Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Development of a Ranibizumab Biosimilar using Bovine Milk-Derived Exosomes for the Inhibition of Corneal Neovascularization

Author(s): Zhou-Nalei, Li-Yanchao, Qiao-Xinrui, Yang-Xinya, Ma-Siqi, Shi-Junfang and An-Jianbin*

Volume 20, Issue 9, 2023

Published on: 20 August, 2022

Page: [1308 - 1317] Pages: 10

DOI: 10.2174/1570180819666220620103339

Price: $65

Abstract

Introduction: Corneal neovascularization disease is an important clinical symptom of many ocular surface disorders, and the use of anti-Vascular Endothelial Growth Factor (anti- VEGF) drugs is considered the most promising treatment method.

Method: Ranibizumab (RB) is one of the few anti-VEGF drugs approved by the FDA in the treatment of ophthalmic diseases, but the special synthetic route leads to a short biological halflife, and therapeutic concentration cannot be maintained for a long time in clinical treatment. Therefore, we aimed to develop low immunogenicity sustained-release system to improve the bioavailability of RB. RB was loaded on bovine milk-derived exosomes (MEXOs), and the in vitro release profile and pharmacokinetic characteristics were detected. RB was continuously released from the MEXOs (2 days, 60 h). The tubular network formation experiment on human umbilical vein endothelial cells showed that the MEXOs enhanced the inhibitory effects of RB on VEGFinduced tube formation, as confirmed by a cell proliferation experiment.

Results: In vivo experiments showed that RB-loaded bovine milk-derived exosomes (RBMEXOs) increased the precorneal residence time and half-life period of RB in New Zealand white rabbits.

Conclusion: These results suggested that RB-MEXOs are conducive to maintaining effective RB concentration In vivo, and their use is a potential strategy for treating corneal vascularization.

Keywords: Ranibizumab, Milk-derived exosomes, Angiogenesis, Sustained release

Graphical Abstract

[1]
Kaminska, G.M.; Niederkorn, J.Y. Spontaneous corneal neovascularization in nude mice. Local imbalance between angiogenic and anti-angiogenic factors. Invest. Ophthalmol. Vis. Sci., 1993, 34(1), 222-230. J
[PMID: 8425828]
[2]
Kumar, J.; Gehra, A.; Sirohi, N. Role of frequency doubled Nd: Yag laser in treatment of corneal neovascularisation. J. Clin. Diagn. Res., 2016, 10(4), NC01-NC04.
[http://dx.doi.org/10.7860/JCDR/2016/17502.7543] [PMID: 27190847]
[3]
Feizi, S.; Azari, A.A.; Safapour, S. Therapeutic approaches for corneal neovascularization. Eye Vis. (Lond.), 2017, 4(1), 28.
[http://dx.doi.org/10.1186/s40662-017-0094-6] [PMID: 29234686]
[4]
Roshandel, D.; Eslani, M.; Baradaran-Rafii, A.; Cheung, A.Y.; Kurji, K.; Jabbehdari, S.; Maiz, A.; Jalali, S.; Djalilian, A.R.; Holland, E.J. Current and emerging therapies for corneal neovascularization. Ocul. Surf., 2018, 16(4), 398-414.
[http://dx.doi.org/10.1016/j.jtos.2018.06.004] [PMID: 29908870]
[5]
Papathanassiou, M.; Theodoropoulou, S.; Analitis, A.; Tzonou, A.; Theodossiadis, P.G. Vascular endothelial growth factor inhibitors for treatment of corneal neovascularization: A meta-analysis. Cornea, 2013, 32(4), 435-444.
[http://dx.doi.org/10.1097/ICO.0b013e3182542613] [PMID: 22668582]
[6]
Zaki, A.A.; Farid, S.F. Subconjunctival bevacizumab for corneal neovascularization. Acta Ophthalmol., 2010, 88(8), 868-871.
[http://dx.doi.org/10.1111/j.1755-3768.2009.01585.x] [PMID: 19519730]
[7]
Kim, S.W.; Ha, B.J.; Kim, E.K.; Tchah, H.; Kim, T.I. The effect of topical bevacizumab on corneal neovascularization. Ophthalmology, 2008, 115(6), e33-e38.
[http://dx.doi.org/10.1016/j.ophtha.2008.02.013] [PMID: 18439681]
[8]
Holash, J.; Davis, S.; Papadopoulos, N.; Croll, S.D.; Ho, L.; Russell, M.; Boland, P.; Leidich, R.; Hylton, D.; Burova, E.; Ioffe, E.; Huang, T.; Radziejewski, C.; Bailey, K.; Fandl, J.P.; Daly, T.; Wiegand, S.J.; Yancopoulos, G.D.; Rudge, J.S. VEGF-Trap: A VEGF blocker with potent antitumor effects. Proc. Natl. Acad. Sci. USA, 2002, 99(17), 11393-11398.
[http://dx.doi.org/10.1073/pnas.172398299] [PMID: 12177445]
[9]
Rodriguez-Fontal, M.; Alfaro, V.; Kerrison, J.B.; Jablon, E.P. Ranibizumab for diabetic retinopathy. Curr. Diabetes Rev., 2009, 5(1), 47-51.
[http://dx.doi.org/10.2174/157339909787314239] [PMID: 19199898]
[10]
Ferrari, G.; Dastjerdi, M.H.; Okanobo, A.; Cheng, S.F.; Amparo, F.; Nallasamy, N.; Dana, R. Topical ranibizumab as a treatment of corneal neovascularization. Cornea, 2013, 32(7), 992-997.
[http://dx.doi.org/10.1097/ICO.0b013e3182775f8d] [PMID: 23407316]
[11]
Yazdi, M.H.; Faramarzi, M.A.; Nikfar, S.; Falavarjani, K.G.; Abdollahi, M. Ranibizumab and aflibercept for the treatment of wet age-related macular degeneration. Expert Opin. Biol. Ther., 2015, 15(9), 1349-1358.
[http://dx.doi.org/10.1517/14712598.2015.1057565] [PMID: 26076760]
[12]
Lowe, J.; Araujo, J.; Yang, J.; Reich, M.; Oldendorp, A.; Shiu, V.; Quarmby, V.; Lowman, H.; Lien, S.; Gaudreault, J.; Maia, M. Ranibizumab inhibits multiple forms of biologically active vascular endothelial growth factor in vitro and in vivo. Exp. Eye Res., 2007, 85(4), 425-430.
[http://dx.doi.org/10.1016/j.exer.2007.05.008] [PMID: 17714704]
[13]
Sarwar, S.; Bakbak, B.; Sadiq, M.A.; Sepah, Y.J.; Shah, S.M.; Ibrahim, M.; Do, D.V.; Nguyen, Q.D. Fusion proteins: Aflibercept (VEGF trap-eye). Retinal Pharmacotherapeutics, 2016, 55, 282-294.
[http://dx.doi.org/10.1159/000439008] [PMID: 26501481]
[14]
Bakri, S.J.; Snyder, M.R.; Reid, J.M.; Pulido, J.S.; Ezzat, M.K.; Singh, R.J. Pharmacokinetics of intravitreal ranibizumab (Lucentis). Ophthalmology, 2007, 114(12), 2179-2182.
[http://dx.doi.org/10.1016/j.ophtha.2007.09.012] [PMID: 18054637]
[15]
Bakri, S.J.; Snyder, M.R.; Reid, J.M.; Pulido, J.S.; Singh, R.J. Pharmacokinetics of intravitreal bevacizumab (Avastin). Ophthalmology, 2007, 114(5), 855-859.
[http://dx.doi.org/10.1016/j.ophtha.2007.01.017] [PMID: 17467524]
[16]
Stewart, M.W.; Rosenfeld, P.J. Predicted biological activity of intravitreal VEGF Trap. Br. J. Ophthalmol., 2008, 92(5), 667-668.
[http://dx.doi.org/10.1136/bjo.2007.134874] [PMID: 18356264]
[17]
Kamaleddin, M.A. Nano-ophthalmology: Applications and considerations. Nanomedicine, 2017, 13(4), 1459-1472.
[http://dx.doi.org/10.1016/j.nano.2017.02.007] [PMID: 28232288]
[18]
Nana-Sinkam, S.P.; Acunzo, M.; Croce, C.M.; Wang, K. Extracellular vesicle biology in the pathogenesis of lung disease. Am. J. Respir. Crit. Care Med., 2017, 196(12), 1510-1518.
[http://dx.doi.org/10.1164/rccm.201612-2457PP] [PMID: 28678586]
[19]
Zhou, F.; Paz, H.A.; Sadri, M.; Cui, J.; Kachman, S.D.; Fernando, S.C.; Zempleni, J. Dietary bovine milk exosomes elicit changes in bacterial communities in C57BL/6 mice. Am. J. Physiol. Gastrointest. Liver Physiol., 2019, 317(5), G618-G624.
[http://dx.doi.org/10.1152/ajpgi.00160.2019] [PMID: 31509432]
[20]
Trombetta, D.; Sparaneo, A.; Fabrizio, F.P.; Muscarella, L.A. Liquid biopsy and NSCLC. Lung Cancer Manag., 2016, 5(2), 91-104.
[http://dx.doi.org/10.2217/lmt-2016-0006] [PMID: 30643553]
[21]
Li, X.; Wang, S.; Zhu, R.; Li, H.; Han, Q.; Zhao, R.C. Lung tumor exosomes induce a pro-inflammatory phenotype in mesenchymal stem cells via NFκB-TLR signaling pathway. J. Hematol. Oncol., 2016, 9(1), 1-12. J
[http://dx.doi.org/10.1186/s13045-016-0269-y]
[22]
Carobolante, G.; Mantaj, J.; Ferrari, E.; Vllasaliu, D. Cow milk and intestinal epithelial cell-derived extracellular vesicles as systems for enhancing oral drug delivery. Pharmaceutics, 2020, 12(3), 226.
[http://dx.doi.org/10.3390/pharmaceutics12030226] [PMID: 32143503]
[23]
Lin, D.; Chen, T.; Xie, M.; Li, M.; Zeng, B.; Sun, R.; Zhu, Y.; Ye, D.; Wu, J.; Sun, J.; Xi, Q.; Jiang, Q.; Zhang, Y. Oral administration of bovine and porcine milk exosome alter miRNAs profiles in piglet serum. Sci. Rep., 2020, 10(1), 6983.
[http://dx.doi.org/10.1038/s41598-020-63485-8] [PMID: 32332796]
[24]
Zeng, B.; Chen, T.; Xie, M.Y.; Luo, J.Y.; He, J.J.; Xi, Q.Y.; Sun, J.J.; Zhang, Y.L. Exploration of long noncoding RNA in bovine milk exosomes and their stability during digestion in vitro. J. Dairy Sci., 2019, 102(8), 6726-6737.
[http://dx.doi.org/10.3168/jds.2019-16257] [PMID: 31155266]
[25]
Filipe, V.; Hawe, A.; Jiskoot, W. Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm. Res., 2010, 27(5), 796-810.
[http://dx.doi.org/10.1007/s11095-010-0073-2] [PMID: 20204471]
[26]
Melnik, B.C.; Schmitz, G. Exosomes of pasteurized milk: Potential pathogens of Western diseases. J. Transl. Med., 2019, 17(1), 3.
[http://dx.doi.org/10.1186/s12967-018-1760-8] [PMID: 30602375]
[27]
Sedykh, S.E.; Burkova, E.E.; Purvinsh, L.V. Milk exosomes: Isolation, biochemistry, morphology, and perspectives of use Extracellular Vesicles and Their Importance in Human Health , 2020; pp. 1-28. J
[28]
Somiya, M.; Yoshioka, Y.; Ochiya, T. Biocompatibility of highly purified bovine milk-derived extracellular vesicles. J. Extracell. Vesicles, 2018, 7(1), 1440132.
[http://dx.doi.org/10.1080/20013078.2018.1440132] [PMID: 29511463]
[29]
Betker, J.L.; Angle, B.M.; Graner, M.W.; Anchordoquy, T.J. The potential of exosomes from cow milk for oral delivery. J. Pharm. Sci., 2019, 108(4), 1496-1505.
[http://dx.doi.org/10.1016/j.xphs.2018.11.022] [PMID: 30468828]
[30]
Lee, Y.; El Andaloussi, S.; Wood, M.J. Exosomes and microvesicles: Extracellular vesicles for genetic information transfer and gene therapy. Hum. Mol. Genet., 2012, 21(R1), R125-R134.
[http://dx.doi.org/10.1093/hmg/dds317] [PMID: 22872698]
[31]
Kim, E.K.; Kong, S.J.; Chung, S.K. Comparative study of ranibizumab and bevacizumab on corneal neovascularization in rabbits. Cornea, 2014, 33(1), 60-64.
[http://dx.doi.org/10.1097/ICO.0000000000000007] [PMID: 24240485]
[32]
Lakhal, S.; Wood, M.J. Exosome nanotechnology: An emerging paradigm shift in drug delivery: Exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers. BioEssays, 2011, 33(10), 737-741.
[http://dx.doi.org/10.1002/bies.201100076] [PMID: 21932222]
[33]
Pérez, C.; Griebenow, K. Effect of salts on lysozyme stability at the water-oil interface and upon encapsulation in poly(lactic-co-glycolic) acid microspheres. Biotechnol. Bioeng., 2003, 82(7), 825-832.
[http://dx.doi.org/10.1002/bit.10632] [PMID: 12701149]
[34]
Johansen, P.; Men, Y.; Audran, R.; Corradin, G.; Merkle, H.P.; Gander, B. Improving stability and release kinetics of microencapsulated tetanus toxoid by co-encapsulation of additives. Pharm. Res., 1998, 15(7), 1103-1110.
[http://dx.doi.org/10.1023/A:1011998615267] [PMID: 9688067]
[35]
Ayata, N.; Sezer, A.D.; Bucak, S.; Turanlı, E.T. Preparation and] in vitro characterization of monoclonal antibody ranibizumab conjugated magnetic nanoparticles for ocular drug delivery. Braz. J. Pharm. Sci., 2020, 56, 56. J
[http://dx.doi.org/10.1590/s2175-97902020000118171]
[36]
Hoshikawa, A.; Tagami, T.; Morimura, C.; Fukushige, K.; Ozeki, T. Ranibizumab biosimilar/polyethyleneglycol-conjugated gold nanoparticles as a novel drug delivery platform for age-related macular degeneration. J. Drug Deliv. Sci. Technol., 2017, 38, 45-50. J
[http://dx.doi.org/10.1016/j.jddst.2017.01.004]
[37]
Zhang, M.; Zang, X.; Wang, M.; Li, Z.; Qiao, M.; Hu, H.; Chen, D. Exosome-based nanocarriers as bio-inspired and versatile vehicles for drug delivery: Recent advances and challenges. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(15), 2421-2433.
[http://dx.doi.org/10.1039/C9TB00170K] [PMID: 32255119]
[38]
Munagala, R.; Aqil, F.; Jeyabalan, J.; Gupta, R.C. Bovine milk-derived exosomes for drug delivery. Cancer Lett., 2016, 371(1), 48-61.
[http://dx.doi.org/10.1016/j.canlet.2015.10.020] [PMID: 26604130]
[39]
Kandimalla, R.; Aqil, F.; Tyagi, N.; Gupta, R. Milk exosomes: A biogenic nanocarrier for small molecules and macromolecules to combat cancer. Am. J. Reprod. Immunol., 2021, 85(2), e13349.
[http://dx.doi.org/10.1111/aji.13349] [PMID: 32966664]
[40]
Arntz, O.J.; Pieters, B.C.; Oliveira, M.C.; Broeren, M.G.; Bennink, M.B.; de Vries, M.; van Lent, P.L.; Koenders, M.I.; van den Berg, W.B.; van der Kraan, P.M.; van de Loo, F.A. Oral administration of bovine milk derived extracellular vesicles attenuates arthritis in two mouse models. Mol. Nutr. Food Res., 2015, 59(9), 1701-1712.
[http://dx.doi.org/10.1002/mnfr.201500222] [PMID: 26047123]
[41]
Rahman, M.J.; Regn, D.; Bashratyan, R.; Dai, Y.D. Exosomes released by islet-derived mesenchymal stem cells trigger autoimmune responses in NOD mice. Diabetes, 2014, 63(3), 1008-1020.
[http://dx.doi.org/10.2337/db13-0859] [PMID: 24170696]
[42]
Liu, W.; Borrell, M.A.; Venerus, D.C.; Mieler, W.F.; Kang-Mieler, J.J. Characterization of biodegradable microsphere-hydrogel ocular drug delivery system for controlled and extended release of ranibizumab. Transl. Vis. Sci. Technol., 2019, 8(1), 12-12.
[http://dx.doi.org/10.1167/tvst.8.1.12] [PMID: 30701127]
[43]
Osswald, C.R.; Kang-Mieler, J.J. Controlled and extended in vitro release of bioactive anti-vascular endothelial growth factors from a microsphere-hydrogel drug delivery system. Curr. Eye Res., 2016, 41(9), 1216-1222.
[http://dx.doi.org/10.3109/02713683.2015.1101140] [PMID: 26764892]
[44]
Zen, A A H. In vitro models to study the regulatory roles of retinoids in angiogenesis[M]retinoid and rexinoid signaling; NY: Humana, New York, 2019, pp. 73-83.
[45]
Zhang, Y.; Huang, Q.; Tang, M.; Zhang, J.; Fan, W. Complement factor H expressed by retinal pigment epithelium cells can suppress neovascularization of human umbilical vein endothelial cells: An] in vitro study. PLoS One, 2015, 10(6), e0129945.
[http://dx.doi.org/10.1371/journal.pone.0129945] [PMID: 26091360]
[46]
Suzuki, R.; Yamamoto, H.; Ngan, C.Y.; Ohtsuka, M.; Kitani, K.; Uemura, M.; Nishimura, J.; Takemasa, I.; Mizushima, T.; Sekimoto, M.; Minamoto, T.; Doki, Y.; Mori, M. Inhibition of angiopoietin 2 attenuates lumen formation of tumour-associated vessels in vivo. Int. J. Oncol., 2013, 43(5), 1447-1455.
[http://dx.doi.org/10.3892/ijo.2013.2076] [PMID: 23982687]

© 2025 Bentham Science Publishers | Privacy Policy