[1]
Sato, Y.; Nakamura, T.; Yamada, Y.; Harashima, H. The nanomedicine rush: New strategies for unmet medical needs based on innovative nano DDS. J. Control. Release, 2021, 330, 305-316.
[http://dx.doi.org/10.1016/j.jconrel.2020.12.032] [PMID: 33358975]
[http://dx.doi.org/10.1016/j.jconrel.2020.12.032] [PMID: 33358975]
[2]
Yamada, Y.; Sato, Y.; Nakamura, T.; Harashima, H. Evolution of drug delivery system from viewpoint of controlled intracellular trafficking and selective tissue targeting toward future nanomedicine. J. Control. Release, 2020, 327, 533-545.
[http://dx.doi.org/10.1016/j.jconrel.2020.09.007] [PMID: 32916227]
[http://dx.doi.org/10.1016/j.jconrel.2020.09.007] [PMID: 32916227]
[3]
Doppalapudi, S.; Jain, A.; Domb, A.J.; Khan, W. Biodegradable polymers for targeted delivery of anti-cancer drugs. Expert Opin. Drug Deliv., 2016, 13(6), 891-909.
[http://dx.doi.org/10.1517/17425247.2016.1156671] [PMID: 26983898]
[http://dx.doi.org/10.1517/17425247.2016.1156671] [PMID: 26983898]
[4]
Khan, I.; Gothwal, A.; Sharma, A.K.; Kesharwani, P.; Gupta, L.; Iyer, A.K.; Gupta, U. PLGA nanoparticles and their versatile role in anticancer drug delivery. Crit. Rev. Ther. Drug Carrier Syst., 2016, 33(2), 159-193.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2016015273] [PMID: 27651101]
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2016015273] [PMID: 27651101]
[5]
Dinarvand, R.; Sepehri, N.; Manoochehri, S.; Rouhani, H.; Atyabi, F. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int. J. Nanomedicine, 2011, 6, 877-895.
[http://dx.doi.org/10.2147/IJN.S18905] [PMID: 21720501]
[http://dx.doi.org/10.2147/IJN.S18905] [PMID: 21720501]
[6]
Sadat Tabatabaei Mirakabad, F.; Nejati-Koshki, K.; Akbarzadeh, A.; Yamchi, M.R.; Milani, M.; Zarghami, N.; Zeighamian, V.; Rahimzadeh, A.; Alimohammadi, S.; Hanifehpour, Y.; Joo, S.W. PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac. J. Cancer Prev., 2014, 15(2), 517-535.
[http://dx.doi.org/10.7314/APJCP.2014.15.2.517] [PMID: 24568455]
[http://dx.doi.org/10.7314/APJCP.2014.15.2.517] [PMID: 24568455]
[7]
Rezvantalab, S.; Drude, N.I.; Moraveji, M.K.; Güvener, N.; Koons, E.K.; Shi, Y.; Lammers, T.; Kiessling, F. PLGA-Based nanoparticles in cancer treatment. Front. Pharmacol., 2018, 9, 1260.
[http://dx.doi.org/10.3389/fphar.2018.01260] [PMID: 30450050]
[http://dx.doi.org/10.3389/fphar.2018.01260] [PMID: 30450050]
[8]
Chiu, H.I.; Samad, N.A.; Fang, L.; Lim, V. Cytotoxicity of targeted PLGA nanoparticles: A systematic review. RSC Advances, 2021, 11(16), 9433-9449.
[http://dx.doi.org/10.1039/D1RA00074H]
[http://dx.doi.org/10.1039/D1RA00074H]
[9]
Gao, X.; Li, L.; Cai, X.; Huang, Q.; Xiao, J.; Cheng, Y. Targeting nanoparticles for diagnosis and therapy of bone tumors: Opportunities and challenges. Biomaterials, 2021, 265, 120404.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120404] [PMID: 32987273]
[http://dx.doi.org/10.1016/j.biomaterials.2020.120404] [PMID: 32987273]
[10]
Lin, W.; Li, C.; Xu, N.; Watanabe, M.; Xue, R.; Xu, A.; Araki, M.; Sun, R.; Liu, C.; Nasu, Y.; Huang, P. Dual-Functional PLGA nanoparticles coloaded with indocyanine green and resiquimod for prostate cancer treatment. Int. J. Nanomedicine, 2021, 16, 2775-2787.
[http://dx.doi.org/10.2147/IJN.S301552] [PMID: 33880023]
[http://dx.doi.org/10.2147/IJN.S301552] [PMID: 33880023]
[11]
Elbatanony, R.S.; Parvathaneni, V.; Kulkarni, N.S.; Shukla, S.K.; Chauhan, G.; Kunda, N.K.; Gupta, V. Afatinib-loaded inhalable PLGA nanoparticles for localized therapy of non-small cell lung cancer (NSCLC)-development and in vitro efficacy. Drug Deliv. Transl. Res., 2021, 11(3), 927-943.
[http://dx.doi.org/10.1007/s13346-020-00802-8] [PMID: 32557351]
[http://dx.doi.org/10.1007/s13346-020-00802-8] [PMID: 32557351]
[12]
Garizo, A.R.; Castro, F.; Martins, C.; Almeida, A.; Dias, T.P.; Fernardes, F.; Barrias, C.C.; Bernardes, N.; Fialho, A.M.; Sarmento, B. p28-functionalized PLGA nanoparticles loaded with gefitinib reduce tumor burden and metastases formation on lung cancer. J. Control. Release, 2021, 337, 329-342.
[http://dx.doi.org/10.1016/j.jconrel.2021.07.035] [PMID: 34311024]
[http://dx.doi.org/10.1016/j.jconrel.2021.07.035] [PMID: 34311024]
[13]
Wang, X.; Cheng, R.; Zhong, Z. Facile fabrication of robust, hyaluronic acid-surfaced and disulfide-crosslinked PLGA nanoparticles for tumor-targeted and reduction-triggered release of docetaxel. Acta Biomater., 2021, 125, 280-289.
[http://dx.doi.org/10.1016/j.actbio.2021.02.044] [PMID: 33677162]
[http://dx.doi.org/10.1016/j.actbio.2021.02.044] [PMID: 33677162]
[14]
Ganguly, S.; Dewanjee, S.; Sen, R.; Chattopadhyay, D.; Ganguly, S.; Gaonkar, R.; Debnath, M.C. Apigenin-loaded galactose tailored PLGA nanoparticles: A possible strategy for liver targeting to treat hepatocellular carcinoma. Colloids Surf. B Biointerfaces, 2021, 204, 111778.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111778] [PMID: 33915380]
[http://dx.doi.org/10.1016/j.colsurfb.2021.111778] [PMID: 33915380]
[15]
Khizar, S.; Ahmad, N.M.; Zine, N.; Jaffrezic-Renault, N. Errachid-el-salhi, A.; Elaissari, A. Magnetic nanoparticles: From synthesis to Theranostic applications. ACS Appl. Nano Mater., 2021, 4(5), 4284-4306.
[http://dx.doi.org/10.1021/acsanm.1c00852]
[http://dx.doi.org/10.1021/acsanm.1c00852]
[16]
Shubhra, Q.T.H.; Guo, K.; Liu, Y.; Razzak, M.; Serajum Manir, M.; Moshiul Alam, A.K.M. Dual targeting smart drug delivery system for multimodal synergistic combination cancer therapy with reduced cardiotoxicity. Acta Biomater., 2021, 131, 493-507.
[http://dx.doi.org/10.1016/j.actbio.2021.06.016] [PMID: 34139367]
[http://dx.doi.org/10.1016/j.actbio.2021.06.016] [PMID: 34139367]
[17]
Mansourizadeh, F.; Sepehri, H.; Khoee, S.; Farimani, M.M.; Delphi, L.; Tousi, M.S. Designing Salvigenin–loaded mPEG-b-PLGA@ Fe3O4 nanoparticles system for improvement of Salvigenin anti-cancer effects on the breast cancer cells, an in vitro study. J. Drug Deliv. Sci. Technol., 2020, 57, 101619.
[http://dx.doi.org/10.1016/j.jddst.2020.101619]
[http://dx.doi.org/10.1016/j.jddst.2020.101619]
[18]
Ledezma, D.K.; Balakrishnan, P.B.; Cano-Mejia, J.; Sweeney, E.E.; Hadley, M.; Bollard, C.M.; Villagra, A.; Fernandes, R. Indocyanine green-nexturastat A-PLGA nanoparticles combine photothermal and epigenetic therapy for melanoma. Nanomaterials (Basel), 2020, 10(1), 161.
[http://dx.doi.org/10.3390/nano10010161] [PMID: 31963449]
[http://dx.doi.org/10.3390/nano10010161] [PMID: 31963449]