Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Impact of Nanoclays on Polyvinylidene Fluoride Mixed Matrix Membranes for the Efficient Treatment of Oily Wastewater

Author(s): Lukka Thuyavan Yogarathinam, Ahmad Fauzi Ismail*, G. Arthanareeswaran*, Mohd Ariff Bin Azali, Mohd Khairul Naim Bin Ramli and Ashraf Rushdan

Volume 15, Issue 1, 2023

Published on: 31 August, 2022

Page: [35 - 42] Pages: 8

DOI: 10.2174/1876402914666220622095858

Price: $65

Abstract

Background: Membrane technology demonstrates a sustainable methodology for water reclamation from oily wastewater but is prone to fouling during longer filtration runs. In this study, fouling- resistant polyvinylidene fluoride (PVDF) mixed matrix membranes (MMMs) containing nanoclays, such as halloysite (HT) and montmorillonite (MMT), were fabricated for the effective treatment of oily wastewater.

Methods: The phase inversion technique was followed for the fabrication of HT-PVDF and MMTPVDF MMMs. Physiochemical characterization and filtration experiments were studied to evaluate the influence of nanoclays on PVDF membrane performance.

Results: Fourier transform infrared spectroscopy (FTIR) and morphology analyses indicated that both nanoclays were layered and structured with abundant hydrophilic functional groups. The dispersions of HT and MMT were confirmed by surface morphology and topography analysis of PVDF MMMs. The hydrophilicity property was improved in HT-PVDF and MMT-PVDF MMMs, which was evident in the contact angle analysis. Among the membranes, MMT-PVDF MMMs held a higher water permeability of 2.59 x10-8 m/s.kPa. For oil-water filtration, HT-PVDF and MMT-PVDF MMMs displayed higher normalized flux with a maximum rejection of more than 95%.

Conclusion: Overall, MMT would be a cost-effective nanofiller for developing antifouling PVDF MMMs against oil-water filtration.

Keywords: Fouling , halloysite , montmorillonite (MMT) , oil-water filtration polyvinylidene fluoride , Nanoclays , mixed matrix membranes.

[1]
Zhong, L.; Sun, C.; Yang, F.; Dong, Y. Superhydrophilic spinel ceramic membranes for oily emulsion wastewater treatment. J. Water Process Eng., 2021, 42, 102161.
[http://dx.doi.org/10.1016/j.jwpe.2021.102161]
[2]
Qu, F.; Cao, A.; Yang, Y.; Mahmud, S.; Su, P.; Yang, J.; He, Z.; Lai, Q.; Zhu, L.; Tu, Z.; Wang, Q.; Xiong, Z.; Zhao, S. Hierarchically superhydrophilic poly(vinylidene fluoride) membrane with self-cleaning fabricated by surface mineralization for stable separation of oily wastewater. J. Membr. Sci., 2021, 640, 119864.
[http://dx.doi.org/10.1016/j.memsci.2021.119864]
[3]
Zhang, B.; Zhang, S.; Wu, Y.; Hong, X.; Liang, Y.; Wang, T.; Qiu, J. Enhanced separation performance of microfiltration carbon membranes for oily wastewater treatment by an air oxidation strategy. Chem. Eng. Process., 2021, 169, 108620.
[http://dx.doi.org/10.1016/j.cep.2021.108620]
[4]
Tomczak, W.; Gryta, M. Application of ultrafiltration ceramic membrane for separation of oily wastewater generated by maritime transportation. Separ. Purif. Tech., 2021, 261, 118259.
[http://dx.doi.org/10.1016/j.seppur.2020.118259]
[5]
Ullah, A.; Tanudjaja, H.J.; Ouda, M.; Hasan, S.W.; Chew, J.W. Membrane fouling mitigation techniques for oily wastewater: A short review. J. Water Process Eng., 2021, 43, 102293.
[http://dx.doi.org/10.1016/j.jwpe.2021.102293]
[6]
Tang, C.Y.; Yang, Z.; Guo, H.; Wen, J.J.; Nghiem, L.D.; Cornelissen, E. Potable water reuse through advanced membrane technology. Environ. Sci. Technol., 2018, 52(18), 10215-10223.
[http://dx.doi.org/10.1021/acs.est.8b00562] [PMID: 30137968]
[7]
Awad, E.S.; Sabirova, T.M.; Tretyakova, N.A.; Alsalhy, Q.F.; Figoli, A.; Salih, I.K. A mini-review of enhancing ultrafiltration membranes (Uf) for wastewater treatment: Performance and stability. ChemEngineering., 2021, 5(3), 34.
[http://dx.doi.org/10.3390/chemengineering5030034]
[8]
Ahmad, T.; Guria, C.; Mandal, A. A review of oily wastewater treatment using ultrafiltration membrane: A parametric study to enhance the membrane performance. J. Water Process Eng., 2020, 36, 101289.
[http://dx.doi.org/10.1016/j.jwpe.2020.101289]
[9]
Goda, E.S.; Yoon, K.R.; El-sayed, S.H.; Hong, S.E. Halloysite nanotubes as smart flame retardant and economic reinforcing materials: A review. Thermochim. Acta, 2018, 669, 173-184.
[http://dx.doi.org/10.1016/j.tca.2018.09.017]
[10]
Ormanci-Acar, T.; Keskin, B.; Korkut, S.; Mutlu-Salmanlı, O.; Turken, T.; Koseoglu-Imer, D.Y.; Demir, T.U.; Menceloglu, Y.Z.; Unal, S.; Koyuncu, I. Fabrication of halloysite nanotubes embedded thin film nanocomposite membranes for dye removal. J. Appl. Polym. Sci., 2021, 138(38), e50986.
[http://dx.doi.org/10.1002/app.50986]
[11]
Ghanbari, M.; Emadzadeh, D.; Lau, W.J.; Lai, S.O.; Matsuura, T.; Ismail, A.F. Synthesis and characterization of novel Thin Film Nanocomposite (TFN) membranes embedded with halloysite nanotubes (HNTs) for water desalination. Desalination, 2015, 358, 33-41.
[http://dx.doi.org/10.1016/j.desal.2014.11.035]
[12]
Jia, L.; Zhang, X.; Zhu, J.; Cong, S.; Wang, J.; Liu, J.; Zhang, Y. Polyvinyl alcohol-assisted high-flux thin film nanocomposite membranes incorporated with halloysite nanotubes for nanofiltration. Environ. Sci. Water Res. Technol., 2019, 5(8), 1412-1422.
[http://dx.doi.org/10.1039/C9EW00227H]
[13]
Vilarinho, F.; Vaz, M.F.; Silva, A.S. The Use of Montmorillonite (MMT) in food nanocomposites: Methods of incorporation, characterization of MMT/polymer nanocomposites and main consequences in the properties. Recent Pat. Food Nutr. Agric., 2020, 11(1), 13-26.
[http://dx.doi.org/10.2174/2212798410666190401160211] [PMID: 30931867]
[14]
Ahmad, T.; Guria, C.; Mandal, A. Synthesis, characterization and performance studies of mixed-matrix poly(vinyl chloride)-bentonite ultrafiltration membrane for the treatment of saline oily wastewater. Process Saf. Environ. Prot., 2018, 116, 703-717.
[http://dx.doi.org/10.1016/j.psep.2018.03.033]
[15]
Chen, Z.; Luo, S.; Yao, L.; Zhang, Y.; Lin, Z.; Wang, S. The inductive effect of montmorillonite/polyether sulfone membrane during the ion diffusion process. Appl. Clay Sci., 2021, 203, 106002.
[http://dx.doi.org/10.1016/j.clay.2021.106002]
[16]
Hashemifard, S.A.; Ismail, A.F.; Matsuura, T. Effects of montmorillonite nano-clay fillers on PEI mixed matrix membrane for CO2 removal. Chem. Eng. J., 2011, 170(1), 316-325.
[http://dx.doi.org/10.1016/j.cej.2011.03.063]
[17]
Wang, P.; Ma, J.; Shi, F.; Ma, Y.; Wang, Z.; Zhao, X. Behaviors and effects of differing dimensional nanomaterials in water filtration membranes through the classical phase inversion process: A review. Ind. Eng. Chem. Res., 2013, 52(31), 10355-10363.
[http://dx.doi.org/10.1021/ie303289k]
[18]
Kang, G.; Cao, Y. Application and modification of poly(vinylidene fluoride) (PVDF) membranes – A review. J. Membr. Sci., 2014, 463, 145-165.
[http://dx.doi.org/10.1016/j.memsci.2014.03.055]
[19]
Otitoju, T.A.; Ahmad, A.L.; Ooi, B.S. Polyvinylidene fluoride (PVDF) membrane for oil rejection from oily wastewater: A performance review. J. Water Process Eng., 2016, 14, 41-59.
[http://dx.doi.org/10.1016/j.jwpe.2016.10.011]
[20]
Subramaniam, M.N.; Goh, P.S.; Lau, W.J.; Abidin, M.N.Z.; Mansur, S.; Ng, B.C.; Ismail, A.F. Optimizing the spinning parameter of titania nanotube-boron incorporated PVDF dual-layered hollow fiber membrane for synthetic AT-POME treatment. J. Water Process Eng., 2020, 36, 101372.
[http://dx.doi.org/10.1016/j.jwpe.2020.101372]
[21]
Koromilas, N.D.; Anastasopoulos, C.; Oikonomou, E.K.; Kallitsis, J.K. Preparation of porous polymeric membranes based on a pyridine containing aromatic polyether sulfone. Polymers, (Basel), 2019, 11(1), 59.
[http://dx.doi.org/10.3390/polym11010059] [PMID: 30960043]
[22]
Le Ba, T.; Alkurdi, A.Q.; Lukács, I.E.; Molnár, J.; Wongwises, S.; Gróf, G.; Szilágyi, I.M. A novel experimental study on the rheological properties and thermal conductivity of halloysite nanofluids. Nanomaterials, (Basel), 2020, 10(9), 1-14.
[http://dx.doi.org/10.3390/nano10091834] [PMID: 32937934]
[23]
Tireli, A.A.; Guimarães, I.R.; Terra, J.C.; da Silva, R.R.; Guerreiro, M.C. Fenton-like processes and adsorption using iron oxide-pillared clay with magnetic properties for organic compound mitigation. Environ. Sci. Pollut. Res. Int., 2015, 22(2), 870-881.
[http://dx.doi.org/10.1007/s11356-014-2973-x] [PMID: 24809496]
[24]
Kang, H.; Liu, X.; Zhang, S.; Li, J. Functionalization of halloysite nanotubes (HNTs) via mussel-inspired surface modification and silane grafting for HNTs/soy protein isolate nanocomposite film preparation. RSC Adv., 2017, 7(39), 24140-24148.
[http://dx.doi.org/10.1039/C7RA02987J]
[25]
Dehghankar, M.; Mohammadi, T.; Tavakolmoghadam, M.; Tofighy, M.A. Polyvinylidene fluoride/nanoclays (cloisite 30B and palygorskite) mixed matrix membranes with improved performance and antifouling properties. Ind. Eng. Chem. Res., 2021, 60(32), 12078-12091.
[http://dx.doi.org/10.1021/acs.iecr.1c01656]
[26]
Ajibade, T.F.; Tian, H.; Hassan Lasisi, K.; Xue, Q.; Yao, W.; Zhang, K.; Multifunctional, P.A.N. UF membrane modified with 3D-MXene/O-MWCNT nanostructures for the removal of complex oil and dyes from industrial wastewater. Separ. Purif. Tech., 2021, 275, 119135.
[http://dx.doi.org/10.1016/j.seppur.2021.119135]
[27]
da Silva, V.L.; Ribeiro, L.S.; de Oliveira Freitas, J.C.; da Silva, D.N.N.; de Carvalho, L.S.; Rodrigues, M.A.F.; Wanderley Neto, A.O. Application of SDS surfactant microemulsion for removal of filter cake of oil-based drilling fluid: Influence of cosurfactant. J. Pet. Explor. Prod. Technol., 2020, 10(7), 2845-2856.
[http://dx.doi.org/10.1007/s13202-020-00952-y]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy