009.27.6295] [PMID: 20733120]
[90]
Mawad, R.; Becker, P.S.; Hendrie, P.; Scott, B.; Wood, B.L.; Dean, C.; Sandhu, V.; Deeg, H.J.; Walter, R.; Wang, L.; Myint, H.; Singer, J.W.; Estey, E.; Pagel, J.M. Phase II study of tosedostat with cytarabine or decitabine in newly diagnosed older patients with acute myeloid leukaemia or high-risk MDS. Br. J. Haematol., 2016, 172(2), 238-245.
[http://dx.doi.org/10.1111/bjh.13829] [PMID: 26568032]
[91]
Janssen, J.; Löwenberg, B.; Manz, M.; Bargetzi, M.; Biemond, B.; Borne, P.V.D.; Breems, D.; Brouwer, R.; Chalandon, Y.; Deeren, D.; Efthymiou, A.; Gjertsen, B.T.; Graux, C.; Gregor, M.; Heim, D.; Hess, U.; Hoogendoorn, M.; Jaspers, A.; Jie, A.; Jongen-Lavrencic, M.; Klein, S.; Klift, M.V.; Kuball, J.; Lammeren-Venema, D.V.; Legdeur, M.C.; Loosdrecht, A.V.; Maertens, J.; Kooy, M.V.M.; Moors, I.; Nijziel, M.; Obbergh, F.V.; Oosterveld, M.; Pabst, T.; Poel, M.V.; Sinnige, H.; Spertini, O.; Terpstra, W.; Tick, L.; Velden, W.V.; Vekemans, M.C.; Vellenga, E.; Weerdt, O.; Westerweel, P.; Stüssi, G.; Norden, Y.V.; Ossenkoppele, G. Inferior outcome of addition of the aminopeptidase inhibitor tosedostat to standard intensive treatment for elderly patients with AML and high risk MDS. Cancers (Basel), 2021, 13(4), 672.
[http://dx.doi.org/10.3390/cancers13040672] [PMID: 33562393]
[92]
van Herpen, C.M.; Eskens, F.A.; de Jonge, M.; Desar, I.; Hooftman, L.; Bone, E.A.; Timmer-Bonte, J.N.; Verweij, J. A Phase Ib dose-escalation study to evaluate safety and tolerability of the addition of the aminopeptidase inhibitor tosedostat (CHR-2797) to paclitaxel in patients with advanced solid tumours. Br. J. Cancer, 2010, 103(9), 1362-1368.
[http://dx.doi.org/10.1038/sj.bjc.6605917] [PMID: 20877350]
[93]
Jenkins, C.; Hewamana, S.; Krige, D.; Pepper, C.; Burnett, A. Aminopeptidase inhibition by the novel agent CHR-2797 (tosedostat) for the therapy of acute myeloid leukemia. Leuk. Res., 2011, 35(5), 677-681.
[http://dx.doi.org/10.1016/j.leukres.2010.10.030] [PMID: 21145592]
[94]
Moore, H.E.; Davenport, E.L.; Smith, E.M.; Muralikrishnan, S.; Dunlop, A.S.; Walker, B.A.; Krige, D.; Drummond, A.H.; Hooftman, L.; Morgan, G.J.; Davies, F.E. Aminopeptidase inhibition as a targeted treatment strategy in myeloma. Mol. Cancer Ther., 2009, 8(4), 762-770.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0735] [PMID: 19372548]
[95]
Smith, E.M.; Zhang, L.; Walker, B.A.; Davenport, E.L.; Aronson, L.I.; Krige, D.; Hooftman, L.; Drummond, A.H.; Morgan, G.J.; Davies, F.E. The combination of HDAC and aminopeptidase inhibitors is highly synergistic in myeloma and leads to disruption of the NFκB signalling pathway. Oncotarget, 2015, 6(19), 17314-17327.
[http://dx.doi.org/10.18632/oncotarget.1168] [PMID: 26015393]
[96]
Khan, K.D.; O’Brien, S.; Rai, K.R.; Brown, J.R.; Abboud, C.; Hurd, D.D.; Conkling, P.; Yang, Z.; Haltom, E.J.; Uprichard, M.J. Phase II study of talabostat and rituximab in fludarabine/rituximab-resistant or refractory patients with CLL. J. Clin. Oncol., 2006, 24(18)(Suppl.), 6598.
[http://dx.doi.org/10.1200/jco.2006.24.18_suppl.6598]
[97]
Aggarwal, RR; Costin, D; O'Neill, VJ; Corsi-Travali, S; Adurthi, S Adedoyin, A Phase 1b study of BXCL701, a novel small molecule inhibitor of Dipeptidyl Peptidases (DPP), combined with pembrolizumab (pembro), in men with metastatic Castration-Resistant Prostate Cancer (mCRPC). J. Clin. Oncol., 2020, 38(15)(_suppl.), 17581.
[98]
Narra, K.; Mullins, S.R.; Lee, H.O.; Strzemkowski-Brun, B.; Magalong, K.; Christiansen, V.J.; McKee, P.A.; Egleston, B.; Cohen, S.J.; Weiner, L.M.; Meropol, N.J.; Cheng, J.D. Phase II trial of single agent val-boroPro (Talabostat) inhibiting fibroblast activation protein in patients with metastatic colorectal cancer. Cancer Biol. Ther., 2007, 6(11), 1691-1699.
[http://dx.doi.org/10.4161/cbt.6.11.4874] [PMID: 18032930]
[99]
Eager, R.M.; Cunningham, C.C.; Senzer, N.; Richards, D.A.; Raju, R.N.; Jones, B.; Uprichard, M.; Nemunaitis, J. Phase II trial of talabostat and docetaxel in advanced non-small cell lung cancer. Clin. Oncol. (R. Coll. Radiol.), 2009, 21(6), 464-472.
[http://dx.doi.org/10.1016/j.clon.2009.04.007] [PMID: 19501491]
[100]
Eager, R.M.; Cunningham, C.C.; Senzer, N.N.; Stephenson, J., Jr; Anthony, S.P.; O’Day, S.J.; Frenette, G.; Pavlick, A.C.; Jones, B.; Uprichard, M.; Nemunaitis, J. Phase II assessment of talabostat and cisplatin in second-line stage IV melanoma. BMC Cancer, 2009, 9(1), 263.
[http://dx.doi.org/10.1186/1471-2407-9-263] [PMID: 19643020]
[101]
Fitzgerald, A.A.; Wang, S.; Agarwal, V.; Marcisak, E.F.; Zuo, A.; Jablonski, S.A.; Loth, M.; Fertig, E.J.; MacDougall, J.; Zhukovsky, E.; Trivedi, S.; Bhatia, D.; O’Neill, V.; Weiner, L.M. DPP inhibition alters the CXCR3 axis and enhances NK and CD8+ T cell infiltration to improve anti-PD1 efficacy in murine models of pancreatic ductal adenocarcinoma. J. Immunother. Cancer, 2021, 9(11), e002837.
[http://dx.doi.org/10.1136/jitc-2021-002837] [PMID: 34737215]
[102]
Domínguez, J.M.; Pérez-Chacón, G.; Guillén, M.J.; Muñoz-Alonso, M.J.; Somovilla-Crespo, B.; Cibrián, D.; Acosta-Iborra, B.; Adrados, M.; Muñoz-Calleja, C.; Cuevas, C.; Sánchez-Madrid, F.; Avilés, P.; Zapata, J.M. CD13 as a new tumor target for antibody-drug conjugates: validation with the conjugate MI130110. J. Hematol. Oncol., 2020, 13(1), 32.
[http://dx.doi.org/10.1186/s13045-020-00865-7] [PMID: 32264921]
[103]
Nejadmoghaddam, M.R.; Minai-Tehrani, A.; Ghahremanzadeh, R.; Mahmoudi, M.; Dinarvand, R.; Zarnani, A.H. Antibody-drug conjugates: possibilities and challenges. Avicenna J. Med. Biotechnol., 2019, 11(1), 3-23.
[PMID: 30800238]
[104]
He, X.; Feng, Z.; Ma, J.; Ling, S.; Cao, Y.; Gurung, B.; Wu, Y.; Katona, B.W.; O’Dwyer, K.P.; Siegel, D.L.; June, C.H.; Hua, X. Bispecific and split CAR T cells targeting CD13 and TIM3 eradicate acute myeloid leukemia. Blood, 2020, 135(10), 713-723.
[http://dx.doi.org/10.1182/blood.2019002779] [PMID: 31951650]
[105]
Tariq, S.M.; Haider, S.A.; Hasan, M.; Tahir, A.; Khan, M.; Rehan, A.; Kamal, A. Chimeric antigen receptor T-cell therapy: A beacon of hope in the fight against cancer. Cureus, 2018, 10(10), e3486.
[http://dx.doi.org/10.7759/cureus.3486] [PMID: 30613448]
[106]
Wickström, M.; Nygren, P.; Larsson, R.; Harmenberg, J.; Lindberg, J.; Sjöberg, P.; Jerling, M.; Lehmann, F.; Richardson, P.; Anderson, K.; Chauhan, D.; Gullbo, J. Melflufen - a peptidase-potentiated alkylating agent in clinical trials. Oncotarget, 2017, 8(39), 66641-66655.
[http://dx.doi.org/10.18632/oncotarget.18420] [PMID: 29029544]
[107]
Chauhan, D.; Ray, A.; Viktorsson, K.; Spira, J.; Paba-Prada, C.; Munshi, N.; Richardson, P.; Lewensohn, R.; Anderson, K.C. in vitro and in vivo antitumor activity of a novel alkylating agent, melphalan-flufenamide, against multiple myeloma cells. Clin. Cancer Res., 2013, 19(11), 3019-3031.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3752] [PMID: 23584492]
[108]
Lehmann, F.; Wennerberg, J. Evolution of nitrogen-based alkylating anticancer agents. Processes (Basel), 2021, 9(2), 377.
[http://dx.doi.org/10.3390/pr9020377]
[109]
Mateos, M-V.; Oriol, A.; Larocca, A.; Rodriguez Otero, P.; Bladé, J.; Cavo, M.; Hassoun, H.; Leleu, X.; Amor, A.A.; Maisel, C.; Paner, A.; Harmenberg, J.; Byrne, C.; Thuresson, S.; Zubair, H.; Richardson, P.G. Clinical activity of melflufen in patients with triple-class refractory multiple myeloma and poor-risk features in an updated analysis of horizon (op-106), a phase 2 study in patients with relapsed/refractory multiple myeloma refractory to pomalidomide and/or daratumumab. Blood, 2019, 134(Suppl. 1), 1883.
[http://dx.doi.org/10.1182/blood-2019-124825]
[110]
Schjesvold, F.H.; Dimopoulos, M.A.; Delimpasi, S.; Robak, P.; Coriu, D.; Legiec, W.; Pour, L.; Špička, I.; Masszi, T.; Doronin, V.; Minarik, J.; Salogub, G.; Alekseeva, Y.; Lazzaro, A.; Maisnar, V.; Mikala, G.; Rosiñol, L.; Liberati, A.M.; Symeonidis, A.; Moody, V.; Thuresson, M.; Byrne, C.; Harmenberg, J.; Bakker, N.A.; Hájek, R.; Mateos, M.V.; Richardson, P.G.; Sonneveld, P.; Schjesvold, F.; Delimpasi, S.; Robak, P.; Coriu, D.; Nikolayeva, A.; Tomczak, W.; Pour, L.; Spicka, I.; Dimopoulos, M-A.; Masszi, T.; Doronin, V.; Minarik, J.; Salogub, G.; Alekseeva, Y.; Maisnar, V.; Mikala, G.; Rosinol, L.; Konstantinova, T.; Lazzaro, A.; Liberati, A.M.; Symeonidis, A.; Gatt, M.; Illes, A.; Abdulhaq, H.; Dungarwalla, M.; Grosicki, S.; Hajek, R.; Leleu, X.; Myasnikov, A.; Richardson, P.G.; Avivi, I.; Deeren, D.; Gironella, M.; Hernandez-Garcia, M.T.; Martinez Lopez, J.; Newinger-Porte, M.; Ribas, P.; Samoilova, O.; Voog, E.; Arnao-Herraiz, M.; Carrillo-Cruz, E.; Corradini, P.; Dodlapati, J.; Granell Gorrochategui, M.; Huang, S-Y.; Jenner, M.; Karlin, L.; Kim, J.S.; Kopacz, A.; Medvedeva, N.; Min, C-K.; Mina, R.; Palk, K.; Shin, H-J.; Sohn, S.K.; Sonneveld, P.; Tache, J.; Anagnostopoulos, A.; Arguiñano, J-M.; Cavo, M.; Filicko, J.; Garnes, M.; Halka, J.; Herzog-Tzarfati, K.; Ipatova, N.; Kim, K.; Krauth, M-T.; Kryuchkova, I.; Lazaroiu, M.C.; Luppi, M.; Proydakov, A.; Rambaldi, A.; Rudzianskiene, M.; Yeh, S-P.; Alcalá-Peña, M.M.; Alegre Amor, A.; Alizadeh, H.; Bendandi, M.; Brearton, G.; Brown, R.; Cavet, J.; Dally, N.; Egyed, M.; Hernández-Rivas, J.Á.; Kaare, A.; Karsenti, J-M.; Kloczko, J.; Kreisle, W.; Lee, J-J.; Legiec, W.; Machherndl-Spandl, S.; Manda, S.; Mateos, M-V.; Moiseev, I.; Moreb, J.; Nagy, Z.; Nair, S.; Oriol-Rocafiguera, A.; Osswald, M.; Otero-Rodriguez, P.; Peceliunas, V.; Plesner, T.; Rey, P.; Rossi, G.; Stevens, D.; Suriu, C.; Tarella, C.; Verlinden, A.; Zannetti, A. Melflufen or pomalidomide plus dexamethasone for patients with multiple myeloma refractory to lenalidomide (ocean): a randomised, head-to-head, open-label, phase 3 study. Lancet Haematol., 2022, 9(2), e98-e110.
[http://dx.doi.org/10.1016/S2352-3026(21)00381-1] [PMID: 35032434]
[111]
Ocio, E.M.; Efebera, Y.A.; Hájek, R.; Granell, M.; Maisnar, V.; Straub, J.; Eveillard, J-R.; Karlin, L.; Ribrag, V.; Mateos, M-V.; Oriol, A.; Sydvander, M.; Norin, S.; Mannikko, S.; Pour, L. Anchor (op-104): Melflufen plus dexamethasone (dex) and daratumumab (dara) or bortezomib (btz) in Relapsed/Refractory Multiple Myeloma (rrmm) refractory to an imid and/or a proteasome inhibitor (pi) - updated efficacy and safety. Blood, 2020, 136(Suppl. 1), 9-10.
[http://dx.doi.org/10.1182/blood-2020-135991]

© 2024 Bentham Science Publishers | Privacy Policy