Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

A Network Pharmacology Approach for Uncovering the Mechanism of 'Kouchuangling' in Radiation-induced Oral Mucositis Treatment

Author(s): Pei Sheng, Jing Xie, Yuqing Wu, Xiaotong Xia, Bo Li* and Mianhua Wu

Volume 26, Issue 5, 2023

Published on: 21 September, 2022

Page: [1042 - 1057] Pages: 16

DOI: 10.2174/1386207325666220617151600

Price: $65

conference banner
Abstract

Background: Radiation-induced oral mucositis (RIOM) is an intractable inflammatory disease whose pathogenesis needs to be clarified. “Kouchuangling” (KCL), a traditional Chinese medicine formula, is composed of Lonicerae Japonicae Flos, Radix Paeoniae Rubra, and Radix Sanguisorbae. Although all of them are Chinese folk medicines which have long been utilized for ameliorating inflammation, the mechanism of KCL to RIOM remains unclear.

Purpose: To predict the active ingredients of KCL and identify the mechanism of KCL on RIOM.

Materials and Methods: We identified the chemical ingredients in KCL using TCM Systems Pharmacology (TCMSP), TCM@Taiwan, PubChem, and SuperPred databases and used the oral bioavailability (OB), drug-like properties (DL) and Degree of compounds for screening. Targets for oral mucositis were obtained from the Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), PharmGKB, and DrugBank databases. Cytoscape 3.7.0 was used to visualize the compound-target-disease network for KCL and RIOM. The biological processes of target gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed using DAVID.

Results: Based on OB≥30%, DL≥0.18 and Degree≥3, 24 active ingredients and 960 targets on which the active components acted were identified. A total of 1387 targets for oral mucositis were screened. GO enrichment and KEGG pathway analyses resulted in 43 biological processes (BPs), 3 cell components (CCs), 5 molecular functions (MFs), and 32 KEGG pathways, including leishmaniasis, Toll-like receptor signaling, TNF signaling, and Influenza A pathways.

Conclusion: This experiment preliminarily verified that the active ingredients of KCL play a role in the treatment of RIOM through multiple targets and pathways, providing a reference for further study of the pharmacological mechanism of Chinese herbal medicine.

Keywords: Network pharmacology, 'Kouchuangling', radiation-induced oral mucositis, traditional Chinese medicine, oral erythema, ulcers.

Graphical Abstract

[1]
Lalla, R.V.; Bowen, J.; Barasch, A.; Elting, L.; Epstein, J.; Keefe, D.M.; McGuire, D.B.; Migliorati, C.; Nicolatou-Galitis, O.; Peterson, D.E.; Raber-Durlacher, J.E.; Sonis, S.T.; Elad, S. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer, 2014, 120(10), 1453-1461.
[http://dx.doi.org/10.1002/cncr.28592] [PMID: 24615748]
[2]
Maria, O.M.; Eliopoulos, N.; Muanza, T. Radiation-Induced oral mucositis. Front. Oncol., 2017, 7, 89.
[http://dx.doi.org/10.3389/fonc.2017.00089] [PMID: 28589080]
[3]
Oronsky, B.; Goyal, S.; Kim, M.M.; Cabrales, P.; Lybeck, M.; Caroen, S.; Oronsky, N.; Burbano, E.; Carter, C.; Oronsky, A. A review of clinical radioprotection and chemoprotection for oral mucositis. Transl. Oncol., 2018, 11(3), 771-778.
[http://dx.doi.org/10.1016/j.tranon.2018.03.014] [PMID: 29698934]
[4]
Ray-Chaudhuri, A.; Shah, K.; Porter, R.J. The oral management of patients who have received radiotherapy to the head and neck region. Br. Dent. J., 2013, 214(8), 387-393.
[http://dx.doi.org/10.1038/sj.bdj.2013.380] [PMID: 23619856]
[5]
Rahman, S.; Maillou, P.; Barker, D.; Donachie, M. Radiotherapy and the oral environment the effects of radiotherapy on the hard and soft tissues of the mouth and its management. Eur. J. Prosthodont. Restor. Dent., 2013, 21(2), 80-87.
[PMID: 23888531]
[6]
Elad, S.; Zadik, Y.; Yarom, N. Oral complications of nonsurgical cancer therapies. Atlas Oral Maxillofac. Surg. Clin. North Am., 2017, 25(2), 133-147.
[http://dx.doi.org/10.1016/j.cxom.2017.04.006] [PMID: 28778303]
[7]
Hovan, A.J.; Williams, P.M.; Stevenson-Moore, P.; Wahlin, Y.B.; Ohrn, K.E.; Elting, L.S.; Spijkervet, F.K.; Brennan, M.T. A systematic review of dysgeusia induced by cancer therapies. Support. Care Cancer, 2010, 18(8), 1081-1087.
[http://dx.doi.org/10.1007/s00520-010-0902-1] [PMID: 20495984]
[8]
Dreizen, S.; Bodey, G.P.; Valdivieso, M. Chemotherapy-associated oral infections in adults with solid tumors. Oral Surg. Oral Med. Oral Pathol., 1983, 55(2), 113-120.
[http://dx.doi.org/10.1016/0030-4220(83)90164-0] [PMID: 6572860]
[9]
Deng, J.; Jackson, L.; Epstein, J.B.; Migliorati, C.A.; Murphy, B.A. Dental demineralization and caries in patients with head and neck cancer. Oral Oncol., 2015, 51(9), 824-831.
[http://dx.doi.org/10.1016/j.oraloncology.2015.06.009] [PMID: 26198979]
[10]
Crowder, S.L.; Douglas, K.G.; Yanina Pepino, M.; Sarma, K.P.; Arthur, A.E. Nutrition impact symptoms and associated outcomes in post-chemoradiotherapy head and neck cancer survivors: A systematic review. J. Cancer Surviv., 2018, 12(4), 479-494.
[http://dx.doi.org/10.1007/s11764-018-0687-7] [PMID: 29556926]
[11]
Muanza, T.M.; Cotrim, A.P.; McAuliffe, M.; Sowers, A.L.; Baum, B.J.; Cook, J.A.; Feldchtein, F.; Amazeen, P.; Coleman, C.N.; Mitchell, J.B. Evaluation of radiation-induced oral mucositis by optical coherence tomography. Clin. Cancer Res., 2005, 11(14), 5121-5127.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0403] [PMID: 16033826]
[12]
Christoforou, J.; Karasneh, J.; Manfredi, M.; Dave, B.; Walker, J.S.; Dios, P.D.; Epstein, J.; Kumar, N.; Glick, M.; Lockhart, P.B.; Patton, L.L. World workshop on oral medicine VII: Non-opioid pain management of head and neck chemo/radiation-induced mucositis: A systematic review. Oral Dis., 2019, 25(S1)(Suppl. 1), 182-192.
[http://dx.doi.org/10.1111/odi.13074] [PMID: 30811811]
[13]
Sonis, S.T.; Elting, L.S.; Keefe, D.; Peterson, D.E.; Schubert, M.; Hauer-Jensen, M.; Bekele, B.N.; Raber-Durlacher, J.; Donnelly, J.P.; Rubenstein, E.B. Perspectives on cancer therapy-induced mucosal injury: Pathogenesis, measurement, epidemiology, and consequences for patients. Cancer, 2004, 100(9)(Suppl.), 1995-2025.
[http://dx.doi.org/10.1002/cncr.20162] [PMID: 15108222]
[14]
Murphy, B.A.; Beaumont, J.L.; Isitt, J.; Garden, A.S.; Gwede, C.K.; Trotti, A.M.; Meredith, R.F.; Epstein, J.B.; Le, Q.T.; Brizel, D.M.; Bellm, L.A.; Wells, N.; Cella, D. Mucositis-related morbidity and resource utilization in head and neck cancer patients receiving radiation therapy with or without chemotherapy. J. Pain Symptom Manage., 2009, 38(4), 522-532.
[http://dx.doi.org/10.1016/j.jpainsymman.2008.12.004] [PMID: 19608377]
[15]
Sonis, S.T. Oral mucositis in head and neck cancer: Risk, biology, and management. Am. Soc. Clin. Oncol. Educ. Book, 2013, (33), e236-e240.
[http://dx.doi.org/10.14694/EdBook_AM.2013.33.e236] [PMID: 23714511]
[16]
Berger, K.; Schopohl, D.; Bollig, A.; Strobach, D.; Rieger, C.; Rublee, D.; Ostermann, H. Burden of oral mucositis: A systematic review and implications for future research. Oncol. Res. Treat., 2018, 41(6), 399-405.
[http://dx.doi.org/10.1159/000487085] [PMID: 29734184]
[17]
Loimu, V.; Seppälä, T.; Kapanen, M.; Tuomikoski, L.; Nurmi, H.; Mäkitie, A.; Tenhunen, M.; Saarilahti, K. Diffusion-weighted magnetic resonance imaging for evaluation of salivary gland function in head and neck cancer patients treated with intensity-modulated radiotherapy. Radiother. Oncol., 2017, 122(2), 178-184.
[http://dx.doi.org/10.1016/j.radonc.2016.07.008] [PMID: 27475276]
[18]
Baharudin, A.; Khairuddin, A.; Nizam, A.; Samsuddin, A.R. Evaluation of irradiated salivary gland function in patients with head and neck tumours treated with radiotherapy. J. Laryngol. Otol., 2009, 123(1), 108-113.
[http://dx.doi.org/10.1017/S0022215108002466] [PMID: 18452635]
[19]
Mathews, J.; Patel, M. Bacterial endotoxins and microorganisms in the oral cavities of patients on cancer therapy. Microb. Pathog., 2018, 123, 190-195.
[http://dx.doi.org/10.1016/j.micpath.2018.07.014] [PMID: 30016679]
[20]
Paris, F.; Fuks, Z.; Kang, A.; Capodieci, P.; Juan, G.; Ehleiter, D.; Haimovitz-Friedman, A.; Cordon-Cardo, C.; Kolesnick, R. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science, 2001, 293(5528), 293-297.
[http://dx.doi.org/10.1126/science.1060191] [PMID: 11452123]
[21]
Li, C.Y.; Chen, X.H.; Tao, X.A.; Xia, J.; Cheng, B. The development and inflammatory features of radiotherapy-induced glossitis in rats. Med. Oral Patol. Oral Cir. Bucal, 2011, 16(3), e348-e353.
[http://dx.doi.org/10.4317/medoral.16.e348] [PMID: 21196832]
[22]
Uberoi, A.S.; Brown, T.J.; Gupta, A. Magic mouthwash for oral mucositis: A teachable moment. JAMA Intern. Med., 2019, 179(1), 104-105.
[http://dx.doi.org/10.1001/jamainternmed.2018.6223] [PMID: 30453313]
[23]
Qin, F.; Guo, J. Therapeutic effect of oral ulcer combined with topical application of ammonia to the treatment of recurrent oral ulcer and its effect on immune function of patients. ShaanXi ZhongYi, 2019, 40, 94-96.
[24]
Zhong, X. The clinical observation on 220 cases of recurrent aphtha treated with kou- chuang- ling oral liquid. J. Chengdu Univ. Trad. Chinese Med. 1997, 1, 22-23-56.
[25]
Zhang, L.; Zhuang, H. Experience of 800 cases of oral ulcer treated with kouchuangling mixture. China Med. Abstracts (Paediatrics), 2006, 2, 94-102.
[26]
Ding, H. Clinical experience of professor wang shouru syndrome differentiation and treatment of oral mucosal disease. Acta Chinese Med., 2015, 30(11), 1604-1606.
[27]
Zheng, G.; Piao, K. The discussion on etiology of TCM of chemotherapy and radiotherapy. Chinese J. Basic Med. Trad. Chinese Med., 2007, 10, 751-752.
[28]
Chen, J.; Zhu, Y. Study on TCM syndrome of radiation injury. J. Beijing Univ. Trad. Chinese Med., 1999, 5, 43-44.
[29]
Sun, Y.; Ma, L.; Wang, Z. Etiological attributes and pathogenesis of side effects of radiotherapy and chemotherapy. Xinjiang J. Trad. Chinese Med., 2002, 30, 15-17.
[30]
Yang, X.; Li, B.; Chen, C.; Xin, N. Herbal medicinal textual research on efficacy of lonicera japonica thunb. Chinese J. Experi. Trad. Med. Formulae, 2010, 16(18), 220-222.
[31]
Dai, M.; Xiong, A.; Fan, K.; Lin, Y.; Yang, M. Chemical composition and pharmacological effect of Sanguisorbae Radix. Zhongguo Shiyan Fangjixue Zazhi, 2016, 22(20), 189-195.
[32]
Liu, P. Herbal textural research on paeonia lacti ora, radix paeoniae alba and paeonia veitchii lynch. Zhonghua Zhongyiyao Zazhi, 2018, 33(12), 5662-5665.
[33]
Iwai, K.; Kishimoto, N.; Kakino, Y.; Mochida, K.; Fujita, T. In vitro antioxidative effects and tyrosinase inhibitory activities of seven hydroxycinnamoyl derivatives in green coffee beans. J. Agric. Food Chem., 2004, 52(15), 4893-4898.
[http://dx.doi.org/10.1021/jf040048m] [PMID: 15264931]
[34]
Ding, Y.; Cao, Z.; Cao, L.; Ding, G.; Wang, Z.; Xiao, W. Antiviral activity of chlorogenic acid against influenza A (H1N1/H3N2) virus and its inhibition of neuraminidase. Sci. Rep., 2017, 7(1), 45723.
[http://dx.doi.org/10.1038/srep45723] [PMID: 28393840]
[35]
Park, C.; Lee, W.S.; Han, M.H.; Song, K.S.; Hong, S.H.; Nagappan, A.; Kim, G.Y.; Kim, G.S.; Jung, J.M.; Ryu, C.H.; Shin, S.C.; Hong, S.C.; Choi, Y.H. Lonicera japonica Thunb. Induces caspase-dependent apoptosis through death receptors and suppression of AKT in U937 human leukemic cells. Phytother. Res., 2018, 32(3), 504-513.
[http://dx.doi.org/10.1002/ptr.5996] [PMID: 29193390]
[36]
Shi, Z.; Liu, Z.; Liu, C.; Wu, M.; Su, H.; Ma, X.; Zang, Y.; Wang, J.; Zhao, Y.; Xiao, X. Spectrum-Effect relationships between chemical fingerprints and antibacterial effects of lonicerae japonicae flos and lonicerae flos base on UPLC and microcalorimetry. Front. Pharmacol., 2016, 7, 12.
[http://dx.doi.org/10.3389/fphar.2016.00012] [PMID: 26869929]
[37]
Cheng, C.; Lin, J.Z.; Li, L.; Yang, J.L.; Jia, W.W.; Huang, Y.H.; Du, F.F.; Wang, F.Q.; Li, M.J.; Li, Y.F.; Xu, F.; Zhang, N.T.; Olaleye, O.E.; Sun, Y.; Li, J.; Sun, C.H.; Zhang, G.P.; Li, C. Pharmacokinetics and disposition of monoterpene glycosides derived from Paeonia lactiflora roots (Chishao) after intravenous dosing of antiseptic XueBiJing injection in human subjects and rats. Acta Pharmacol. Sin., 2016, 37(4), 530-544.
[http://dx.doi.org/10.1038/aps.2015.103] [PMID: 26838074]
[38]
Parker, S.; May, B.; Zhang, C.; Zhang, A.L.; Lu, C.; Xue, C.C. A pharmacological review of bioactive constituents of Paeonia lactiflora Pallas and Paeonia veitchii Lynch. Phytother. Res., 2016, 30(9), 1445-1473.
[http://dx.doi.org/10.1002/ptr.5653] [PMID: 27279421]
[39]
Liu, M.P.; Liao, M.; Dai, C.; Chen, J.F.; Yang, C.J.; Liu, M.; Chen, Z.G.; Yao, M.C. Sanguisorba officinalis L synergistically enhanced 5-fluorouracil cytotoxicity in colorectal cancer cells by promoting a reactive oxygen species-mediated, mitochondria-caspase-dependent apoptotic pathway. Sci. Rep., 2016, 6(1), 34245.
[http://dx.doi.org/10.1038/srep34245] [PMID: 27671231]
[40]
Song, W.; Ni, S.; Fu, Y.; Wang, Y. Uncovering the mechanism of maxing ganshi decoction on asthma from a systematic perspective: A network pharmacology study. Sci. Rep., 2018, 8(1), 17362.
[http://dx.doi.org/10.1038/s41598-018-35791-9] [PMID: 30478434]
[41]
Zhao, F.; Guochun, L.; Yang, Y.; Shi, L.; Xu, L.; Yin, L. A network pharmacology approach to determine active ingredients and rationality of herb combinations of Modified-Simiaowan for treatment of gout. J. Ethnopharmacol., 2015, 168, 1-16.
[http://dx.doi.org/10.1016/j.jep.2015.03.035] [PMID: 25824593]
[42]
Liang, X.; Li, H.; Li, S. A novel network pharmacology approach to analyse traditional herbal formulae: The liu-wei-di-huang pill as a case study. Mol. Biosyst., 2014, 10(5), 1014-1022.
[http://dx.doi.org/10.1039/C3MB70507B] [PMID: 24492828]
[43]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[44]
Chen, C.Y. TCM Database@Taiwan: the world’s largest traditional Chinese medicine database for drug screening in silico. PLoS One, 2011, 6(1), e15939.
[http://dx.doi.org/10.1371/journal.pone.0015939] [PMID: 21253603]
[45]
Wang, Y.; Xiao, J.; Suzek, T.; Zhang, J.; Wang, J.; Bryant, S. Pubchem: A public information system for analyzing bioactivities of small molecules. Nucleic Acids Res., 2009, 37, W623-W633.
[http://dx.doi.org/10.1093/nar/gkp456]
[46]
Dunkel, M.; Gunther, S.; Ahmed, J.; Wittig, B.; Preissner, R. Superpred: Drug classification and target prediction. Nucleic Acids Res., 2008, 36, W55-W59.
[47]
Li, J.; Zhao, P.; Li, Y.; Tian, Y.; Wang, Y. Systems pharmacology-based dissection of mechanisms of Chinese medicinal formula Bufei Yishen as an effective treatment for chronic obstructive pulmonary disease. Sci. Rep., 2015, 5(1), 15290.
[http://dx.doi.org/10.1038/srep15290] [PMID: 26469778]
[48]
Baxevanis, A. Searching online mendelian inheritance in man (OMIM) for information for genetic loci involved in human disease. Curr. Protoc. Bioinform. 2002, 00(1), 1.2.1-1.2-15.
[49]
Li, Y.H.; Yu, C.Y.; Li, X.X.; Zhang, P.; Tang, J.; Yang, Q.; Fu, T.; Zhang, X.; Cui, X.; Tu, G.; Zhang, Y.; Li, S.; Yang, F.; Sun, Q.; Qin, C.; Zeng, X.; Chen, Z.; Chen, Y.Z.; Zhu, F. Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res., 2018, 46(D1), D1121-D1127.
[http://dx.doi.org/10.1093/nar/gkx1076] [PMID: 29140520]
[50]
Whirl-Carrillo, M.; McDonagh, E.M.; Hebert, J.M.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Altman, R.B.; Klein, T.E. Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther., 2012, 92(4), 414-417.
[http://dx.doi.org/10.1038/clpt.2012.96] [PMID: 22992668]
[51]
Wang, S.; Wang, H.; Lu, Y. Tianfoshen oral liquid: A CFDA approved clinical traditional Chinese medicine, normalizes major cellular pathways disordered during colorectal carcinogenesis. Oncotarget, 2017, 8(9), 14549-14569.
[http://dx.doi.org/10.18632/oncotarget.14675] [PMID: 28099904]
[52]
Bosque, G.; Folch-Fortuny, A.; Picó, J.; Ferrer, A.; Elena, S.F. Topology analysis and visualization of potyvirus protein-protein interaction network. BMC Syst. Biol., 2014, 8(1), 129.
[http://dx.doi.org/10.1186/s12918-014-0129-8] [PMID: 25409737]
[53]
De Las Rivas, J.; Fontanillo, C. Protein-protein interactions essentials: Key concepts to building and analyzing interactome networks. PLOS Comput. Biol., 2010, 6(6), e1000807.
[http://dx.doi.org/10.1371/journal.pcbi.1000807] [PMID: 20589078]
[54]
Apweiler, R.; Bairoch, A.; Wu, C.H.; Barker, W.C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R.; Magrane, M.; Martin, M.J.; Natale, D.A.; O’Donovan, C.; Redaschi, N.; Yeh, L.S. UniProt: The universal protein knowledgebase. Nucleic Acids Res., 2004, 32(Database issue), D115-D119.
[http://dx.doi.org/10.1093/nar/gkh131] [PMID: 14681372]
[55]
Hillenmeyer, S.; Davis, L.K.; Gamazon, E.R.; Cook, E.H.; Cox, N.J.; Altman, R.B. STAMS: STRING-assisted module search for genome wide association studies and application to autism. Bioinformatics, 2016, 32(24), 3815-3822.
[http://dx.doi.org/10.1093/bioinformatics/btw530] [PMID: 27542772]
[56]
Szklarczyk, D.; Santos, A.; von Mering, C.; Jensen, L.J.; Bork, P.; Kuhn, M. STITCH 5: Augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res., 2016, 44(D1), D380-D384.
[http://dx.doi.org/10.1093/nar/gkv1277] [PMID: 26590256]
[57]
Smoot, M.E.; Ono, K.; Ruscheinski, J.; Wang, P.L.; Ideker, T. Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics, 2011, 27(3), 431-432.
[http://dx.doi.org/10.1093/bioinformatics/btq675] [PMID: 21149340]
[58]
Tang, Y.; Li, M.; Wang, J.; Pan, Y.; Wu, F.X. CytoNCA: A cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems, 2015, 127, 67-72.
[http://dx.doi.org/10.1016/j.biosystems.2014.11.005] [PMID: 25451770]
[59]
Chen, J.; Li, C.; Zhu, Y.; Sun, L.; Sun, H.; Liu, Y.; Zhang, Z.; Wang, C.; Integrating, G.O. Integrating GO and KEGG terms to characterize and predict acute myeloid leukemia-related genes. Hematology, 2015, 20(6), 336-342.
[http://dx.doi.org/10.1179/1607845414Y.0000000209] [PMID: 25343280]
[60]
Huang, D.W.; Sherman, B.T.; Tan, Q.; Kir, J.; Liu, D.; Bryant, D.; Guo, Y.; Stephens, R.; Baseler, M.W.; Lane, H.C.; Lempicki, R.A. DAVID bioinformatics resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res., 2007, 35(Suppl. 2), W169-75.
[http://dx.doi.org/10.1093/nar/gkm415] [PMID: 17576678]
[61]
Naidu, M.U.; Ramana, G.V.; Rani, P.U.; Mohan, I.K.; Suman, A.; Roy, P. Chemotherapy-induced and/or radiation therapy-induced oral mucositis--complicating the treatment of cancer. Neoplasia, 2004, 6(5), 423-431.
[http://dx.doi.org/10.1593/neo.04169] [PMID: 15548350]
[62]
Zhang, Y.; Li, Z.; Yang, M.; Wang, D.; Yu, L.; Guo, C.; Guo, X.; Lin, N. Identification of GRB2 and GAB1 coexpression as an unfavorable prognostic factor for hepatocellular carcinoma by a combination of expression profile and network analysis. PLoS One, 2013, 8(12), e85170.
[http://dx.doi.org/10.1371/journal.pone.0085170] [PMID: 24391994]
[63]
Zheng, Q.; Li, M. A WEB-based platform for predicting essential prot-eins. Chinese J. Bioinform., 2014, 12, 84-89.
[64]
Hsin, K.Y.; Ghosh, S.; Kitano, H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS One, 2013, 8(12), e83922.
[http://dx.doi.org/10.1371/journal.pone.0083922] [PMID: 24391846]
[65]
Feller, L.; Essop, R.; Wood, N.H.; Khammissa, R.A.; Chikte, U.M.; Meyerov, R. Lemmer, J. Chemotherapy- and radiotherapy-induced oral mucositis: Pathobiology, epidemiology and management. SADJ, 2010, 65(8), 372-374.
[PMID: 21133051]
[66]
Köstler, W.J.; Hejna, M.; Wenzel, C.; Zielinski, C.C. Oral mucositis complicating chemotherapy and/or radiotherapy: Options for prevention and treatment. CA Cancer J. Clin., 2001, 51(5), 290-315.
[http://dx.doi.org/10.3322/canjclin.51.5.290] [PMID: 11577493]
[67]
Al-Ansari, S.; Zecha, J.A.; Barasch, A.; de Lange, J.; Rozema, F.R.; Raber-Durlacher, J.E. Oral mucositis induced by anticancer therapies. Curr. Oral Health Rep., 2015, 2(4), 202-211.
[http://dx.doi.org/10.1007/s40496-015-0069-4] [PMID: 26523246]
[68]
Schmidt, M.; Haagen, J.; Noack, R.; Siegemund, A.; Gabriel, P.; Dörr, W. Effects of bone marrow or mesenchymal stem cell transplantation on oral mucositis (mouse) induced by fractionated irradiation. Strahlenther. Onkol., 2014, 190(4), 399-404.
[http://dx.doi.org/10.1007/s00066-013-0510-3] [PMID: 24452815]
[69]
Karuppagounder, V.; Arumugam, S.; Thandavarayan, R.A.; Sreedhar, R.; Giridharan, V.V.; Watanabe, K. Molecular targets of quercetin with anti-inflammatory properties in atopic dermatitis. Drug Discov. Today, 2016, 21(4), 632-639.
[http://dx.doi.org/10.1016/j.drudis.2016.02.011] [PMID: 26905599]
[70]
Meyer-Hamme, G.; Beckmann, K.; Radtke, J.; Efferth, T.; Greten, H.J.; Rostock, M.; Schröder, S. A survey of chinese medicinal herbal treatment for chemotherapy-induced oral mucositis. Evid. Based Complement. Alternat. Med., 2013, 2013, 284959.
[http://dx.doi.org/10.1155/2013/284959] [PMID: 24285975]
[71]
Kamide, D.; Yamashita, T.; Araki, K.; Tomifuji, M.; Shiotani, A. Hangeshashinto (TJ-14) prevents radiation-induced mucositis by suppressing cyclooxygenase-2 expression and chemotaxis of inflammatory cells. Clin. Transl. Oncol., 2017, 19(11), 1329-1336.
[http://dx.doi.org/10.1007/s12094-017-1672-8] [PMID: 28516399]
[72]
Wu, M.H.; Yuan, B.; Liu, Q.F.; Wang, Q. Study of qingre liyan decoction in treating and preventing acute radioactive oral mucositis. Chin. J. Integr. Med., 2007, 13(4), 280-284.
[http://dx.doi.org/10.1007/s11655-007-0280-9] [PMID: 18180893]
[73]
Devi, K.P.; Malar, D.S.; Nabavi, S.F.; Sureda, A.; Xiao, J.; Nabavi, S.M.; Daglia, M. Kaempferol and inflammation: From chemistry to medicine. Pharmacol. Res., 2015, 99, 1-10.
[http://dx.doi.org/10.1016/j.phrs.2015.05.002] [PMID: 25982933]
[74]
Hämäläinen, M.; Nieminen, R.; Vuorela, P.; Heinonen, M.; Moilanen, E. Anti-inflammatory effects of flavonoids: Genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm., 2007, 2007, 45673.
[http://dx.doi.org/10.1155/2007/45673] [PMID: 18274639]
[75]
Aziz, N.; Kim, M.Y.; Cho, J.Y. Anti-inflammatory effects of luteolin: A review of in vitro,in vivo,andin silico studies. J. Ethnopharmacol., 2018, 225, 342-358.
[http://dx.doi.org/10.1016/j.jep.2018.05.019] [PMID: 29801717]
[76]
Funaro, A.; Wu, X.; Song, M.; Zheng, J.; Guo, S.; Rakariyatham, K.; Rodriguez-Estrada, M.T.; Xiao, H. Enhanced anti-inflammatory activities by the combination of luteolin and tangeretin. J. Food Sci., 2016, 81(5), H1320-H1327.
[http://dx.doi.org/10.1111/1750-3841.13300] [PMID: 27095513]
[77]
Zhou, F.; Qu, L.; Lv, K.; Chen, H.; Liu, J.; Liu, X.; Li, Y.; Sun, X. Luteolin protects against reactive oxygen species-mediated cell death induced by zinc toxicity via the PI3K-Akt-NF-κB-ERK-dependent pathway. J. Neurosci. Res., 2011, 89(11), 1859-1868.
[http://dx.doi.org/10.1002/jnr.22714] [PMID: 21800350]
[78]
Yuk, J.E.; Woo, J.S.; Yun, C.Y.; Lee, J.S.; Kim, J.H.; Song, G.Y.; Yang, E.J.; Hur, I.K.; Kim, I.S. Effects of lactose-beta-sitosterol and beta-sitosterol on ovalbumin-induced lung inflammation in actively sensitized mice. Int. Immunopharmacol., 2007, 7(12), 1517-1527.
[http://dx.doi.org/10.1016/j.intimp.2007.07.026] [PMID: 17920528]
[79]
Liu, S.; Zhao, Q.; Zheng, Z.; Liu, Z.; Meng, L.; Dong, L.; Jiang, X. Status of treatment and prophylaxis for radiation-induced oral mucositis in patients with head and neck cancer. Front. Oncol., 2021, 11, 642575.
[http://dx.doi.org/10.3389/fonc.2021.642575] [PMID: 33816293]
[80]
Tan, C.; Liu, L.; Liu, X.; Qi, L.; Wang, W.; Zhao, G.; Wang, L.; Dai, Y. Activation of PTGS2/NF-κB signaling pathway enhances radiation resistance of glioma. Cancer Med., 2019, 8(3), 1175-1185.
[http://dx.doi.org/10.1002/cam4.1971] [PMID: 30740906]
[81]
Bamba, S.; Andoh, A.; Yasui, H.; Araki, Y.; Bamba, T.; Fujiyama, Y. Matrix metalloproteinase-3 secretion from human colonic subepithelial myofibroblasts: Role of interleukin-17. J. Gastroenterol., 2003, 38(6), 548-554.
[http://dx.doi.org/10.1007/s00535-002-1101-8] [PMID: 12825130]
[82]
Liu, S.; Imani, S.; Deng, Y.; Pathak, J.L.; Wen, Q.; Chen, Y.; Wu, J. Targeting IFN/STAT1 pathway as a promising strategy to overcome radioresistance. OncoTargets Ther., 2020, 13, 6037-6050.
[http://dx.doi.org/10.2147/OTT.S256708] [PMID: 32606809]
[83]
Butturini, E.; Carcereri de Prati, A.; Mariotto, S. Redox regulation of STAT1 and STAT3 signaling. Int. J. Mol. Sci., 2020, 21(19), 7034.
[http://dx.doi.org/10.3390/ijms21197034] [PMID: 32987855]
[84]
Schmid, H.; Boucherot, A.; Yasuda, Y.; Henger, A.; Brunner, B.; Eichinger, F.; Nitsche, A.; Kiss, E.; Bleich, M.; Gröne, H.J.; Nelson, P.J.; Schlöndorff, D.; Cohen, C.D.; Kretzler, M. Modular activation of nuclear factor-kappaB transcriptional programs in human diabetic nephropathy. Diabetes, 2006, 55(11), 2993-3003.
[http://dx.doi.org/10.2337/db06-0477] [PMID: 17065335]
[85]
Xia, J.B.; Liu, G.H.; Chen, Z.Y.; Mao, C.Z.; Zhou, D.C.; Wu, H.Y.; Park, K.S.; Zhao, H.; Kim, S.K.; Cai, D.Q.; Qi, X.F. Hypoxia/ischemia promotes CXCL10 expression in cardiac microvascular endothelial cells by NFkB activation. Cytokine, 2016, 81, 63-70.
[http://dx.doi.org/10.1016/j.cyto.2016.02.007] [PMID: 26891076]
[86]
Qian, C.; An, H.; Yu, Y.; Liu, S.; Cao, X. TLR agonists induce regulatory dendritic cells to recruit Th1 cells via preferential IP-10 secretion and inhibit Th1 proliferation. Blood, 2007, 109(8), 3308-3315.
[http://dx.doi.org/10.1182/blood-2006-08-040337] [PMID: 17170125]
[87]
Ohmori, Y.; Wyner, L.; Narumi, S.; Armstrong, D.; Stoler, M.; Hamilton, T.A. Tumor necrosis factor-alpha induces cell type and tissue-specific expression of chemoattractant cytokines in vivo. Am. J. Pathol., 1993, 142(3), 861-870.
[PMID: 8456945]
[88]
Sridharan, V.; Margalit, D.N.; Lynch, S.A.; Severgnini, M.; Zhou, J.; Chau, N.G.; Rabinowits, G.; Lorch, J.H.; Hammerman, P.S.; Hodi, F.S.; Haddad, R.I.; Tishler, R.B.; Schoenfeld, J.D. Definitive chemoradiation alters the immunologic landscape and immune checkpoints in head and neck cancer. Br. J. Cancer, 2016, 115(2), 252-260.
[http://dx.doi.org/10.1038/bjc.2016.166] [PMID: 27380136]
[89]
Karin, N.; Razon, H. Chemokines beyond chemo-attraction: CXCL10 and its significant role in cancer and autoimmunity. Cytokine, 2018, 109, 24-28.
[http://dx.doi.org/10.1016/j.cyto.2018.02.012] [PMID: 29449068]
[90]
Farah, C.S.; Hong, S.; Wanasaengsakul, S.; Elahi, S.; Pang, G.; Gotjamanos, T.; Seymour, G.J.; Clancy, R.L.; Ashman, R.B. Irradiation-induced oral candidiasis in an experimental murine model. Oral Microbiol. Immunol., 2001, 16(6), 358-363.
[http://dx.doi.org/10.1034/j.1399-302X.2001.160607.x] [PMID: 11737659]
[91]
Lowry, L.; Zehring, W. Potentiation Of natural killer cells for cancer immunotherapy: A review of literature. Front Immunol. Int. Immunopharmacol., 2017, 46, 178-185.
[92]
Liu, H.; Li, B.; Jia, X.; Ma, Y.; Gu, Y.; Wei, Q.; Cai, J.; Cui, J.; Gao, F.; Yang, Y. Radiation-Induced decrease Of CD8 + dendritic cells contributes To Th1/Th2 shift. Int. Immunopharmacol., 2017, 46, 178-185.
[93]
Zamora-Chimal, J.; Hernández-Ruiz, J.; Becker, I. NKT cells in leishmaniasis. Immunobiology, 2017, 222(4), 641-646.
[http://dx.doi.org/10.1016/j.imbio.2016.11.014] [PMID: 28012583]
[94]
Taraban, V.Y.; Martin, S.; Attfield, K.E.; Glennie, M.J.; Elliott, T.; Elewaut, D.; Van Calenbergh, S.; Linclau, B.; Al-Shamkhani, A. Invariant NKT cells promote CD8+ cytotoxic T cell responses by inducing CD70 expression on dendritic cells. J. Immunol., 2008, 180(7), 4615-4620.
[http://dx.doi.org/10.4049/jimmunol.180.7.4615] [PMID: 18354184]
[95]
Zamora-Chimal, J.; Fernández-Figueroa, E.A.; Ruiz-Remigio, A.; Wilkins-Rodríguez, A.A.; Delgado-Domínguez, J.; Salaiza-Suazo, N.; Gutiérrez-Kobeh, L.; Becker, I. NKT cell activation by leishmania mexicana LPG: Description of a novel pathway. Immunobiology, 2017, 222(2), 454-462.
[http://dx.doi.org/10.1016/j.imbio.2016.08.003] [PMID: 27523746]
[96]
Rai, A.K.; Thakur, C.P.; Seth, T.; Mitra, D.K. Enrichment of invariant natural killer T cells in the bone marrow of visceral leishmaniasis patients. Parasite Immunol., 2011, 33(12), 688-691.
[http://dx.doi.org/10.1111/j.1365-3024.2011.01328.x] [PMID: 21851364]
[97]
Araújo, A.A.; Araújo, L.S.; Medeiros, C.A.C.X.; Leitão, R.F.C.; Brito, G.A.C.; Costa, D.V.D.S.; Guerra, G.C.B.; Garcia, V.B.; Lima, M.L.S.; Araújo, Junior, R.F. Protective effect of angiotensin II receptor blocker against oxidative stress and inflammation in an oral mucositis experimental model. J. Oral Pathol. Med., 2018, 47(10), 972-984.
[http://dx.doi.org/10.1111/jop.12775] [PMID: 30125396]
[98]
Ramírez-Amador, V.; Zambrano, J.G.; Anaya-Saavedra, G.; Zentella-Dehesa, A.; Irigoyen-Camacho, E.; Meráz-Cruz, N.; Ponce de León-Rosales, S. TNF as marker of oral candidiasis, HSV infection, and mucositis onset during chemotherapy in leukemia patients. Oral Dis., 2017, 23(7), 941-948.
[http://dx.doi.org/10.1111/odi.12677] [PMID: 28403570]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy