Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

Computer-Aided Breast Cancer Diagnosis: Comparative Analysis of Breast Imaging Modalities and Mammogram Repositories

Author(s): Parita Oza*, Paawan Sharma, Samir Patel and Pankaj Kumar

Volume 19, Issue 5, 2023

Published on: 26 August, 2022

Article ID: e210622206247 Pages: 13

DOI: 10.2174/1573405618666220621123156

Price: $65

Abstract

The accurate assessment or diagnosis of breast cancer depends on image acquisition and image analysis and interpretation. The expert radiologist makes image interpretation, and this process has been greatly benefited by computer technology. For image acquisition, various imaging modalities have been developed and used over the years. This research examines several imaging modalities and their associated benefits and drawbacks. Commonly used parameters such as sensitivity and specificity are also offered to evaluate the usefulness of different imaging modalities. The main focus of the research is on mammograms. Despite the availability of breast cancer datasets of imaging modalities such as MRI, ultrasounds, and thermograms, mammogram datasets are used mainly by the domain researcher. They are considered an international gold standard for the early detection of breast cancer. We discussed and analyzed widely used and publicly available mammogram repositories. We further discussed some common key constraints related to mammogram datasets to develop the deep learningbased computer-aided diagnosis (CADx) systems for breast cancer. The ideas for their improvements have also been presented.

Keywords: Breast cancer, Computer-Aided Diagnosis, Deep Learning, Imaging Modalities, Mammograms

Graphical Abstract

[2]
Henry NL, Shah PD, Haider I, Freer PE, Jagsi R, Sabel MS. Cancer of the breast. Abeloff’s Clinical Oncology. Elsevier 2020; pp. 1560-603.
[http://dx.doi.org/10.1016/B978-0-323-47674-4.00088-8]
[4]
Lee RS, Gimenez F, Hoogi A, Miyake KK, Gorovoy M, Rubin DL. A curated mammography data set for use in computer-aided detection and diagnosis research. Sci Data 2017; 4(1): 170177.
[http://dx.doi.org/10.1038/sdata.2017.177] [PMID: 29257132]
[5]
Hadjiiski L, Sahiner B, Chan H-P. Advances in computer-aided diagnosis for breast cancer. Curr Opin Obstet Gynecol 2006; 18(1): 64-70.
[http://dx.doi.org/10.1097/01.gco.0000192965.29449.da] [PMID: 16493263]
[6]
Pillai R, Oza P, Sharma P. Review of machine learning techniques in health care. Proceedings of ICRIC 2019; 103-1.
[http://dx.doi.org/10.1007/978-3-030-29407-6_9]
[7]
Oza P, Sharma P, Patel S. Machine learning applications for computer- aided medical diagnostics Proceedings of Second International Conference on Computing, Communications, and Cyber-Security. 377-92.
[http://dx.doi.org/10.1007/978-981-16-0733-2_26]
[8]
Oza P, Shah Y, Vegda M. A comprehensive study of mammogram classification techniques.Tracking and Preventing Diseases with Artificial Intelligence. 217-38.
[http://dx.doi.org/10.1007/978-3-030-76732-7_10]
[9]
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 521(7553): 436-44.
[10]
Tariq M, Iqbal S, Ayesha H, Abbas I, Ahmad KT, Niazi MFK. Medical image based breast cancer diagnosis: State of the art and future directions. Expert Syst Appl 2021; 167: 114095.
[http://dx.doi.org/10.1016/j.eswa.2020.114095]
[11]
Roslidar R, Rahman A, Muharar R, et al. A review on recent progress in thermal imaging and deep learning approaches for breast cancer detection. IEEE Access 2020; 8: 116176-94.
[http://dx.doi.org/10.1109/ACCESS.2020.3004056]
[12]
Sree SV, Ng EY-K, Acharya RU, Faust O. Breast imaging: A survey. World J Clin Oncol 2013; 2(4): 171.
[13]
Islam MS, Kaabouch N, Hu WC. A survey of medical imaging techniques used for breast cancer detection. IEEE International Conference on Electro-Information Technology, EIT 2013; 1-5.
[http://dx.doi.org/10.1109/EIT.2013.6632694]
[14]
Guo R, Lu G, Qin B, Fei B. Ultrasound imaging technologies for breast cancer detection and management: A review. Ultrasound Med Biol 2018; 44(1): 37-70.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2017.09.012] [PMID: 29107353]
[15]
Carkaci S, Santiago L, Adrada BE, Whitman GJ. Screening for breast cancer with sonography. Semin Roentgenol 2011; 46(4): 285-91.
[http://dx.doi.org/10.1053/j.ro.2011.06.001] [PMID: 22035671]
[16]
Radhakrishna S, Agarwal S, Parikh PM, et al. Role of magnetic resonance imaging in breast cancer management. South Asian J Cancer 2018; 7(2): 69-71.
[http://dx.doi.org/10.4103/sajc.sajc_104_18] [PMID: 29721466]
[17]
Fass L. Imaging and cancer: A review. Mol Oncol 2008; 2(2): 115-52.
[http://dx.doi.org/10.1016/j.molonc.2008.04.001] [PMID: 19383333]
[18]
Schilling K, Narayanan D, Kalinyak J. Effect of breast density, menopausal status, and hormone use in high resolution positron emission mammography. Radiol Soc North Am 2008.
[19]
Iranmakani S, Mortezazadeh T, Sajadian F, et al. A review of various modalities in breast imaging: Technical aspects and clinical outcomes. Egypt J Radiol Nucl Med 2020; 51: 1-22.
[20]
Surendiran B, Vadivel A. Mammogram mass classification using various geometric shape and margin features for early detection of breast cancer. Int J Med Eng Inform 2012; 4(1): 36-54.
[http://dx.doi.org/10.1504/IJMEI.2012.045302]
[21]
Oza P, Sharma P, Patel S, Bruno A. A bottom-up review of image analysis methods for suspicious region detection in mammograms. J Imaging 2021; 7(9): 190.
[http://dx.doi.org/10.3390/jimaging7090190] [PMID: 34564116]
[22]
Popli MB, Teotia R, Narang M, Krishna H. Breast positioning during mammography: Mistakes to be avoided. Breast cancer: basic and clinical research . 2014; p. 8.
[23]
Bassett LW, Hirbawi IA, DeBruhl N, Hayes MK. Mammographic positioning: Evaluation from the view box. Radiology 1993; 188(3): 803-6.
[http://dx.doi.org/10.1148/radiology.188.3.8351351] [PMID: 8351351]
[24]
Eklund G. The art of mammographic positioning. Radiological diagnosis of breast diseases . 2000; pp. 75-88.
[http://dx.doi.org/10.1007/978-3-642-60919-0_6]
[25]
Heath M, Bowyer K, Kopans D, et al. Current status of the digital database for screening mammography. Digital mammography . Springer 1998; pp. 457-60.
[http://dx.doi.org/10.1007/978-94-011-5318-8_75]
[26]
Moreira IC, Amaral I, Domingues I, Cardoso A, Cardoso MJ, Cardoso JS. INbreast: toward a full-field digital mammographic database. Acad Radiol 2012; 19(2): 236-48.
[http://dx.doi.org/10.1016/j.acra.2011.09.014] [PMID: 22078258]
[27]
Oliveira JE, Gueld MO, Araujo AA, Ott ´B, Deserno TM. Toward a standard reference database for computer-aided mammography.Medical imaging 2008: Computer-aided diagnosis. International Society for Optics and Photonics 2008; 6915: 69151Y.
[http://dx.doi.org/10.1117/12.770325]
[28]
Lopez M, Posada N, Moura DC, et al. Bcdr: a breast cancer digital repository. 15th International conference on experimental mechanics. 1215.
[29]
The mammographic image analysis society digital mammogram database. Digital Mammo 1994; 375-86.
[30]
Bruno A, Ardizzone E, Vitabile S, Midiri M. A novel solution based on scale invariant feature transform descriptors and deep learning for the detection of suspicious regions in mammogram images. J Med Signals Sens 2020; 10(3): 158-73.
[PMID: 33062608]
[31]
Dembrower K, Lindholm P, Strand F. A multi-million mammography image dataset and population-based screening cohort for the training and evaluation of deep neural networks the cohort of screen-aged women (csaw). J Digit Imaging 2019; 1-6.
[PMID: 31520277]
[32]
Matsoukas C, Hernandez AB, Liu Y, et al. Adding seemingly uninformative labels helps in low data regimes. In: Iii HD, Singh A, Eds. Proceedings of the 37th International Conference on Machine Learning. 119: 6775-84.
[33]
Lindholm P, Strand F. Introducing the multimillion image dataset from the population-based cohort of screen-age women (csaw) as a platform for deep learning algorithm training and validation. 2018 Conference on machine intelligence in medical imaging 9.
[34]
Abdelhafiz D, Yang C, Ammar R, Nabavi S. Deep convolutional neural networks for mammography: Advances, challenges and applications. BMC Bioinformatics 2019; 20(11) (Suppl. 11): 281.
[http://dx.doi.org/10.1186/s12859-019-2823-4] [PMID: 31167642]
[35]
Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018; 9(4): 611-29.
[http://dx.doi.org/10.1007/s13244-018-0639-9] [PMID: 29934920]
[36]
Jimenez-Gaona Y. Rodr’ıguez-Alvarez ´MJ, Lakshminarayanan V. Deep-learning-based computer-aided systems for breast cancer imaging: A critical review. Appl Sci (Basel) 2020; 10(22): 8298.
[http://dx.doi.org/10.3390/app10228298]
[37]
Burt JR, Torosdagli N, Khosravan N, et al. Deep learning beyond cats and dogs: Recent advances in diagnosing breast cancer with deep neural networks. Br J Radiol 2018; 91(1089): 20170545.
[http://dx.doi.org/10.1259/bjr.20170545] [PMID: 29565644]
[38]
Zhong Z, Zheng L, Kang G, Li S, Yang Y. Random erasing data augmentation. Proc Conf AAAI Artif Intell 2020; 34(7): 13001-8.
[http://dx.doi.org/10.1609/aaai.v34i07.7000]
[39]
Hussain Z, Gimenez F, Yi D, Rubin D. Differential data augmentation techniques for medical imaging classification tasks. AMIA Annual Symposium Proceedings 2017; 979.
[40]
Lopez F. Class imbalance: Random sampling and data augmentation with imbalancedlearn. https://towardsdatascience.com/2021
[41]
Zhang C. Medical image classification under class imbalance 2019.
[42]
Rahman MM, Davis DN. Addressing the class imbalance problem in medical datasets. Int J Mach Learn Comput 2013; 3(2): 224-8.
[http://dx.doi.org/10.7763/IJMLC.2013.V3.307]
[43]
Johnson JM, Khoshgoftaar TM. Survey on deep learning with class imbalance. J Big Data 2019; 6(1): 1-54.
[http://dx.doi.org/10.1186/s40537-019-0192-5]
[44]
Kaur H, Pannu HS, Malhi AK. A systematic review on imbalanced data challenges in machine learning: Applications and solutions. ACM Comput Surv 2019; 52(4): 1-36. [CSUR].
[45]
Ren P, Xiao Y, Chang X, et al. A survey of deep active learning. ACM Comput Surv 2021; 54(9): 1-40.
[http://dx.doi.org/10.1145/3472291]
[46]
Roy N, McCallum A. Toward optimal active learning through monte carlo estimation of error reduction. Williamstown: ICML 2001; pp. 441-8.
[47]
Su H, Yin Z, Huh S, Kanade T, Zhu J. Interactive cell segmentation based on active and semisupervised learning. IEEE Trans Med Imaging 2016; 35(3): 762-77.
[http://dx.doi.org/10.1109/TMI.2015.2494582] [PMID: 26529749]
[48]
Melendez J, van Ginneken B, Maduskar P, Philipsen RHHM, Ayles H, Sanchez CI. On combining multiple-instance learning and active learning for computer-aided detection of tuberculosis. IEEE Trans Med Imaging 2016; 35(4): 1013-24.
[http://dx.doi.org/10.1109/TMI.2015.2505672] [PMID: 26660889]
[49]
Suk H-I, Shen D. Deep learning-based feature representation for ad/mci classification. International Conference on Medical Image Compu-ting and Computer-Assisted Intervention. 583-90.
[http://dx.doi.org/10.1007/978-3-642-40763-5_72]
[50]
Desai SD, Giraddi S, Verma N, Gupta P, Ramya S. Breast cancer detection using gan for limited labeled dataset. 12th International Conference on Computational Intelligence and Communication Networks (CICN) 2020; 34-9.
[http://dx.doi.org/10.1109/CICN49253.2020.9242551]
[51]
Shen L, Margolies LR, Rothstein JH, Fluder E, McBride R, Sieh W. Deep learning to improve breast cancer detection on screening mammography. Sci Rep 2019; 9(1): 12495.
[http://dx.doi.org/10.1038/s41598-019-48995-4] [PMID: 31467326]
[52]
Guan S, Loew M. Breast cancer detection using synthetic mammograms from generative adversarial networks in convolutional neural net-works. J Med Imaging (Bellingham) 2019; 6(3): 031411.
[http://dx.doi.org/10.1117/1.JMI.6.3.031411] [PMID: 30915386]
[53]
Gan based data augmentation for enhanced tumor classification. 4th International Conference on Computer, Communication and Signal Processing (ICCCSP). 2020; pp. 1-5.
[54]
Geras KJ, Wolfson S, Shen Y, et al. High-resolution breast cancer screening with multiview deep convolutional neural networks. arXiv preprint arXiv:170307047 2017.
[55]
Yi D, Sawyer RL, Cohn D III, et al. Optimizing and visualizing deep learning for benign/malignant classification in breast tumors. arXiv preprint arXiv:170506362 2017.
[56]
Oyelade ON, Ezugwu AE. A deep learning model using data augmentation for detection of architectural distortion in whole and patches of images. Biomed Signal Process Control 2021; 65: 102366.
[http://dx.doi.org/10.1016/j.bspc.2020.102366]
[57]
Soulami KB, Kaabouch N, Saidi MN, Tamtaoui A. Breast cancer: One-stage automated detection, segmentation, and classification of digital mammograms using unet model based-semantic segmentation. Biomed Signal Process Control 2021; 66: 102481.
[http://dx.doi.org/10.1016/j.bspc.2021.102481]
[58]
Huang M-L, Lin T-Y. Considering breast density for the classification of benign and malignant mammograms. Biomed Signal Process Control 2021; 67: 102564.
[http://dx.doi.org/10.1016/j.bspc.2021.102564]
[59]
Ting FF, Tan YJ, Sim KS. Convolutional neural network improvement for breast cancer classification. Expert Syst Appl 2019; 120: 103-15.
[http://dx.doi.org/10.1016/j.eswa.2018.11.008]
[60]
Al-Antari MA, Han S-M, Kim T-S. Evaluation of deep learning detection and classification towards computer-aided diagnosis of breast lesions in digital X-ray mammograms. Comput Methods Programs Biomed 2020; 196: 105584.
[http://dx.doi.org/10.1016/j.cmpb.2020.105584] [PMID: 32554139]
[61]
Al-Masni MA, Al-Antari MA, Park J-M, et al. Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. Comput Methods Programs Biomed 2018; 157: 85-94.
[http://dx.doi.org/10.1016/j.cmpb.2018.01.017] [PMID: 29477437]
[62]
Gallego-Posada J, Montoya-Zapata D, Quintero-Montoya O, Montoya-Zapa D. Detection and diagnosis of breast tumors using deep convo-lutional neural networks. Conference Proceedings of XVII Latin American Conference in Automatic Control. 17
[63]
Jadoon MM, Zhang Q, Haq IU, Butt S, Jadoon A. Three-class mammogram classification based on descriptive cnn features. BioMed research international 2017; 2017
[http://dx.doi.org/10.1155/2017/3640901]
[64]
Chougrad H, Zouaki H, Alheyane O. Convolutional neural networks for breast cancer screening: transfer learning with exponential decay. arXiv preprint arXiv:171110752 2017.
[65]
Kooi T, Litjens G, van Ginneken B, et al. Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal 2017; 35: 303-12. [a
[http://dx.doi.org/10.1016/j.media.2016.07.007] [PMID: 27497072 ]
[66]
Sun W, Tseng TB, Zhang J, Qian W. Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data. Comput Med Imaging Graph 2017; 57: 4-9.
[http://dx.doi.org/10.1016/j.compmedimag.2016.07.004] [PMID: 27475279]
[67]
Ertosun MG, Rubin DL. Probabilistic visual search for masses within mammography images using deep learning. 2015; IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 1310-5.
[http://dx.doi.org/10.1109/BIBM.2015.7359868 ]
[68]
Chougrad H, Zouaki H, Alheyane O. Deep Convolutional Neural Networks for breast cancer screening. Comput Methods Programs Biomed 2018; 157: 19-30.
[http://dx.doi.org/10.1016/j.cmpb.2018.01.011] [PMID: 29477427]
[69]
Wang J, Yang Y. A context-sensitive deep learning approach for microcalcification detection in mammograms. Pattern Recognit 2018; 78: 12-22.
[http://dx.doi.org/10.1016/j.patcog.2018.01.009] [PMID: 30467443]
[70]
Yan Y, Conze P-H, Lamard M, Quellec G, Cochener B, Coatrieux G. Towards improved breast mass detection using dual-view mammogram matching. Med Image Anal 2021; 71: 102083.
[http://dx.doi.org/10.1016/j.media.2021.102083] [PMID: 33979759]
[71]
Kooi T, van Ginneken B, Karssemeijer N, den Heeten A. Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network. Med Phys 2017; 44(3): 1017-1027. b.
[http://dx.doi.org/10.1002/mp.12110] [PMID: 28094850]
[72]
Ali S, Majid A, Javed SG, Sattar M. Can-CSC-GBE: Developing cost-sensitive classifier with gentleboost ensemble for breast cancer classi-fication using protein amino acids and imbalanced data. Comput Biol Med 2016; 73: 38-46.
[http://dx.doi.org/10.1016/j.compbiomed.2016.04.002] [PMID: 27061661]
[73]
Krawczyk B, Galar M. Jeleń Ł, Herrera F. Evolutionary undersampling boosting for imbalanced classification of breast cancer malignancy. Appl Soft Comput 2016; 38: 714-26.
[http://dx.doi.org/10.1016/j.asoc.2015.08.060]
[74]
Rani KU, Ramadevi GN, Lavanya D. Performance of synthetic minority oversampling technique on imbalanced breast cancer data. 2016; 3rd International Conference on Computing for Sustainable Global Development (INDIACom) 1623-7.
[75]
Shen R, Yan K, Tian K, Jiang C, Zhou K. Breast mass detection from the digitized x-ray mammograms based on the combination of deep active learning and self-paced learning. Future Gener Comput Syst 2019; 101: 668-79.
[http://dx.doi.org/10.1016/j.future.2019.07.013]
[76]
Yang Z, Wu W, Zhang J, Zhao Y, Gu L. Deep co-training active learning for mammographic images classification. 2020; Chinese Automa-tion Congress (CAC) 1059-62.
[http://dx.doi.org/10.1109/CAC51589.2020.9327642]
[77]
Bressan RS, Bugatti PH, Saito PT. Breast cancer diagnosis through active learning in contentbased image retrieval. Neurocomputing 2019; 357: 1-10.
[http://dx.doi.org/10.1016/j.neucom.2019.05.041]
[78]
Shen T, Hao K, Gou C, Wang F-Y. Mass image synthesis in mammogram with contextual information based on gans. Computer Methods and Programs in Biomedicine 2021; 202: 106019. b
[http://dx.doi.org/10.1016/j.cmpb.2021.106019]
[79]
Singh VK, Rashwan HA, Romani S, et al. Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network. Expert Syst Appl 2020; 139: 112855.
[http://dx.doi.org/10.1016/j.eswa.2019.112855]
[80]
Muramatsu C, Nishio M, Goto T, et al. Improving breast mass classification by shared data with domain transformation using a generative adversarial network. Comput Biol Med 2020; 119: 103698.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103698] [PMID: 32339129]
[81]
Wu E, Wu K, Cox D, Lotter W. Conditional infilling gans for data augmentation in mammogram classification. Image analysis for mov-ing organ, breast, and thoracic images. Springer 2018; pp. 98-106.
[http://dx.doi.org/10.1007/978-3-030-00946-5_11]
[82]
Wu E, Wu K, Lotter W. Synthesizing lesions using contextual gans improves breast cancer classification on mammograms. arXiv preprint arXiv:200600086 2020.
[83]
Oza P, Sharma P, Patel S, Kumar P. Deep convolutional neural networks for computer-aided breast cancer diagnostic: A survey. Neural Comput Appl 2022; 34(3): 1815-36.
[http://dx.doi.org/10.1007/s00521-021-06804-y]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy