Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Acute and Subchronic Treatment of Roasted and Unroasted Argan Oil on Postprandial Glycemia and Its Effect on Glucose Uptake by Isolated Rat Hemidiaphragm

Author(s): Nour Elhouda Daoudi, Mohamed Bouhrim, Omar Bouziane, Rhizlan Abdnim, Saliha Bouknana, Amal Elrherabi, Hassane Mekhfi, Mohammed Aziz, Abdelkhaleq Legssyer, Abderrahim Ziyyat and Mohamed Bnouham*

Volume 20, Issue 11, 2023

Published on: 06 October, 2022

Page: [1821 - 1829] Pages: 9

DOI: 10.2174/1570180819666220617110554

Price: $65

conference banner
Abstract

Background: Argan oil is one of the products used for antidiabetic purposes in Morocco.

Objective: This work aims to study the acute and subchronic effect treatment of the roasted (Roil) and unroasted (UnRoil) Argan oils on oral glucose tolerance test (OGTT) and body weight in normal and diabetic rats, evaluate the effect of these oils on glucose absorption by the diaphragm and determine total polyphenol, flavonoids, tannins, chlorophyll and carotenoids amounts.

Methods: The anti-hyperglycemic effect of Roil and UnRoil was investigated in normal and alloxanediabetic rats by treating the animals orally with 2 mLKg-1/day of oils for 1 day (Acute treatment) and 4 weeks (Subchronic treatment). Then, OGTT was carried out at the end of each treatment, and the body weight was checked for each week. Besides, these oils (1 gL-1) were tested on glucose absorption by the diaphragm isolated from Wistar rats in vitro.

Results: This work shows that Roil and UnRoil significantly decrease the postprandial glycemic level in acute and subchronic treatments in normal and diabetic rats. Besides, the intake of these oils in diabetic rats significantly attenuates the postprandial glycemia compared to the acute-treated group. In vitro glucose uptake by the hemidiaphragm study shows that Argan oils promote glucose consumption by the muscles.

Conclusion: Argan oils showed a very important anti-hyperglycemic effect, which could be explained by promoting peripheral glucose uptake. UnRoil shows a better effect than Roil on glucose consumption, meaning that the roasting process influences the phytoconstituent responsible for this activity.

Keywords: Diabetes, Antihyperglycemic, Argania spinosa oil, peripheral glucose uptake, diaphragm, roasting process, in vitro.

[1]
Chawla, A.; Chawla, R.; Jaggi, S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J. Endocrinol. Metab., 2016, 20(4), 546-551.
[http://dx.doi.org/10.4103/2230-8210.183480] [PMID: 27366724]
[2]
Glovaci, D.; Fan, W.; Wong, N.D. Epidemiology of Diabetes Mellitus and Cardiovascular Disease. Curr. Cardiol. Rep., 2019, 21(4), 21.
[http://dx.doi.org/10.1007/s11886-019-1107-y] [PMID: 30828746]
[3]
Eddouks, M.; Ouahidi, M.L.; Farid, O.; Moufid, A.; Khalidi, A.; Lemhadri, A. L’utilisation des plantes médicinales dans le traitement du diabète au Maroc. Phytotherapie, 2007, 5(4), 194-203.
[http://dx.doi.org/10.1007/s10298-007-0252-4]
[4]
El Adib, S.; Aissi, O.; Charrouf, Z.; Ben Jeddi, F.; Messaoud, C. Argania spinosa var. mutica and var. apiculata: Variation of fatty-acid composition, phenolic content, and antioxidant and α-amylase-inhibitory activities among varieties, organs, and development stages. Chem. Biodivers., 2015, 12(9), 1322-1338.
[http://dx.doi.org/10.1002/cbdv.201400328] [PMID: 26363877]
[5]
Hmamouchi, M. Les Plantes Medicinales et Aromatiques Marocaines, 2nd edn; , 2001.
[6]
Charrouf, Z.; Guillaume, D. Ethnoeconomical, ethnomedical, and phytochemical study of Argania spinosa (L.). Skeels. J. Ethnopharmacol., 1999, 67(1), 7-14.
[http://dx.doi.org/10.1016/S0378-8741(98)00228-1] [PMID: 10616955]
[7]
Berrougui, H.; Ettaib, A.; Herrera Gonzalez, M.D.; Alvarez de Sotomayor, M.; Bennani-Kabchi, N.; Hmamouchi, M. Hypolipidemic and hypocholesterolemic effect of argan oil (Argania spinosa L.) in Meriones shawi rats. J. Ethnopharmacol., 2003, 89(1), 15-18.
[http://dx.doi.org/10.1016/S0378-8741(03)00176-4] [PMID: 14522427]
[8]
Khallouki, F.; Younos, C.; Soulimani, R.; Oster, T.; Charrouf, Z.; Spiegelhalder, B.; Bartsch, H.; Owen, R.W. Consumption of argan oil (Morocco) with its unique profile of fatty acids, tocopherols, squalene, sterols and phenolic compounds should confer valuable cancer chemopreventive effects. Eur. J. Cancer Prev., 2003, 12(1), 67-75.
[http://dx.doi.org/10.1097/00008469-200302000-00011] [PMID: 12548113]
[9]
Berrougui, H.; Alvarez de Sotomayor, M.; Pérez-Guerrero, C.; Ettaib, A.; Hmamouchi, M.; Marhuenda, E.; Herrera, M.D. Argan (Argania spinosa) oil lowers blood pressure and improves endothelial dysfunction in spontaneously hypertensive rats. Br. J. Nutr., 2004, 92(6), 921-929.
[http://dx.doi.org/10.1079/BJN20041293] [PMID: 15613254]
[10]
Mekhfi, H.; Gadi, D.; Bnouham, M.; Ziyyat, A.; Legssyer, A.; Aziz, M. Effect of Argan Oil on Platelet Aggregation and Bleeding Time: A Beneficial Nutritional Property. J. Complement. Integr. Med., 2008, 5(1)
[http://dx.doi.org/10.2202/1553-3840.1164]
[11]
Adlouni, A.; Christon, R.; Cherki, M.; Khalil, A.; ElMessal, M. The nutritional benefits of argan oil in obesity risk prevention. Atheroscler. Suppl., 2008, 9(1), 137-138.
[http://dx.doi.org/10.1016/S1567-5688(08)70554-3]
[12]
Nour Elhouda, D.; Samira, M.; Mohamed, M.; Omar, B.; Mohamed, B.; Ennouamane, S.; Mohammed, C.; Hassane, M.; Abdelkhaleq, L.; Abderrahim, Z. Evaluation of toxicity, nephroprotective and hepatoprotective activities of argan oil on CCl4-induced nephrotoxicity and hepatotoxicity in wistar rats. Arab J Med Arom Plants, 2021, 7(3), 438-464.
[http://dx.doi.org/10.48347/IMIST.PRSM/ajmap-v7i3.28408]
[13]
Bnouham, M.; Bellahcen, S.; Benalla, W.; Legssyer, A.; Ziyyat, A.; Mekhfi, H. Antidiabetic activity assessment of argania spinosa oil. J. Complement. Integr. Med., 2008, 5(1)
[http://dx.doi.org/10.2202/1553-3840.1180]
[14]
Bellahcen, S.; Hakkou, Z.; Ziyyat, A.; Legssyer, A.; Mekhfi, H.; Aziz, M.; Bnouham, M. Antidiabetic and antihypertensive effect of Virgin Argan Oil in model of neonatal streptozotocin-induced diabetic and l-nitroarginine methylester (l-NAME) hypertensive rats. J. Complement. Integr. Med., 2013, 10(1)
[http://dx.doi.org/10.1515/jcim-2013-0008] [PMID: 23836726]
[15]
Bellahcen, S.; Mekhfi, H.; Ziyyat, A.; Legssyer, A.; Hakkou, A.; Aziz, M.; Bnouham, M. Prevention of chemically induced diabetes mellitus in experimental animals by virgin argan oil. Phytother. Res., 2012, 26(2), 180-185.
[http://dx.doi.org/10.1002/ptr.3524] [PMID: 21584872]
[16]
Guillaume, D.; Charrouf, Z. Argan oil and other argan products: Use in dermocosmetology. Eur. J. Lipid Sci. Technol., 2011, 113(4), 403-408.
[http://dx.doi.org/10.1002/ejlt.201000417]
[17]
Minguez‐Mosquera, M.I.; Gandul‐Rojas, B.; Garrido‐Fernandez, J.; Gallardo‐Guerrero, L. Pigments present in virgin olive oil. J Americ Oil Chemists’. Society, 1990, 67(3), 192-196.
[http://dx.doi.org/10.1007/BF02539624]
[18]
Folin, O.; Ciocalteu, V. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem., 1927, 73, 627-650.
[http://dx.doi.org/10.1016/S0021-9258(18)84277-6]
[19]
Kim, D.O.; Chun, O.K.; Kim, Y.J.; Moon, H.Y.; Lee, C.Y. Quantification of polyphenolics and their antioxidant capacity in fresh plums. J. Agric. Food Chem., 2003, 51(22), 6509-6515.
[http://dx.doi.org/10.1021/jf0343074] [PMID: 14558771]
[20]
Julkunen-Tiitto, R. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. J. Agric. Food Chem., 1985, 33(2), 213-217.
[http://dx.doi.org/10.1021/jf00062a013]
[21]
National Institutes of Health. Guide for the Care and Use of Laboratory Animals (NIH Publication No. 85-23, Revised); Author: Bethesda, MD, 1985.
[22]
Prince, P.S.; Menon, V.P.; Pari, L. Hypoglycaemic activity of Syzigium cumini seeds: Effect on lipid peroxidation in alloxan diabetic rats. J. Ethnopharmacol., 1998, 61(1), 1-7.
[http://dx.doi.org/10.1016/S0378-8741(98)00002-6] [PMID: 9687076]
[23]
Trinder, P. Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J. Clin. Pathol., 1969, 22(2), 158-161.
[http://dx.doi.org/10.1136/jcp.22.2.158] [PMID: 5776547]
[24]
Bnouham, M.; Merhfour, F.Z.; Ziyyat, A.; Aziz, M.; Legssyer, A.; Mekhfi, H. Antidiabetic effect of some medicinal plants of Oriental Morocco in neonatal non-insulin-dependent diabetes mellitus rats. Hum. Exp. Toxicol., 2010, 29(10), 865-871.
[http://dx.doi.org/10.1177/0960327110362704] [PMID: 20154101]
[25]
Monfalouti, H.E.; Guillaume, D.; Denhez, C.; Charrouf, Z. Therapeutic potential of argan oil: A review. J. Pharm. Pharmacol., 2010, 62(12), 1669-1675.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01190.x] [PMID: 21054392]
[26]
Melakhessou, M.A.; Marref, S.E.; Benkiki, N.; Marref, C.; Becheker, I.; Khattabi, L. In vitro, acute and subchronic evaluation of the antidiabetic activity of atractylis flava desf N-butanol extract in alloxan-diabetic rats. Future J Pharmal Sci, 2021, 7(1), 206.
[http://dx.doi.org/10.1186/s43094-021-00358-5]
[27]
Szkudelski, T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res., 2001, 50(6), 537-546.
[PMID: 11829314]
[28]
Rai, A.; Eapen, C.; Prasanth, V.G. Interaction of herbs and glibenclamide: A review. ISRN Pharmacol., 2012, 2012, 659478.
[http://dx.doi.org/10.5402/2012/659478] [PMID: 22844612]
[29]
Suba, V.; Murugesan, T.; Rao, R.B.; Ghosh, L.; Pal, M.; Mandal, S.C.; Saha, B.P. Antidiabetic potential of Barleria lupulina extract in rats. Fitoterapia, 2004, 75(1), 1-4.
[http://dx.doi.org/10.1016/S0367-326X(03)00163-1] [PMID: 14693212]
[30]
Shan, J-J.; Yang, M.; Ren, J-W. Anti-diabetic and hypolipidemic effects of aqueous-extract from the flower of Inula japonica in alloxan-induced diabetic mice. Biol. Pharm. Bull., 2006, 29(3), 455-459.
[http://dx.doi.org/10.1248/bpb.29.455] [PMID: 16508145]
[31]
Hamden, K.; Masmoudi, H.; Carreau, S.; Elfeki, A. Immunomodulatory, β-cell, and neuroprotective actions of fenugreek oil from alloxan-induced diabetes. Immunopharmacol. Immunotoxicol., 2010, 32(3), 437-445.
[http://dx.doi.org/10.3109/08923970903490486] [PMID: 20100065]
[32]
Fararh, K.M.; Atoji, Y.; Shimizu, Y.; Shiina, T.; Nikami, H.; Takewaki, T. Mechanisms of the hypoglycaemic and immunopotentiating effects of Nigella sativa L. oil in streptozotocin-induced diabetic hamsters. Res. Vet. Sci., 2004, 77(2), 123-129.
[http://dx.doi.org/10.1016/j.rvsc.2004.03.002] [PMID: 15196902]
[33]
Carnevale, R.; Loffredo, L.; Del Ben, M.; Angelico, F.; Nocella, C.; Petruccioli, A.; Bartimoccia, S.; Monticolo, R.; Cava, E.; Violi, F. Extra virgin olive oil improves post-prandial glycemic and lipid profile in patients with impaired fasting glucose. Clin. Nutr., 2017, 36(3), 782-787.
[http://dx.doi.org/10.1016/j.clnu.2016.05.016] [PMID: 27289163]
[34]
Er, R.; Aydın, B.; Şekeroğlu, V.; Atlı Şekeroğlu, Z. Protective effect of Argan oil on mitochondrial function and oxidative stress against acrylamide-induced liver and kidney injury in rats. Biomarkers, 2020, 25(6), 458-467.
[http://dx.doi.org/10.1080/1354750X.2020.1797877] [PMID: 32683986]
[35]
S, M.; Rani, H.; Pippallani, R.S.; Mohan, G.K.; Raju, A.B.; Kumar, V.H. In vitro study of methanolic extracts of dodonaea viscosa. Linn and Wrightia Tinctoria R. Br. on Glucose Uptake by Isolated Rat Hemi- Diaphragm. Intern Chem Sci, 2012, 10(3), 1724-1730.
[36]
Saleh, N.K.; Saleh, H.A. Olive oil improved the impairment of in vitro insulin-stimulated glucose uptake by diaphragm in ovariectomized female Wistar rats. Exp. Gerontol., 2010, 45(12), 964-969.
[http://dx.doi.org/10.1016/j.exger.2010.08.015] [PMID: 20817087]
[37]
Bouhrim, M.; Boutahiri, S.; Kharchoufa, L.; Mechchate, H.; Mohamed Al Kamaly, O.; Berraaouan, A.; Eto, B.; Ziyyat, A.; Mekhfi, H.; Legssyer, A.; Aziz, M.; Bnouham, M. Acute and Subacute Toxicity and Cytotoxicity of Opuntia Dillenii (Ker-Gawl) Haw. Seed Oil and Its Impact on the Isolated Rat Diaphragm Glucose Absorption. Molecules, 2021, 26(8), 2172.
[http://dx.doi.org/10.3390/molecules26082172] [PMID: 33918827]
[38]
Wardzala, L.J.; Jeanrenaud, B. Potential mechanism of insulin action on glucose transport in the isolated rat diaphragm. Apparent translocation of intracellular transport units to the plasma membrane. J. Biol. Chem., 1981, 256(14), 7090-7093.
[http://dx.doi.org/10.1016/S0021-9258(19)68926-X] [PMID: 6265437]
[39]
Patel, D.K.; Krishnamurthy, S.; Hemalatha, S. Evaluation of glucose utilization capacity of bioactivity guided fractions of hybanthus enneaspermus and pedalium murex in isolated rat hemidiaphragm. J. Acute Dis., 2013, 2(1), 33-36.
[http://dx.doi.org/10.1016/S2221-6189(13)60091-8]
[40]
Kumar, M.; Prasad, S.K.; Hemalatha, S. In vitro study on glucose utilization capacity of bioactive fractions of houttuynia cordata in isolated rat hemidiaphragm and its major phytoconstituent. Adv. Pharmacol. Sci., 2016, 2016, 2573604.
[http://dx.doi.org/10.1155/2016/2573604] [PMID: 26925100]
[41]
Marfil, R.; Giménez, R.; Martínez, O.; Bouzas, P.R.; Rufián-Henares, J.A.; Mesías, M.; Cabrera-Vique, C. Determination of polyphenols, tocopherols, and antioxidant capacity in virgin argan oil (Argania Spinosa, Skeels). Eur. J. Lipid Sci. Technol., 2011, 113(7), 886-893.
[http://dx.doi.org/10.1002/ejlt.201000503]
[42]
Haidara, M.A.; Ibrahim, I.M.; Al-Tuwaijri, A.S.; Awadalla, S.A.; Yaseen, H. Effect of α-tocopherol on glucose uptake and contractility in rat skeletal muscle. Med. Sci. Monit., 2003, 9(5), BR174-BR177.
[PMID: 12761442]
[43]
Borkman, M.; Storlien, L.H.; Pan, D.A.; Jenkins, A.B.; Chisholm, D.J.; Campbell, L.V. The relation between insulin sensitivity and the fatty-acid composition of skeletal-muscle phospholipids. N. Engl. J. Med., 1993, 328(4), 238-244.
[http://dx.doi.org/10.1056/NEJM199301283280404] [PMID: 8418404]
[44]
Long, S.D.; Pekala, P.H. Regulation of GLUT4 gene expression by arachidonic acid. Evidence for multiple pathways, one of which requires oxidation to prostaglandin E2. J. Biol. Chem., 1996, 271(2), 1138-1144.
[http://dx.doi.org/10.1074/jbc.271.2.1138] [PMID: 8557642]
[45]
Miklavčič, M.B.; Taous, F.; Valenčič, V.; Elghali, T.; Podgornik, M.; Strojnik, L.; Ogrinc, N. Fatty acid composition of cosmetic argan oil: Provenience and authenticity criteria. Molecules, 2020, 25(18), 4080.
[http://dx.doi.org/10.3390/molecules25184080] [PMID: 32906680]
[46]
Pu, J.; Peng, G.; Li, L.; Na, H.; Liu, Y.; Liu, P. Palmitic acid acutely stimulates glucose uptake via activation of Akt and ERK1/2 in skeletal muscle cells. J. Lipid Res., 2011, 52(7), 1319-1327.
[http://dx.doi.org/10.1194/jlr.M011254] [PMID: 21518696]
[47]
Aryaeian, N.; Sedehi, S.K.; Arablou, T. Polyphenols and their effects on diabetes management: A review. Med. J. Islam. Repub. Iran, 2017, 31, 134.
[http://dx.doi.org/10.14196/mjiri.31.134] [PMID: 29951434]
[48]
Kumari, M.; Jain, S. Tannins: An Antinutrient with Positive Effect to Manage Diabetes. Res. J. Recent Sci., 2012, 12(1), 1-8.
[49]
Sayahi, M.; Shirali, S. The antidiabetic and antioxidant effects of carotenoids: A review. Asian J Pharma Res Health Care, 2017, 9(4), 186-191.
[http://dx.doi.org/10.18311/ajprhc/2017/7689]
[50]
Ben Mansour, R.; Ben Slema, H.; Falleh, H.; Tounsi, M.; Kechebar, M.S.A.; Ksouri, R.; Megdiche-Ksouri, W. Phytochemical characteristics, antioxidant, and health properties of roasted and unroasted algerian argan (Argania Spinosa). Oil. J. Food Biochem., 2018, 42(5), 1-7.
[http://dx.doi.org/10.1111/jfbc.12562]
[51]
Belcadi-Haloui, R.; Zekhnini, A.; El-Alem, Y.; Hatimi, A. Effects of roasting temperature and time on the chemical composition of argan oil. Int. J. Food Sci., 2018, 2018, 7683041.
[http://dx.doi.org/10.1155/2018/7683041] [PMID: 29977905]
[52]
Daoudi, N.E.; Bouhrim, M.; Ouassou, H.; Legssyer, A.; Mekhfi, H.; Ziyyat, A.; Aziz, M.; Bnouham, M. Inhibitory effect of roasted/unroasted argania spinosa seeds oil on α- glucosidase, α-amylase and intestinal glucose absorption activities. S. Afr. J. Bot., 2020, 135, 413-420.
[http://dx.doi.org/10.1016/j.sajb.2020.09.020]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy