Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Design, Synthesis, and Assay of New N-acyl-4-(4-aminoalkoxy- phenyl)- thiazole-2-amine Derivatives as Acetylcholinesterase Inhibitors

Author(s): Chuang Han, Pan-Pan Shang, Yuan Xu, Ben-Ben Wei, Xin-Yuan Guo, Meng-Meng Jian, Kan Yang and Zheng-Yue Ma*

Volume 20, Issue 9, 2023

Published on: 22 August, 2022

Page: [1318 - 1328] Pages: 11

DOI: 10.2174/1570180819666220530155327

Price: $65

Abstract

Background: Thiazoles are an important class of heterocyclic compounds with many biological effects, including anticholinesterase activity.

Objective: The purpose of this work was to synthesize new thiazole derivatives and evaluate as acetylcholinesterase inhibitors (AChEIs) for Alzheimer’s disease.

Methods: A series of new N-acyl-4-(4-aminoalkoxy-phenyl)-thiazole-2-amine derivatives was designed and synthesized. Ellman assay protocol was used for the AchE and BuChE inhibitory activity. To correlate better the drug-like property, the theoretical prediction was calculated using Mol inspiration software 2015 online. The potential binding mode of compounds with AChE and BuChE was investigated by the molecular docking simulation.

Results: All synthesized compounds exhibited a certain inhibitory activity on AChE and 5p had the most effective selective inhibitory effect on AChE. The inhibitory form of 5p on AChE was shown to be a combination of competitive and noncompetitive inhibition, according to enzyme kinetic tests. Docking simulation studies revealed that the binding energy of 5p with AChE was lower than that of it with BuChE, which also explained the selective inhibitory activity of 5p on AChE.

Conclusion: These results provided valuable information for the design of potent AChEIs, and it was believed that 5p could be a promising lead structure for its further development for the treatment of AD.

Keywords: Acetylcholinesterase inhibitor, Alzheimer’s disease, molecular docking simulations, N-acyl-4-(4-aminoalkoxyphenyl)- thiazole-2-amine.

Graphical Abstract

[1]
Shaik, J.B.; Yeggoni, D.P.; Kandrakonda, Y.R.; Penumala, M.; Zinka, R.B.; Kotapati, K.V.; Darla, M.M.; Ampasala, D.R.; Subramanyam, R.; Amooru, D.G. Synthesis and biological evaluation of flavone-8-acrylamide derivatives as potential multi-target-directed anti Alzheimer agents and investigation of binding mechanism with acetylcholinesterase. Bioorg. Chem., 2019, 88, 102960.
[http://dx.doi.org/10.1016/j.bioorg.2019.102960] [PMID: 31102808]
[2]
Kumar, V.; Saha, A.; Roy, K. In silico modeling for dual inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes in Alzheimer’s disease. Comput. Biol. Chem., 2020, 88, 107355.
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107355] [PMID: 32801088]
[3]
Zhao, H.H.; Liu, Y.Q.; Chen, J. Screening acetylcholinesterase inhibitors from traditional Chinese medicines by paper-immobilized enzyme combined with capillary electrophoresis analysis. J. Pharm. Biomed. Anal., 2020, 190, 113547.
[http://dx.doi.org/10.1016/j.jpba.2020.113547] [PMID: 32866747]
[4]
Derabli, C.; Boulebd, H.; Abdelwahab, A.B.; Boucheraine, C.; Zerrouki, S.; Bensouici, C.; Kirsch, G.; Boulcina, R.; Debache, A. Synthesis, biological evaluation and molecular docking studies of novel 2-alkylthiopyrimidino-tacrines as anticholinesterase agents and their DFT calculations. J. Mol. Struct., 2020, 1209, 127902.
[http://dx.doi.org/10.1016/j.molstruc.2020.127902]
[5]
Yamali, C.; Gul, H.I.; Kazaz, C.; Levent, S.; Gulcin, I. Synthesis, structure elucidation, and in vitro pharmacological evaluation of novel polyfluoro substituted pyrazoline type sulfonamides as multi-target agents for inhibition of acetylcholinesterase and carbonic anhydrase I and II enzymes. Bioorg. Chem., 2020, 96, 103627.
[http://dx.doi.org/10.1016/j.bioorg.2020.103627] [PMID: 32058104]
[6]
Se Thoe, E.; Fauzi, A.; Tang, Y.Q.; Chamyuang, S.; Chia, A.Y.Y. A review on advances of treatment modalities for Alzheimer’s disease. Life Sci., 2021, 276, 119129.
[http://dx.doi.org/10.1016/j.lfs.2021.119129] [PMID: 33515559]
[7]
Skrzypek, A.; Matysiak, J.; Karpińska, M.; Czarnecka, K.; Kręcisz, P.; Stary, D.; Kukułowicz, J.; Paw, B.; Bajda, M.; Szymański, P.; Niewiadomy, A. Biological evaluation and molecular docking of novel 1,3,4-thiadiazole-resorcinol conjugates as multifunctional cholinesterases inhibitors. Bioorg. Chem., 2021, 107, 104617.
[http://dx.doi.org/10.1016/j.bioorg.2020.104617] [PMID: 33444983]
[8]
Zarei, S.; Shafiei, M.; Firouzi, M.; Firoozpour, L.; Divsalar, K.; Asadipour, A.; Akbarzadeh, T.; Foroumadi, A. Design, synthesis and biological assessment of new 1-benzyl-4-((4-oxoquinazolin-3(4H)-yl)methyl) pyridin-1-ium derivatives (BOPs) as potential dual inhibitors of acetylcholinesterase and butyrylcholinesterase. Heliyon, 2021, 7(4), e06683.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06683] [PMID: 33869871]
[9]
Reddy, M.V.K.; Rao, K.Y.; Anusha, G.; Kumar, G.M.; Damu, A.G.; Reddy, K.R.; Shetti, N.P.; Aminabhavi, T.M.; Reddy, P.V.G. In vitro evaluation of antioxidant and anticholinesterase activities of novel pyridine, quinoxaline and s-triazine derivatives. Environ. Res., 2021, 199, 111320.
[http://dx.doi.org/10.1016/j.envres.2021.111320] [PMID: 33991570]
[10]
Ma, W.; Bi, J.; Zhao, C.; Gao, Y.; Zhang, G. Design, synthesis and biological evaluation of acridone glycosides as selective BChE inhibitors. Carbohydr. Res., 2020, 491, 107977.
[http://dx.doi.org/10.1016/j.carres.2020.107977] [PMID: 32169593]
[11]
Li, Q.; Yang, H.; Chen, Y.; Sun, H. Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer’s disease. Eur. J. Med. Chem., 2017, 132, 294-309.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.062] [PMID: 28371641]
[12]
Bajda, M.; Łażewska, D.; Godyń, J.; Zaręba, P.; Kuder, K.; Hagenow, S.; Łątka, K.; Stawarska, E.; Stark, H.; Kieć-Kononowicz, K.; Malawska, B. Search for new multi-target compounds against Alzheimer’s disease among histamine H3 receptor ligands. Eur. J. Med. Chem., 2020, 185, 111785.
[http://dx.doi.org/10.1016/j.ejmech.2019.111785] [PMID: 31669851]
[13]
Abdpour, S.; Jalili-Baleh, L.; Nadri, H.; Forootanfar, H.; Bukhari, S.N.A.; Ramazani, A.; Ebrahimi, S.E.S.; Foroumadi, A.; Khoobi, M. Chromone derivatives bearing pyridinium moiety as multi-target-directed ligands against Alzheimer’s disease. Bioorg. Chem., 2021, 110, 104750.
[http://dx.doi.org/10.1016/j.bioorg.2021.104750] [PMID: 33691251]
[14]
Lotfi, S.; Rahmani, T.; Hatami, M.; Pouramiri, B.; Kermani, E.T.; Rezvannejad, E.; Mortazavi, M.; Fathi Hafshejani, S.; Askari, N.; Pourjamali, N.; Zahedifar, M. Design, synthesis and biological assessment of acridine derivatives containing 1,3,4-thiadiazole moiety as novel selective acetylcholinesterase inhibitors. Bioorg. Chem., 2020, 105, 104457.
[http://dx.doi.org/10.1016/j.bioorg.2020.104457] [PMID: 33339082]
[15]
Li, Q.; Xing, S.; Chen, Y.; Liao, Q.; Xiong, B.; He, S.; Lu, W.; Liu, Y.; Yang, H.; Li, Q.; Feng, F.; Liu, W.; Chen, Y.; Sun, H. Discovery and biological evaluation of a novel highly potent selective butyrylcholinsterase inhibitor. J. Med. Chem., 2020, 63(17), 10030-10044.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01129] [PMID: 32787113]
[16]
Saeedi, M.; Mohtadi-Haghighi, D.; Mirfazli, S.S.; Mahdavi, M.; Hariri, R.; Lotfian, H.; Edraki, N.; Iraji, A.; Firuzi, O.; Akbarzadeh, T. Design and synthesis of selective acetylcholinesterase inhibitors: Arylisoxazole-phenylpiperazine derivatives. Chem. Biodivers., 2019, 16(2), e1800433.
[http://dx.doi.org/10.1002/cbdv.201800433] [PMID: 30460743]
[17]
Manzoor, S.; Prajapati, S.K.; Majumdar, S.; Raza, M.K.; Gabr, M.T.; Kumar, S.; Pal, K.; Rashid, H.; Kumar, S.; Krishnamurthy, S.; Hoda, N. Discovery of new phenyl sulfonyl-pyrimidine carboxylate derivatives as the potential multi-target drugs with effective anti-Alzheimer’s action: Design, synthesis, crystal structure and] in vitro biological evaluation. Eur. J. Med. Chem., 2021, 215, 113224.
[http://dx.doi.org/10.1016/j.ejmech.2021.113224] [PMID: 33582578]
[18]
Li, Y.; Li, Y.; Chen, J. Screening and identification of acetylcholinesterase inhibitors from Terminalia chebula fruits based on ultrafiltration and ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Microchem. J., 2021, 106438, 106438.
[http://dx.doi.org/10.1016/j.microc.2021.106438]
[19]
Jiang, X.; Zhou, J.; Wang, Y.; Chen, L.; Duan, Y.; Huang, J.; Liu, C.; Chen, Y.; Liu, W.; Sun, H.; Feng, F.; Qu, W. Rational design and biological evaluation of a new class of thiazolopyridyl tetrahydroacridines as cholinesterase and GSK-3 dual inhibitors for Alzheimer’s disease. Eur. J. Med. Chem., 2020, 207, 112751.
[http://dx.doi.org/10.1016/j.ejmech.2020.112751] [PMID: 32950908]
[20]
Scarim, C.B.; Pavan, F.R. Thiazole, triazole, thio- and semicarbazone derivatives - Promising moieties for drug development for the treatment of tuberculosis. Eur. J. Med. Chem. Reports, 2021, 1, 100002.
[http://dx.doi.org/10.1016/j.ejmcr.2021.100002]
[21]
Ghotbi, G.; Mahdavi, M.; Najafi, Z.; Moghadam, F.H.; Hamzeh-Mivehroud, M.; Davaran, S.; Dastmalchi, S. Design, synthesis, biological evaluation, and docking study of novel dual-acting thiazole-pyridiniums inhibiting acetylcholinesterase and β-amyloid aggregation for Alzheimer’s disease. Bioorg. Chem., 2020, 103, 104186.
[http://dx.doi.org/10.1016/j.bioorg.2020.104186] [PMID: 32890993]
[22]
Rahim, F.; Javed, M.T.; Ullah, H.; Wadood, A.; Taha, M.; Ashraf, M. Qurat-ul-Ain; Khan, M.A.; Khan, F.; Mirza, S.; Khan, K.M. Synthesis, molecular docking, acetylcholinesterase and butyrylcholinesterase inhibitory potential of thiazole analogs as new inhibitors for Alzheimer disease. Bioorg. Chem., 2015, 62, 106-116.
[http://dx.doi.org/10.1016/j.bioorg.2015.08.002] [PMID: 26318401]
[23]
Sun, Z.Q.; Tu, L.X.; Zhuo, F.J.; Liu, S.X. Design and discovery of Novel Thiazole acetamide derivatives as anticholinesterase agent for possible role in the management of Alzheimer’s. Bioorg. Med. Chem. Lett., 2016, 26(3), 747-750.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.001] [PMID: 26783181]
[24]
Ma, Z.Y.; Yang, Q.; Zhang, Y.G.; Li, J.J.; Yang, G.L. Design, synthesis and evaluation of N-acyl-4-phenylthiazole-2-amines as acetylcholinesterase inhibitors. Yao Xue Xue Bao, 2014, 49(6), 813-818.
[PMID: 25212025]
[25]
Demir Özkay, Ü.; Can, O.D.; Sağlık, B.N.; Acar Çevik, U.; Levent, S.; Özkay, Y.; Ilgın, S.; Atlı, Ö. Design, synthesis, and AChE inhibitory activity of new benzothiazole-piperazines. Bioorg. Med. Chem. Lett., 2016, 26(22), 5387-5394.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.041] [PMID: 27789142]

© 2025 Bentham Science Publishers | Privacy Policy