Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Network Pharmacology-Based Prediction of Active Ingredient and Mechanisms of Astragalus membranaceus and Panax notoginseng Coupled- Herbs Against Diabetic Neuropathic Pain

Author(s): Ruili Li, Wei Zhang, Minna Yao and Jingwen Wang*

Volume 20, Issue 11, 2023

Published on: 17 October, 2022

Page: [1830 - 1845] Pages: 16

DOI: 10.2174/1570180819666220602142704

Price: $65

Abstract

Background: Diabetic neuropathic pain seriously affects the quality of a patient’s life. To predict molecular mechanism based on network pharmacology and verify the interaction between the active ingredient of Astragalus membranaceus and Panax notoginseng coupled-herbs (AP) and target genes related to Diabetic neuropathic pain (DNP) molecular docking assay was performed. AP and their target genes related to DNP were analyzed based on network pharmacology followed by experimental validation.

Methods: TCMSP, PubMed and CNKI websites were used to acquire active components in AP. OMIM, DrugBank database and DisGeNET database were used to collect and analyze target genes related to DNP. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and gene ontology (GO) analysis were conducted in the DAVID database. The protein-protein interaction (PPI) network model was constructed by introducing the selected components-disease common target into the string database. Auto- Dock Vina 1.1.2 was used to dock receptor proteins with small ligand molecules. VonFrey’s statement was used to detect mechanical allodynia of DNP rats. Potential targets were detected by Western blot assay.

Results: We decided that 22 and 9 chemical compositions possessed the fair ability of absorption, distribution, metabolism and excretion in Astragalus membranaceus and Panax notoginseng, respectively. These active compositions act on 70 target genes related to DNP. The core gene in the protein-protein interaction network are CAT, ESR1, HMOX1, IL1β, IL6, NFE2L2, NOS2, PPARG, PTGS2 and TNF, etc. Furthermore, GO, and KEGG pathway enrichment analyses indicated that DNP related target genes regulated by AP exist in multiple signaling pathways, including insulin resistance, PI3K-Akt signaling, HIF-1 signaling pathway, Fluid shear stress and atherosclerosis, and AGE-RAGE signaling pathway etc. AP inhibited mechanical hyperalgesia and reduced SERPINE1, FN1, IL1β, and IL6 expression of diabetic neuropathic rats in a dose-dependent manner.

Conclusion: We first confirm that AP possess an anti-DNP effect through multiple signaling pathways based on network pharmacology. These results provide a theoretical basis for us to further research on the molecular mechanism of AP in the treatment of DNP.

Keywords: Astragalus membranaceus, Panax notoginseng, diabetic neuropathic pain, network pharmacology, molecular docking, western blotting

Graphical Abstract

[1]
Yan, P.; Xu, Y.; Zhang, Z.; Gao, C.; Zhu, J.; Li, H.; Wan, Q. Decreased plasma neuregulin 4 levels are associated with peripheral neuropathy in Chinese patients with newly diagnosed type 2 diabetes: A cross-sectional study. Cytokine, 2019, 113, 356-364.
[http://dx.doi.org/10.1016/j.cyto.2018.10.007] [PMID: 30322810]
[2]
Kim, E.S.; Lee, S.W.; Mo, E.Y.; Moon, S.D.; Han, J.H. Inverse association between serum total bilirubin levels and diabetic peripheral neuropathy in patients with type 2 diabetes. Endocrine, 2015, 50(2), 405-412.
[http://dx.doi.org/10.1007/s12020-015-0583-0] [PMID: 25846483]
[3]
Pop-Busui, R.; Boulton, A.J.; Feldman, E.L.; Bril, V.; Freeman, R.; Malik, R.A.; Sosenko, J.M.; Ziegler, D. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care, 2017, 40(1), 136-154.
[http://dx.doi.org/10.2337/dc16-2042] [PMID: 27999003]
[4]
Vincent, A.M.; Callaghan, B.C.; Smith, A.L.; Feldman, E.L. Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nat. Rev. Neurol., 2011, 7(10), 573-583.
[http://dx.doi.org/10.1038/nrneurol.2011.137] [PMID: 21912405]
[5]
Sun, Q.; Wang, C.; Yan, B.; Shi, X.; Shi, Y.; Qu, L.; Liang, X. Jinmaitong Ameliorates Diabetic Peripheral Neuropathy Through Suppressing TXNIP/NLRP3 Inflammasome Activation In The Streptozotocin-Induced Diabetic Rat Model. Diabetes Metab. Syndr. Obes., 2019, 12, 2145-2155.
[http://dx.doi.org/10.2147/DMSO.S223842] [PMID: 31802922]
[6]
Yan, P.; Zhang, Z.; Miao, Y.; Xu, Y.; Zhu, J.; Wan, Q. Physiological serum total bilirubin concentrations were inversely associated with diabetic peripheral neuropathy in Chinese patients with type 2 diabetes: a cross-sectional study. Diabetol. Metab. Syndr., 2019, 11(1), 100.
[http://dx.doi.org/10.1186/s13098-019-0498-7] [PMID: 31827625]
[7]
Javed, S.; Petropoulos, I.N.; Alam, U.; Malik, R.A. Treatment of painful diabetic neuropathy. Ther. Adv. Chronic Dis., 2015, 6(1), 15-28.
[http://dx.doi.org/10.1177/2040622314552071] [PMID: 25553239]
[8]
Spallone, V. Management of painful diabetic neuropathy: guideline guidance or jungle? Curr. Diab. Rep., 2012, 12(4), 403-413.
[http://dx.doi.org/10.1007/s11892-012-0287-2] [PMID: 22623150]
[9]
Wang, Y.; Gao, S.M.; Li, R.; Zhang, M.; Gao, S.; Yu, C.Q. Antidepressant-like effects of the Radix Bupleuri and Radix Paeoniae Alba drug pair. Neurosci. Lett., 2016, 633(633), 14-20.
[http://dx.doi.org/10.1016/j.neulet.2016.09.001] [PMID: 27619541]
[10]
You, Z.L.; Shen, G.M.; Wang, H.; He, Y.; Wang, Q. TCM in treating diabetic peripheral neuropathy. J. Changchun University Chinese Med., 2015, 6(31), 1160-1162.
[11]
Tian, W. Efficacy of the Mudan granule plus conventional western medicine on diabetic peripheral neuropathy and its electromyography. Clin. J. Chinese Med., 2019, 5(11), 74-76.
[12]
Yu, K.J. Observation on treating diabetic peripheral neuropathy with the Yiqi Huoxue Tongbi decoction. Clin. J. Chinese Med., 2019, 29(11), 65-66.
[13]
Shahzad, M.; Shabbir, A.; Wojcikowski, K.; Wohlmuth, H.; Gobe, G.C. The Antioxidant Effects of Radix Astragali (Astragalus membranaceus and Related Species) in Protecting Tissues from Injury and Disease. Curr. Drug Targets, 2016, 17(12), 1331-1340.
[http://dx.doi.org/10.2174/1389450116666150907104742] [PMID: 26343107]
[14]
Ren, Q.; Zhao, S.; Ren, C.; Ma, Z. Astragalus polysaccharide alleviates LPS-induced inflammation injury by regulating miR-127 in H9c2 cardiomyoblasts. Int J Immunopathol Pharmacol., 2018, 32, 2058738418759180.
[http://dx.doi.org/10.1177/2058738418759180] [PMID: 29451405]
[15]
Zhu, B.; Gong, Y.; Shen, L.; Li, J.; Han, J.; Song, B.; Hu, L.; Wang, Q.; Wang, Z. Total Panax notoginseng saponin inhibits vascular smooth muscle cell proliferation and migration and intimal hyperplasia by regulating WTAP/p16 signals via m6A modulation. Biomed. Pharmacother., 2020, 124, 109935.
[http://dx.doi.org/10.1016/j.biopha.2020.109935] [PMID: 31986407]
[16]
Lu, J.K.; Hu, Y.C.; Wang, L.C.; Wang, L.C.; Wang, Y.W.; Na, S.S.; Wang, J.; Shun, Y.H.; Wang, X.Q.; Xue, P.F.; Zhao, P.W.; Su, L.P. Understanding the Multitarget Pharmacological Mechanism ofthe Traditional Mongolian Common Herb Pair GuangZao-RouDouKou Acting on Coronary Heart Disease Based on a Bioinformatics Approach; Evid-Based Compl Alt, 2018, p. 7956503.
[17]
Kim, B.Y.; Song, K.H.; Lim, C.Y.; Cho, S.I. Therapeutic properties of Scutellaria baicalensis in db/db mice evaluated using Connectivity Map and network pharmacology. Sci. Rep., 2017, 7(1), 41711.
[http://dx.doi.org/10.1038/srep41711] [PMID: 28139721]
[18]
Chandran, U.; Patwardhan, B. Network ethnopharmacological evaluation of the immunomodulatory activity of Withania somnifera. J. Ethnopharmacol., 2017, 197, 250-256.
[http://dx.doi.org/10.1016/j.jep.2016.07.080] [PMID: 27487266]
[19]
Wang, S.; Tong, Y.; Ng, T.B.; Lao, L.; Lam, J.K.; Zhang, K.Y.; Zhang, Z.J.; Sze, S.C. Network pharmacological identification of active compounds and potential actions of Erxian decoction in alleviating menopause-related symptoms. Chin. Med., 2015, 10(1), 19.
[http://dx.doi.org/10.1186/s13020-015-0051-z] [PMID: 26191080]
[20]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6, 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[21]
Yue, S.J.; Liu, J.; Feng, W.W.; Zhang, F.L.; Chen, J.X.; Xin, L.T.; Peng, C.; Guan, H.S.; Wang, C.Y.; Yan, D. System Pharmacology-Based Dissection of the Synergistic Mechanism of Huangqi and Huanglian for Diabetes Mellitus. Front. Pharmacol., 2017, 8, 694.
[http://dx.doi.org/10.3389/fphar.2017.00694] [PMID: 29051733]
[22]
Yu, G.; Luo, Z.; Zhou, Y.; Zhang, L.; Wu, Y.; Ding, L.; Shi, Y. Uncovering the pharmacological mechanism of Carthamus tinctorius L. on cardiovascular disease by a systems pharmacology approach. Biomed. Pharmacother., 2019, 117, 109094.
[http://dx.doi.org/10.1016/j.biopha.2019.109094] [PMID: 31203131]
[23]
Dennis, G., Jr; Sherman, B.T.; Hosack, D.A.; Yang, J.; Gao, W.; Lane, H.C.; Lempicki, R.A. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol., 2003, 4(5), 3.
[http://dx.doi.org/10.1186/gb-2003-4-5-p3] [PMID: 12734009]
[24]
Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.H.; Pagès, F.; Trajanoski, Z.; Galon, J.; Clue, G.O. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics, 2009, 25(8), 1091-1093.
[http://dx.doi.org/10.1093/bioinformatics/btp101] [PMID: 19237447]
[25]
Kanehisa, M.; Sato, Y.; Furumichi, M.; Morishima, K.; Tanabe, M. New approach for understanding genome variations in KEGG. Nucleic Acids Res., 2019, 47(D1), D590-D595.
[http://dx.doi.org/10.1093/nar/gky962] [PMID: 30321428]
[26]
Chen, Y.; Wei, J.; Zhang, Y.; Sun, W.; Li, Z.; Wang, Q.; Xu, X.; Li, C.; Li, P. Anti-endometriosis mechanism of jiawei foshou san based on network pharmacology. Front. Pharmacol., 2018, 9, 811.
[http://dx.doi.org/10.3389/fphar.2018.00811] [PMID: 30093862]
[27]
Ma, X.; Du, Y.; Zhu, X.; Feng, Z.; Chen, C.; Yang, J. Evaluation of an ionic liquid chiral selector based on clindamycin phosphate in capillary electrophoresis. Anal. Bioanal. Chem., 2019, 411(22), 5855-5866.
[http://dx.doi.org/10.1007/s00216-019-01967-z] [PMID: 31286176]
[28]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[29]
Wu, J.; Yan, L.J. Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic β cell glucotoxicity. Diabetes Metab. Syndr. Obes., 2015, 8, 181-188.
[PMID: 25897251]
[30]
Shi, X.; Chen, Y.; Nadeem, L.; Xu, G. Beneficial effect of TNF-α inhibition on diabetic peripheral neuropathy. J. Neuroinflammation, 2013, 10, 69.
[http://dx.doi.org/10.1186/1742-2094-10-69] [PMID: 23735240]
[31]
Tang, J.; Zhu, C.; Li, Z.H.; Liu, X.Y.; Sun, S.K.; Zhang, T.; Luo, Z.J.; Zhang, H.; Li, W.Y. Inhibition of the spinal astrocytic JNK/MCP-1 pathway activation correlates with the analgesic effects of tanshinone IIA sulfonate in neuropathic pain. J. Neuroinflammation, 2015, 12(1), 57-68.
[http://dx.doi.org/10.1186/s12974-015-0279-7] [PMID: 25889689]
[32]
Zhang, J.; Jiang, Y.; Liu, N.; Shen, T.; Jung, H.W.; Liu, J.; Yan, B.C. A Network-Based Method for Mechanistic Investigation and Neuroprotective Effect on Post-treatment of Senkyunolid-H Against Cerebral Ischemic Stroke in Mouse. Front. Neurol., 2019, 10, 1299.
[http://dx.doi.org/10.3389/fneur.2019.01299] [PMID: 31920923]
[33]
Sheng, S.; Wang, J.; Wang, L.; Liu, H.; Li, P.; Liu, M.; Long, C.; Xie, C.; Xie, X.; Su, W. Network pharmacology analyses of the antithrombotic pharmacological mechanism of Fufang Xueshuantong Capsule with experimental support using disseminated intravascular coagulation rats. J. Ethnopharmacol., 2014, 154(3), 735-744.
[http://dx.doi.org/10.1016/j.jep.2014.04.048] [PMID: 24832112]
[34]
Li, H.Y.; Zhao, L.H.; Zhang, B.; Jiang, Y.Y.; Wang, X.; Guo, Y.; Liu, H.X.; Li, S.; Tong, X.L. A network pharmacology approach to determine active compounds and action mechanism of ge-gen-qinlian decoction for treatment of type 2 diabetes. Evid-Based Compl Alt, 2014, 1, 495840.
[35]
Guo, M.F.; Dai, Y.J.; Gao, J.R.; Chen, P.J. Uncovering the Mechanism of Astragalus membranaceus in the Treatment of Diabetic Nephropathy Based on Network Pharmacology. J. Diabetes Res., 2020, 2020, 5947304.
[http://dx.doi.org/10.1155/2020/5947304] [PMID: 32215271]
[36]
Piao, C.; Sun, Z.; Jin, D.; Wang, H.; Wu, X.; Zhang, N.; Lian, F.; Tong, X. Network Pharmacology-based Investigation of the Underlying Mechanism of Panax notoginseng Treatment of Diabetic Retinopathy. Comb Chem High T Scr, 2020, 23(4), 334-344.
[http://dx.doi.org/10.2174/1386207323666200305093709] [PMID: 32133960]
[37]
Zhang, W.; Chen, Y.; Jiang, H.; Yang, J.; Wang, Q.; Du, Y.; Xu, H. Integrated strategy for accurately screening biomarkers based on metabolomics coupled with network pharmacology. Talanta, 2020, 211, 120710.
[http://dx.doi.org/10.1016/j.talanta.2020.120710] [PMID: 32070601]
[38]
Xu, F.; Cui, W.Q.; Wei, Y.; Cui, J.; Qiu, J.; Hu, L.L.; Gong, W.Y.; Dong, J.C.; Liu, B.J.; Astragaloside, I.V. Astragaloside IV inhibits lung cancer progression and metastasis by modulating macrophage polarization through AMPK signaling. J. Exp. Clin. Cancer Res., 2018, 37(1), 207.
[http://dx.doi.org/10.1186/s13046-018-0878-0] [PMID: 30157903]
[39]
Lee, C.Y.; Hsieh, S.L.; Hsieh, S.; Tsai, C.C.; Hsieh, L.C.; Kuo, Y.H.; Wu, C.C. Inhibition of human colorectal cancer metastasis by notoginsenoside R1, an important compound from Panax notoginseng. Oncol. Rep., 2017, 37(1), 399-407.
[http://dx.doi.org/10.3892/or.2016.5222] [PMID: 27840961]
[40]
Zhang, Y.; Zhang, Y.; Jin, X.F.; Zhou, X.H.; Dong, X.H.; Yu, W.T.; Gao, W.J. The role of astragaloside IV against cerebral ischemia/reperfusion injury: Suppression of apoptosis via promotion of P62-LC3-autophagy. Molecules, 2019, 24(9), 1838.
[http://dx.doi.org/10.3390/molecules24091838] [PMID: 31086091]
[41]
Fan, C.; Chen, Q.; Ren, J.; Yang, X.; Ru, J.; Zhang, H.; Yang, X. Notoginsenoside R1 Suppresses Inflammatory Signaling and Rescues Renal Ischemia-Reperfusion Injury in Experimental Rats. Med. Sci. Monit., 2020, 26, e920442.
[http://dx.doi.org/10.12659/MSM.920442] [PMID: 32198879]
[42]
Wang, E.; Wang, L.; Ding, R.; Zhai, M.; Ge, R.; Zhou, P.; Wang, T.; Fang, H.; Wang, J.; Huang, J.; Astragaloside, I.V. Astragaloside IV acts through multi-scale mechanisms to effectively reduce diabetic nephropathy. Pharmacol. Res., 2020, 157, 104831.
[http://dx.doi.org/10.1016/j.phrs.2020.104831] [PMID: 32339782]
[43]
Zhou, P.; Xie, W.; Meng, X.; Zhai, Y.; Dong, X.; Zhang, X.; Sun, G.; Sun, X. Notoginsenoside R1 Ameliorates Diabetic Retinopathy through PINK1-Dependent Activation of Mitophagy. Cells, 2019, 8(3), 213.
[http://dx.doi.org/10.3390/cells8030213] [PMID: 30832367]
[44]
Hung, K.S.; Hsiao, C.C.; Pai, T.W.; Hu, C.H.; Tzou, W.S.; Wang, W.D.; Chen, Y.R. Functional enrichment analysis based on long noncoding RNA associations. BMC Syst. Biol., 2018, 12(S4)(Suppl. 4), 45.
[http://dx.doi.org/10.1186/s12918-018-0571-0] [PMID: 29745842]
[45]
Chen, L.; Zhang, Y.H.; Wang, S.; Zhang, Y.; Huang, T.; Cai, Y.D. Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways. PLoS One, 2017, 12(9), e0184129.
[http://dx.doi.org/10.1371/journal.pone.0184129] [PMID: 28873455]
[46]
Aikenmu, K.; Wang, Z.; Meng, Q. Comprehensive multi-factors reveal the pathogenesis of degenerative intervertebral disc. Cell. Mol. Biol., 2020, 66(3), 65-71.
[http://dx.doi.org/10.14715/cmb/2020.66.3.10] [PMID: 32538749]
[47]
Wodarski, R.; Clark, A.K.; Grist, J.; Marchand, F.; Malcangio, M. Gabapentin reverses microglial activation in the spinal cord of streptozotocin-induced diabetic rats. Eur. J. Pain, 2009, 13(8), 807-811.
[http://dx.doi.org/10.1016/j.ejpain.2008.09.010] [PMID: 18977160]
[48]
Wang, D.; Couture, R.; Hong, Y. Activated microglia in the spinal cord underlies diabetic neuropathic pain. Eur. J. Pharmacol., 2014, 728, 59-66.
[http://dx.doi.org/10.1016/j.ejphar.2014.01.057] [PMID: 24508519]
[49]
Zychowska, M.; Rojewska, E.; Przewlocka, B.; Mika, J. Mechanisms and pharmacology of diabetic neuropathy - experimental and clinical studies. Pharmacol. Rep., 2013, 65(6), 1601-1610.
[http://dx.doi.org/10.1016/S1734-1140(13)71521-4] [PMID: 24553008]
[50]
Duffy, M.J. Urokinase plasminogen activator and its inhibitor, PAI-1, as prognostic markers in breast cancer: from pilot to level 1 evidence studies. Clin. Chem., 2002, 48(8), 1194-1197.
[http://dx.doi.org/10.1093/clinchem/48.8.1194] [PMID: 12142372]
[51]
Steiner, E.; Pollow, K.; Hasenclever, D.; Schormann, W.; Hermes, M.; Schmidt, M.; Puhl, A.; Brulport, M.; Bauer, A.; Petry, I.B.; Koelbl, H.; Hengstler, J.G. Role of urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type 1 (PAI-1) for prognosis in endometrial cancer. Gynecol. Oncol., 2008, 108(3), 569-576.
[http://dx.doi.org/10.1016/j.ygyno.2007.11.025] [PMID: 18222533]
[52]
Robert, C.; Bolon, I.; Gazzeri, S.; Veyrenc, S.; Brambilla, C.; Brambilla, E. Expression of plasminogen activator inhibitors 1 and 2 in lung cancer and their role in tumor progression. Clin. Cancer Res., 1999, 5(8), 2094-2102.
[PMID: 10473092]
[53]
Alotaibi, F.T.; Peng, B.; Klausen, C.; Lee, A.F.; Abdelkareem, A.O.; Orr, N.L.; Noga, H.; Bedaiwy, M.A.; Yong, P.J. Plasminogen activator inhibitor-1 (PAI-1) expression in endometriosis. PLoS One, 2019, 14(7), e0219064.
[http://dx.doi.org/10.1371/journal.pone.0219064] [PMID: 31315131]
[54]
Zhao, H.; Duan, L.J.; Sun, Q.L.; Gao, Y.S.; Yang, Y.D.; Tang, X.S.; Zhao, D.Y.; Xiong, Y.; Hu, Z.G.; Li, C.H.; Chen, S.X.; Liu, T.; Yu, X. Identification of key pathways and genes in L4 Dorsal Root Ganglion (DRG) after sciatic nerve injury via microarray analysis. J. Invest. Surg., 2020, 33(2), 172-180.
[http://dx.doi.org/10.1080/08941939.2018.1452996] [PMID: 29672183]
[55]
Zollinger, A.J.; Smith, M.L. Fibronectin, the extracellular glue. Matrix Biol., 2017, 60-61, 27-37.
[http://dx.doi.org/10.1016/j.matbio.2016.07.011] [PMID: 27496349]

© 2025 Bentham Science Publishers | Privacy Policy