Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Resveratrol in Cancer Treatment with a Focus on Breast Cancer

Author(s): Hamed Kowsari, Amirhossein Davoodvandi, Fatemeh Dashti, Seyed Mohamad Ali Mirazimi, Zahra Razaghi Bahabadi, Michael Aschner, Amirhossein Sahebkar, Hamid Reza Gilasi*, Michael R Hamblin* and Hamed Mirzaei*

Volume 16, Issue 3, 2023

Published on: 13 October, 2022

Article ID: e160622206096 Pages: 16

DOI: 10.2174/1874467215666220616145216

Price: $65

Abstract

Acute liver injury (ALI) is a critical and fatal disorder associated with excessive Although considerable advances have been made in the early diagnosis and treatment of breast cancer, it is still one of the major causes of global cancer-related death in women over the last several decades. Phytochemicals have been shown to be promising agents in the prevention and treatment of breast cancer. Resveratrol is an important plant-derived polyphenolic compound with a variety of potent biological activities. It has been suggested that resveratrol can be used to prevent and treat various types of cancer, including breast cancer. Resveratrol can affect numerous signaling pathways in vitro, leading to the induction of cell cycle arrest and apoptosis, suppression of proliferation, reduction of inflammatory responses, and the inhibition of angiogenesis and metastasis. Nevertheless, studies of resveratrol in animal models of breast cancer have so far been disappointing.

Keywords: Breast Cancer, Resveratrol, Cancer therapy, Phytochemicals, Signaling pathways

[1]
Ferlay, J.; Soerjomataram, I.; Ervik, M.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012. WHO: IARC Publication 2012.
[2]
Ahmed, S.; Mirzaei, H.; Aschner, M.; Khan, A.; Al-Harrasi, A.; Khan, H. Marine peptides in breast cancer: Therapeutic and mechanistic understanding. Biomed. Pharmacother., 2021, 142, 112038.
[3]
Shamshirian, A.; Heydari, K.; Shams, Z.; Aref, A.R.; Shamshirian, D.; Tamtaji, O.R.; Asemi, Z.; Shojaie, L.; Mirzaei, H.; Mohammadi, N.; Zibaee, B.; Karimifar, K.; Zarandi, B.; Hedayatizadeh-Omran, A.; Alizadeh-Navaei, R. Breast cancer risk factors in Iran: a systematic review & meta-analysis. Horm. Mol. Biol. Clin. Investig., 2020, 41(4), 41.
[http://dx.doi.org/10.1515/hmbci-2020-0021] [PMID: 33079703]
[4]
Adibfar, S.; Elveny, M.; Kashikova, H.S.; Mikhailova, M.V.; Farhangnia, P.; Vakili-Samiani, S.; Tarokhian, H.; Jadidi-Niaragh, F. The molecular mechanisms and therapeutic potential of EZH2 in breast cancer. Life Sci., 2021, 286, 120047.
[http://dx.doi.org/10.1016/j.lfs.2021.120047] [PMID: 34653429]
[5]
Stenvang, J.; Kümler, I.; Nygård, S.B.; Smith, D.H.; Nielsen, D.; Brünner, N.; Moreira, J.M. Biomarker-guided repurposing of chemotherapeutic drugs for cancer therapy: A novel strategy in drug development. Front. Oncol., 2013, 3, 313.
[http://dx.doi.org/10.3389/fonc.2013.00313] [PMID: 24400218]
[6]
Bagherian, A.; Roudi, B.; Masoudian, N.; Mirzaei, H. Anti-glioblastoma effects of nanomicelle-curcumin plus erlotinib. Food Funct., 2021, 12(21), 10926-10937.
[http://dx.doi.org/10.1039/D1FO01611C] [PMID: 34647945]
[7]
Davoodvandi, A.; Darvish, M.; Borran, S.; Nejati, M.; Mazaheri, S.; Reza Tamtaji, O.; Hamblin, M.R.; Masoudian, N.; Mirzaei, H. The therapeutic potential of resveratrol in a mouse model of melanoma lung metastasis. Int. Immunopharmacol., 2020, 88, 106905.
[http://dx.doi.org/10.1016/j.intimp.2020.106905] [PMID: 32905970]
[8]
Vaupel, P.; Schlenger, K.; Knoop, C.; Höckel, M. Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res., 1991, 51(12), 3316-3322.
[PMID: 2040005]
[9]
Hohenberger, P.; Felgner, C.; Haensch, W.; Schlag, P.M. Tumor oxygenation correlates with molecular growth determinants in breast cancer. Breast Cancer Res. Treat., 1998, 48(2), 97-106.
[http://dx.doi.org/10.1023/A:1005921513083] [PMID: 9596481]
[10]
Overgaard, J. Hypoxic radiosensitization: adored and ignored. J. Clin. Oncol., 2007, 25(26), 4066-4074.
[http://dx.doi.org/10.1200/JCO.2007.12.7878] [PMID: 17827455]
[11]
Bendinelli, P.; Matteucci, E.; Maroni, P.; Desiderio, M.A. NF-kappaB activation, dependent on acetylation/deacetylation, contributes to HIF-1 activity and migration of bone metastatic breast carcinoma cells. Mol. Cancer Res., 2009, 7(8), 1328-1341.
[http://dx.doi.org/10.1158/1541-7786.MCR-08-0548] [PMID: 19671685]
[12]
Yang, H.; Dou, Q.P. Targeting apoptosis pathway with natural terpenoids: Implications for treatment of breast and prostate cancer. Curr. Drug Targets, 2010, 11(6), 733-744.
[http://dx.doi.org/10.2174/138945010791170842] [PMID: 20298150]
[13]
Khan, S.I.; Zhao, J.; Khan, I.A.; Walker, L.A.; Dasmahapatra, A.K. Potential utility of natural products as regulators of breast cancer-associated aromatase promoters. Reprod. Biol. Endocrinol., 2011, 9, 91.
[http://dx.doi.org/10.1186/1477-7827-9-91] [PMID: 21693041]
[14]
Bishayee, A.; Ahmed, S.; Brankov, N.; Perloff, M. Triterpenoids as potential agents for the chemoprevention and therapy of breast Cancer. Front. Biosci., 2011, 16, 980-996.
[http://dx.doi.org/10.2741/3730] [PMID: 21196213]
[15]
Reuben, S.C.; Gopalan, A.; Petit, D.M.; Bishayee, A. Modulation of angiogenesis by dietary phytoconstituents in the prevention and intervention of breast cancer. Mol. Nutr. Food Res., 2012, 56(1), 14-29.
[http://dx.doi.org/10.1002/mnfr.201100619] [PMID: 22125182]
[16]
Sinha, D.; Biswas, J.; Sung, B.; Aggarwal, B.B.; Bishayee, A. Chemopreventive and chemotherapeutic potential of curcumin in breast cancer. Curr. Drug Targets, 2012, 13(14), 1799-1819.
[http://dx.doi.org/10.2174/138945012804545632] [PMID: 23140290]
[17]
Aiyer, H.S.; Warri, A.M.; Woode, D.R.; Hilakivi-Clarke, L.; Clarke, R. Influence of berry polyphenols on receptor signaling and cell-death pathways: Implications for breast cancer prevention. J. Agric. Food Chem., 2012, 60(23), 5693-5708.
[http://dx.doi.org/10.1021/jf204084f] [PMID: 22300613]
[18]
Biersack, B.; Schobert, R. Indole compounds against breast cancer: recent developments. Curr. Drug Targets, 2012, 13(14), 1705-1719.
[http://dx.doi.org/10.2174/138945012804545551] [PMID: 23140282]
[19]
Vadodkar, A.S.; Suman, S.; Lakshmanaswamy, R.; Damodaran, C. Chemoprevention of breast cancer by dietary compounds. Anticancer. Agents Med. Chem., 2012, 12(10), 1185-1202.
[http://dx.doi.org/10.2174/187152012803833008] [PMID: 22583403]
[20]
Yiannakopoulou, E.Ch. Effect of green tea catechins on breast carcinogenesis: a systematic review of in vitro and in vivo experimental studies. Eur. J. Cancer Prev., 2014, 23(2), 84-89.
[http://dx.doi.org/10.1097/CEJ.0b013e328364f23e] [PMID: 23939462]
[21]
Parikh, N.R.; Mandal, A.; Bhatia, D.; Siveen, K.S.; Sethi, G.; Bishayee, A. Oleanane triterpenoids in the prevention and therapy of breast cancer: current evidence and future perspectives. Phytochem. Rev., 2014, 13(4), 793-810.
[http://dx.doi.org/10.1007/s11101-014-9337-5] [PMID: 25395898]
[22]
Siddiqui, J.A.; Singh, A.; Chagtoo, M.; Singh, N.; Godbole, M.M.; Chakravarti, B. Phytochemicals for breast cancer therapy: Current status and future implications. Curr. Cancer Drug Targets, 2015, 15(2), 116-135.
[http://dx.doi.org/10.2174/1568009615666141229152256] [PMID: 25544650]
[23]
Vini, R.; Sreeja, S. Punica granatum and its therapeutic implications on breast carcinogenesis: A review. Biofactors, 2015, 41(2), 78-89.
[http://dx.doi.org/10.1002/biof.1206] [PMID: 25857627]
[24]
Song, J.K.; Bae, J.M. Citrus fruit intake and breast cancer risk: A quantitative systematic review. J. Breast Cancer, 2013, 16(1), 72-76.
[http://dx.doi.org/10.4048/jbc.2013.16.1.72] [PMID: 23593085]
[25]
Mourouti, N.; Panagiotakos, D.B. Soy food consumption and breast cancer. Maturitas, 2013, 76(2), 118-122.
[http://dx.doi.org/10.1016/j.maturitas.2013.07.006] [PMID: 23916376]
[26]
Aune, D.; Chan, D.S.; Vieira, A.R.; Navarro Rosenblatt, D.A.; Vieira, R.; Greenwood, D.C.; Norat, T. Dietary compared with blood concentrations of carotenoids and breast cancer risk: A systematic review and meta-analysis of prospective studies. Am. J. Clin. Nutr., 2012, 96(2), 356-373.
[http://dx.doi.org/10.3945/ajcn.112.034165] [PMID: 22760559]
[27]
Ogunleye, A.A.; Xue, F.; Michels, K.B. Green tea consumption and breast cancer risk or recurrence: A meta-analysis. Breast Cancer Res. Treat., 2010, 119(2), 477-484.
[http://dx.doi.org/10.1007/s10549-009-0415-0] [PMID: 19437116]
[28]
Pourhanifeh, M.H.; Abbaszadeh-Goudarzi, K.; Goodarzi, M.; Piccirillo, S.G.M.; Shafiee, A.; Hajighadimi, S.; Moradizarmehri, S.; Asemi, Z.; Mirzaei, H. Resveratrol: A new potential therapeutic agent for melanoma? Curr. Med. Chem., 2021, 28(4), 687-711.
[http://dx.doi.org/10.2174/0929867326666191212101225] [PMID: 31830881]
[29]
Kado, K.; Forsyth, A.; Patel, P.R.; Schwartz, J.A. Dietary supplements and natural products in breast cancer trials. Front. Biosci. (Elite Ed.), 2012, 4, 546-567.
[http://dx.doi.org/10.2741/e399] [PMID: 22201894]
[30]
Catalgol, B.; Batirel, S.; Taga, Y.; Ozer, N.K. Resveratrol: French paradox revisited. Front. Pharmacol., 2012, 3, 141.
[http://dx.doi.org/10.3389/fphar.2012.00141] [PMID: 22822401]
[31]
Mobasheri, A.; Shakibaei, M. Osteogenic effects of resveratrol in vitro: Potential for the prevention and treatment of osteoporosis. Ann. N. Y. Acad. Sci., 2013, 1290, 59-66.
[http://dx.doi.org/10.1111/nyas.12145] [PMID: 23855466]
[32]
Pasinetti, G.M.; Wang, J.; Ho, L.; Zhao, W.; Dubner, L. Roles of resveratrol and other grape-derived polyphenols in Alzheimer’s disease prevention and treatment. Biochim. Biophys. Acta, 2015, 1852(6), 1202-1208.
[http://dx.doi.org/10.1016/j.bbadis.2014.10.006] [PMID: 25315300]
[33]
Borriello, A.; Bencivenga, D.; Caldarelli, I.; Tramontano, A.; Borgia, A.; Zappia, V.; Della Ragione, F. Resveratrol: From basic studies to bedside. Cancer Treat. Res., 2014, 159, 167-18.
[http://dx.doi.org/10.1007/978-3-642-38007-5_10] [PMID: 24114480]
[34]
Aggarwal, B.B.; Bhardwaj, A.; Aggarwal, R.S.; Seeram, N.P.; Shishodia, S.; Takada, Y. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res., 2004, 24(5A), 2783-2840.
[PMID: 15517885]
[35]
Pezzuto, J.M. Resveratrol as an inhibitor of carcinogenesis. Pharm. Biol., 2008, 46, 443-573.
[http://dx.doi.org/10.1080/13880200802116610]
[36]
Bishayee, A. Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prev. Res. (Phila.), 2009, 2(5), 409-418.
[http://dx.doi.org/10.1158/1940-6207.CAPR-08-0160] [PMID: 19401532]
[37]
Bishayee, A.; Politis, T.; Darvesh, A.S. Resveratrol in the chemoprevention and treatment of hepatocellular carcinoma. Cancer Treat. Rev., 2010, 36(1), 43-53.
[http://dx.doi.org/10.1016/j.ctrv.2009.10.002] [PMID: 19910122]
[38]
Carter, L.G.; D’Orazio, J.A.; Pearson, K.J. Resveratrol and cancer: Focus on in vivo evidence. Endocr. Relat. Cancer, 2014, 21(3), R209-R225.
[http://dx.doi.org/10.1530/ERC-13-0171] [PMID: 24500760]
[39]
Goswami, S.K.; Das, D.K. Resveratrol and chemoprevention. Cancer Lett., 2009, 284(1), 1-6.
[http://dx.doi.org/10.1016/j.canlet.2009.01.041] [PMID: 19261378]
[40]
Fontecave, M.; Lepoivre, M.; Elleingand, E.; Gerez, C.; Guittet, O. Resveratrol, a remarkable inhibitor of ribonucleotide reductase. FEBS Lett., 1998, 421(3), 277-279.
[http://dx.doi.org/10.1016/S0014-5793(97)01572-X] [PMID: 9468322]
[41]
Saiko, P.; Szakmary, A.; Jaeger, W.; Szekeres, T. Resveratrol and its analogs: defense against cancer, coronary disease and neurodegenerative maladies or just a fad? Mutat. Res., 2008, 658(1-2), 68-94.
[http://dx.doi.org/10.1016/j.mrrev.2007.08.004] [PMID: 17890139]
[42]
Szkudelska, K.; Szkudelski, T. Resveratrol, obesity and diabetes. Eur. J. Pharmacol., 2010, 635(1-3), 1-8.
[http://dx.doi.org/10.1016/j.ejphar.2010.02.054] [PMID: 20303945]
[43]
Langcake, P.; Pryce, R. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol. Plant Pathol., 1976, 9, 77-86.
[http://dx.doi.org/10.1016/0048-4059(76)90077-1]
[44]
Soleas, G.J.; Diamandis, E.P.; Goldberg, D.M. Resveratrol: A molecule whose time has come? And gone? Clin. Biochem., 1997, 30(2), 91-113.
[http://dx.doi.org/10.1016/S0009-9120(96)00155-5] [PMID: 9127691]
[45]
Douillet-Breuil, A.C.; Jeandet, P.; Adrian, M.; Bessis, R. Changes in the phytoalexin content of various Vitis spp. in response to ultraviolet C elicitation. J. Agric. Food Chem., 1999, 47(10), 4456-4461.
[http://dx.doi.org/10.1021/jf9900478] [PMID: 10552833]
[46]
Adrian, M.; Jeandet, P.; Douillet-Breuil, A.C.; Tesson, L.; Bessis, R. Stilbene content of mature Vitis vinifera berries in response to UV-C elicitation. J. Agric. Food Chem., 2000, 48(12), 6103-6105.
[http://dx.doi.org/10.1021/jf0009910] [PMID: 11312782]
[47]
Schubert, R.; Fischer, R.; Hain, R.; Schreier, P.H.; Bahnweg, G.; Ernst, D.; Sandermann, H., Jr An ozone-responsive region of the grapevine resveratrol synthase promoter differs from the basal pathogen-responsive sequence. Plant Mol. Biol., 1997, 34(3), 417-426.
[http://dx.doi.org/10.1023/A:1005830714852] [PMID: 9225853]
[48]
Adrian, M.; Jeandet, P.; Veneau, J.; Weston, L.A.; Bessis, R. Biological activity of resveratrol, a stilbenic compound from grapevines, against Botrytis cinerea, the causal agent for gray mold. J. Chem. Ecol., 1997, 23, 1689-1702.
[http://dx.doi.org/10.1023/B:JOEC.0000006444.79951.75]
[49]
Kundu, J.K.; Surh, Y-J. Cancer chemopreventive and therapeutic potential of resveratrol: mechanistic perspectives. Cancer Lett., 2008, 269(2), 243-261.
[http://dx.doi.org/10.1016/j.canlet.2008.03.057] [PMID: 18550275]
[50]
Stervbo, U.; Vang, O.; Bonnesen, C. A review of the content of the putative chemopreventive phytoalexin resveratrol in red wine. Food Chem., 2007, 101, 449-457.
[http://dx.doi.org/10.1016/j.foodchem.2006.01.047]
[51]
Bertelli, A.A.; Giovannini, L.; Bernini, W.; Migliori, M.; Fregoni, M.; Bavaresco, L.; Bertelli, A. Antiplatelet activity of cis-resveratrol. Drugs Exp. Clin. Res., 1996, 22(2), 61-63.
[PMID: 8998912]
[52]
Trela, B.C.; Waterhouse, A.L. Resveratrol: Isomeric molar absorptivities and stability. J. Agric. Food Chem., 1996, 44, 1253-1257.
[http://dx.doi.org/10.1021/jf9504576]
[53]
Vian, M.A.; Tomao, V.; Gallet, S.; Coulomb, P.O.; Lacombe, J.M. Simple and rapid method for cis- and trans-resveratrol and piceid isomers determination in wine by high-performance liquid chromatography using chromolith columns. J. Chromatogr. A, 2005, 1085(2), 224-229.
[http://dx.doi.org/10.1016/j.chroma.2005.05.083] [PMID: 16106702]
[54]
Leonard, S.S.; Xia, C.; Jiang, B.H.; Stinefelt, B.; Klandorf, H.; Harris, G.K.; Shi, X. Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses. Biochem. Biophys. Res. Commun., 2003, 309(4), 1017-1026.
[http://dx.doi.org/10.1016/j.bbrc.2003.08.105] [PMID: 13679076]
[55]
Rizvi, S.I.; Pandey, K.B. Activation of the erythrocyte plasma membrane redox system by resveratrol: a possible mechanism for antioxidant properties. Pharmacological reports : PR, 2010, 62, 726-732.
[56]
Das, S.; Das, D.K. Anti-inflammatory responses of resveratrol. Inflamm. Allergy Drug Targets, 2007, 6(3), 168-173.
[http://dx.doi.org/10.2174/187152807781696464] [PMID: 17897053]
[57]
Simon, H.U.; Haj-Yehia, A.; Levi-Schaffer, F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis, 2000, 5, 415-418.
[58]
Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J., 2012, 5(1), 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[59]
Kim, C.H.; Jeon, H.M.; Lee, S.Y.; Jeong, E.K.; Ju, M.K.; Park, B.J.; Park, H.G.; Lim, S.C.; Han, S.I.; Kang, H.S. Role of reactive oxygen species-dependent protein aggregation in metabolic stress-induced necrosis. Int. J. Oncol., 2010, 37(1), 97-102.
[PMID: 20514401]
[60]
Azmi, A.S.; Bhat, S.H.; Hanif, S.; Hadi, S.M. Plant polyphenols mobilize endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for anticancer properties. FEBS Lett., 2006, 580(2), 533-538.
[http://dx.doi.org/10.1016/j.febslet.2005.12.059] [PMID: 16412432]
[61]
de la Lastra, C.A.; Villegas, I. Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochem. Soc. Trans., 2007, 35(Pt 5), 1156-1160.
[http://dx.doi.org/10.1042/BST0351156] [PMID: 17956300]
[62]
Chang, Y.C.; Lin, C.W.; Yu, C.C.; Wang, B.Y.; Huang, Y.H.; Hsieh, Y.C.; Kuo, Y.L.; Chang, W.W. Resveratrol suppresses myofibroblast activity of human buccal mucosal fibroblasts through the epigenetic inhibition of ZEB1 expression. Oncotarget, 2016, 7(11), 12137-12149.
[http://dx.doi.org/10.18632/oncotarget.7763] [PMID: 26934322]
[63]
Mohan, A.; Narayanan, S.; Balasubramanian, G.; Sethuraman, S.; Krishnan, U.M. Dual drug loaded nanoliposomal chemotherapy: A promising strategy for treatment of head and neck squamous cell carcinoma. Eur. J. Pharm. Biopharm., 2016, 99, 73-83.
[64]
ElAttar, T.M.; Virji, A.S. Modulating effect of resveratrol and quercetin on oral cancer cell growth and proliferation. Anticancer Drugs, 1999, 10(2), 187-193.
[http://dx.doi.org/10.1097/00001813-199902000-00007] [PMID: 10211549]
[65]
Lin, F.Y.; Hsieh, Y.H.; Yang, S.F.; Chen, C.T.; Tang, C.H.; Chou, M.Y.; Chuang, Y.T.; Lin, C.W.; Chen, M.K. Resveratrol suppresses TPA-induced matrix metalloproteinase-9 expression through the inhibition of MAPK pathways in oral cancer cells. J. Oral Pathol. Med., 2015, 44, 699-706.
[66]
Hong, W.K.; Sporn, M.B. Recent advances in chemoprevention of cancer. Science, 1997, 278(5340), 1073-1077.
[http://dx.doi.org/10.1126/science.278.5340.1073] [PMID: 9353183]
[67]
Sethi, G.; Shanmugam, M.K.; Ramachandran, L.; Kumar, A.P.; Tergaonkar, V. Multifaceted link between cancer and inflammation. Biosci. Rep., 2012, 32(1), 1-15.
[http://dx.doi.org/10.1042/BSR20100136] [PMID: 21981137]
[68]
Chai, E.Z.; Siveen, K.S.; Shanmugam, M.K.; Arfuso, F.; Sethi, G. Analysis of the intricate relationship between chronic inflammation and cancer. Biochem. J., 2015, 468(1), 1-15.
[http://dx.doi.org/10.1042/BJ20141337] [PMID: 25940732]
[69]
Sethi, G.; Tergaonkar, V. Potential pharmacological control of the NF-κB pathway. Trends Pharmacol. Sci., 2009, 30(6), 313-321.
[http://dx.doi.org/10.1016/j.tips.2009.03.004] [PMID: 19446347]
[70]
Janakiram, N.B.; Mohammed, A.; Madka, V.; Kumar, G.; Rao, C.V. Prevention and treatment of cancers by immune modulating nutrients. Mol. Nutr. Food Res., 2016, 60(6), 1275-1294.
[http://dx.doi.org/10.1002/mnfr.201500884] [PMID: 26833775]
[71]
Okimoto, R.A.; Bivona, T.G. Recent advances in personalized lung cancer medicine. Per. Med., 2014, 11(3), 309-321.
[http://dx.doi.org/10.2217/pme.14.19] [PMID: 25506379]
[72]
Krepler, C.; Xiao, M.; Sproesser, K.; Brafford, P.A.; Shannan, B.; Beqiri, M.; Liu, Q.; Xu, W.; Garman, B.; Nathanson, K.L.; Xu, X.; Karakousis, G.C.; Mills, G.B.; Lu, Y.; Ahmed, T.A.; Poulikakos, P.I.; Caponigro, G.; Boehm, M.; Peters, M.; Schuchter, L.M.; Weeraratna, A.T.; Herlyn, M. Personalized preclinical trials in BRAF inhibitor-resistant patient-derived xenograft models identify second-line combination therapies. Clin. Cancer Res., 2016, 22(7), 1592-1602.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1762] [PMID: 26673799]
[73]
Shanmugam, M.K.; Nguyen, A.H.; Kumar, A.P.; Tan, B.K.; Sethi, G. Targeted inhibition of tumor proliferation, survival, and metastasis by pentacyclic triterpenoids: Potential role in prevention and therapy of cancer. Cancer Lett., 2012, 320(2), 158-170.
[http://dx.doi.org/10.1016/j.canlet.2012.02.037] [PMID: 22406826]
[74]
Shanmugam, M.K.; Lee, J.H.; Chai, E.Z.; Kanchi, M.M.; Kar, S.; Arfuso, F.; Dharmarajan, A.; Kumar, A.P.; Ramar, P.S.; Looi, C.Y.; Mustafa, M.R.; Tergaonkar, V.; Bishayee, A.; Ahn, K.S.; Sethi, G. Cancer prevention and therapy through the modulation of transcription factors by bioactive natural compounds. Semin. Cancer Biol., 2016, 40-41, 35-47.
[http://dx.doi.org/10.1016/j.semcancer.2016.03.005] [PMID: 27038646]
[75]
Shanmugam, M.K.; Arfuso, F.; Kumar, A.P.; Wang, L.; Goh, B.C.; Ahn, K.S.; Bishayee, A.; Sethi, G. Modulation of diverse oncogenic transcription factors by thymoquinone, an essential oil compound isolated from the seeds of Nigella sativa Linn. Pharmacol. Res., 2018, 129, 357-364.
[http://dx.doi.org/10.1016/j.phrs.2017.11.023] [PMID: 29162539]
[76]
Prasannan, R.; Kalesh, K.A.; Shanmugam, M.K.; Nachiyappan, A.; Ramachandran, L.; Nguyen, A.H.; Kumar, A.P.; Lakshmanan, M.; Ahn, K.S.; Sethi, G. Key cell signaling pathways modulated by zerumbone: Role in the prevention and treatment of cancer. Biochem. Pharmacol., 2012, 84(10), 1268-1276.
[http://dx.doi.org/10.1016/j.bcp.2012.07.015] [PMID: 22842489]
[77]
Shanmugam, M.K.; Warrier, S.; Kumar, A.P.; Sethi, G.; Arfuso, F. Potential role of natural compounds as anti-angiogenic agents in cancer. Curr. Vasc. Pharmacol., 2017, 15(6), 503-519.
[http://dx.doi.org/10.2174/1570161115666170713094319] [PMID: 28707601]
[78]
Nelson, A.R.; Fingleton, B.; Rothenberg, M.L.; Matrisian, L.M. Matrix metalloproteinases: biologic activity and clinical implications. J. Clin. Oncol., 2000, 18(5), 1135-1149.
[http://dx.doi.org/10.1200/JCO.2000.18.5.1135] [PMID: 10694567]
[79]
Jinga, D.C.; Blidaru, A.; Condrea, I.; Ardeleanu, C.; Dragomir, C.; Szegli, G.; Stefanescu, M.; Matache, C. MMP-9 and MMP-2 gelatinases and TIMP-1 and TIMP-2 inhibitors in breast cancer: correlations with prognostic factors. J. Cell. Mol. Med., 2006, 10(2), 499-510.
[http://dx.doi.org/10.1111/j.1582-4934.2006.tb00415.x] [PMID: 16796815]
[80]
Yu, H.; Pan, C.; Zhao, S.; Wang, Z.; Zhang, H.; Wu, W. Resveratrol inhibits tumor necrosis factor-alpha-mediated matrix metalloproteinase-9 expression and invasion of human hepatocellular carcinoma cells. Biomed. Pharmacother., 2008, 62(6), 366-372.
[http://dx.doi.org/10.1016/j.biopha.2007.09.006] [PMID: 17988825]
[81]
Weng, C.J.; Wu, C.F.; Huang, H.W.; Wu, C.H.; Ho, C.T.; Yen, G.C. Evaluation of anti-invasion effect of resveratrol and related methoxy analogues on human hepatocarcinoma cells. J. Agric. Food Chem., 2010, 58(5), 2886-2894.
[http://dx.doi.org/10.1021/jf904182y] [PMID: 20131808]
[82]
Lee, M.F.; Pan, M.H.; Chiou, Y.S.; Cheng, A.C.; Huang, H. Resveratrol modulates MED28 (Magicin/EG-1) expression and inhibits epidermal growth factor (EGF)-induced migration in MDA-MB-231 human breast cancer cells. J. Agric. Food Chem., 2011, 59(21), 11853-11861.
[http://dx.doi.org/10.1021/jf202426k] [PMID: 21942447]
[83]
Castino, R.; Pucer, A.; Veneroni, R.; Morani, F.; Peracchio, C.; Lah, T.T.; Isidoro, C. Resveratrol reduces the invasive growth and promotes the acquisition of a long-lasting differentiated phenotype in human glioblastoma cells. J. Agric. Food Chem., 2011, 59(8), 4264-4272.
[http://dx.doi.org/10.1021/jf104917q] [PMID: 21395220]
[84]
Bai, Y.; Mao, Q.Q.; Qin, J.; Zheng, X.Y.; Wang, Y.B.; Yang, K.; Shen, H.F.; Xie, L.P. Resveratrol induces apoptosis and cell cycle arrest of human T24 bladder cancer cells in vitro and inhibits tumor growth in vivo. Cancer Sci., 2010, 101(2), 488-493.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01415.x] [PMID: 20028382]
[85]
Vergara, D.; Valente, C.M.; Tinelli, A.; Siciliano, C.; Lorusso, V.; Acierno, R.; Giovinazzo, G.; Santino, A.; Storelli, C.; Maffia, M. Resveratrol inhibits the epidermal growth factor-induced epithelial mesenchymal transition in MCF-7 cells. Cancer Lett., 2011, 310(1), 1-8.
[http://dx.doi.org/10.1016/j.canlet.2011.04.009] [PMID: 21794976]
[86]
Nguyen, A.V.; Martinez, M.; Stamos, M.J.; Moyer, M.P.; Planutis, K.; Hope, C.; Holcombe, R.F. Results of a phase I pilot clinical trial examining the effect of plant-derived resveratrol and grape powder on Wnt pathway target gene expression in colonic mucosa and colon cancer. Cancer Manag. Res., 2009, 1, 25-37.
[http://dx.doi.org/10.2147/CMAR.S4544] [PMID: 21188121]
[87]
Patel, K.R.; Brown, V.A.; Jones, D.J.; Britton, R.G.; Hemingway, D.; Miller, A.S.; West, K.P.; Booth, T.D.; Perloff, M.; Crowell, J.A.; Brenner, D.E.; Steward, W.P.; Gescher, A.J.; Brown, K. Clinical pharmacology of resveratrol and its metabolites in colorectal cancer patients. Cancer Res., 2010, 70(19), 7392-7399.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2027] [PMID: 20841478]
[88]
Huderson, A.C.; Myers, J.N.; Niaz, M.S.; Washington, M.K.; Ramesh, A. Chemoprevention of benzo(a)pyrene-induced colon polyps in ApcMin mice by resveratrol. J. Nutr. Biochem., 2013, 24(4), 713-724.
[http://dx.doi.org/10.1016/j.jnutbio.2012.04.005] [PMID: 22889612]
[89]
Sale, S.; Tunstall, R.G.; Ruparelia, K.C.; Potter, G.A.; Steward, W.P.; Gescher, A.J. Comparison of the effects of the chemopreventive agent resveratrol and its synthetic analog trans 3,4,5,4′-tetramethoxystilbene (DMU-212) on adenoma development in the Apc(Min+) mouse and cyclooxygenase-2 in human-derived colon cancer cells. Int. J. Cancer, 2005, 115(2), 194-201.
[http://dx.doi.org/10.1002/ijc.20884] [PMID: 15688382]
[90]
Schneider, Y.; Duranton, B.; Gossé, F.; Schleiffer, R.; Seiler, N.; Raul, F. Resveratrol inhibits intestinal tumorigenesis and modulates host-defense-related gene expression in an animal model of human familial adenomatous polyposis. Nutr. Cancer, 2001, 39(1), 102-107.
[http://dx.doi.org/10.1207/S15327914nc391_14] [PMID: 11588890]
[91]
Thipe, V.C.; Panjtan Amiri, K.; Bloebaum, P.; Raphael Karikachery, A.; Khoobchandani, M.; Katti, K.K.; Jurisson, S.S.; Katti, K.V. Development of resveratrol-conjugated gold nanoparticles: interrelationship of increased resveratrol corona on anti-tumor efficacy against breast, pancreatic and prostate cancers. Int. J. Nanomedicine, 2019, 14, 4413-4428.
[http://dx.doi.org/10.2147/IJN.S204443] [PMID: 31417252]
[92]
Zhao, W.; Bao, P.; Qi, H.; You, H. Resveratrol down-regulates survivin and induces apoptosis in human multidrug-resistant SPC-A-1/CDDP cells. Oncol. Rep., 2010, 23(1), 279-286.
[PMID: 19956893]
[93]
Han, Z.; Yang, Q.; Liu, B.; Wu, J.; Li, Y.; Yang, C.; Jiang, Y. MicroRNA-622 functions as a tumor suppressor by targeting K-Ras and enhancing the anticarcinogenic effect of resveratrol. Carcinogenesis, 2012, 33(1), 131-139.
[http://dx.doi.org/10.1093/carcin/bgr226] [PMID: 22016468]
[94]
Yin, H.T.; Tian, Q.Z.; Guan, L.; Zhou, Y.; Huang, X.E.; Zhang, H. In vitro and in vivo evaluation of the antitumor efficiency of resveratrol against lung cancer. Asian Pac. J. Cancer Prev., 2013, 14(3), 1703-1706.
[http://dx.doi.org/10.7314/APJCP.2013.14.3.1703] [PMID: 23679260]
[95]
Fan, Y.; Li, J.; Yang, Y.; Zhao, X.; Liu, Y.; Jiang, Y.; Zhou, L.; Feng, Y.; Yu, Y.; Cheng, Y. Resveratrol modulates the apoptosis and autophagic death of human lung adenocarcinoma A549 cells via a p53 dependent pathway: Integrated bioinformatics analysis and experimental validation. Int. J. Oncol., 2020, 57(4), 925-938.
[http://dx.doi.org/10.3892/ijo.2020.5107] [PMID: 32945383]
[96]
Li, W.; Li, C.; Ma, L.; Jin, F. Resveratrol inhibits viability and induces apoptosis in the small cell lung cancer H446 cell line via the PI3K/Akt/c Myc pathway. Oncol. Rep., 2020, 44(5), 1821-1830.
[http://dx.doi.org/10.3892/or.2020.7747] [PMID: 32901891]
[97]
Hao, Y.; Huang, W.; Liao, M.; Zhu, Y.; Liu, H.; Hao, C.; Liu, G.; Zhang, G.; Feng, H.; Ning, X.; Li, H.; Li, Z. The inhibition of resveratrol to human skin squamous cell carcinoma A431 xenografts in nude mice. Fitoterapia, 2013, 86, 84-91.
[http://dx.doi.org/10.1016/j.fitote.2013.02.005] [PMID: 23428654]
[98]
Reagan-Shaw, S.; Afaq, F.; Aziz, M.H.; Ahmad, N. Modulations of critical cell cycle regulatory events during chemoprevention of ultraviolet B-mediated responses by resveratrol in SKH-1 hairless mouse skin. Oncogene, 2004, 23(30), 5151-5160.
[http://dx.doi.org/10.1038/sj.onc.1207666] [PMID: 15122319]
[99]
Aziz, M.H.; Reagan-Shaw, S.; Wu, J.; Longley, B.J.; Ahmad, N. Chemoprevention of skin cancer by grape constituent resveratrol: Relevance to human disease? FASEB J., 2005, 19(9), 1193-1195.
[http://dx.doi.org/10.1096/fj.04-3582fje] [PMID: 15837718]
[100]
Ganapathy, S.; Chen, Q.; Singh, K.P.; Shankar, S.; Srivastava, R.K. Resveratrol enhances antitumor activity of TRAIL in prostate cancer xenografts through activation of FOXO transcription factor. PLoS One, 2010, 5(12), e15627.
[http://dx.doi.org/10.1371/journal.pone.0015627] [PMID: 21209944]
[101]
Harper, C.E.; Patel, B.B.; Wang, J.; Arabshahi, A.; Eltoum, I.A.; Lamartiniere, C.A. Resveratrol suppresses prostate cancer progression in transgenic mice. Carcinogenesis, 2007, 28(9), 1946-1953.
[http://dx.doi.org/10.1093/carcin/bgm144] [PMID: 17675339]
[102]
Seeni, A.; Takahashi, S.; Takeshita, K.; Tang, M.; Sugiura, S.; Sato, S.Y.; Shirai, T. Suppression of prostate cancer growth by resveratrol in the transgenic rat for adenocarcinoma of prostate (TRAP) model. Asian Pac. J. Cancer Prev., 2008, 9(1), 7-14.
[PMID: 18439064]
[103]
Jang, Y.G.; Go, R.E.; Hwang, K.A.; Choi, K.C. Resveratrol inhibits DHT-induced progression of prostate cancer cell line through interfering with the AR and CXCR4 pathway. J. Steroid Biochem. Mol. Biol., 2019, 192, 105406.
[http://dx.doi.org/10.1016/j.jsbmb.2019.105406] [PMID: 31185279]
[104]
Liu, H.S.; Pan, C.E.; Yang, W.; Liu, X.M. Antitumor and immunomodulatory activity of resveratrol on experimentally implanted tumor of H22 in Balb/c mice. World J. Gastroenterol., 2003, 9(7), 1474-1476.
[http://dx.doi.org/10.3748/wjg.v9.i7.1474] [PMID: 12854144]
[105]
Yang, H.L.; Chen, W.Q.; Cao, X.; Worschech, A.; Du, L.F.; Fang, W.Y.; Xu, Y.Y.; Stroncek, D.F.; Li, X.; Wang, E.; Marincola, F.M. Caveolin-1 enhances resveratrol-mediated cytotoxicity and transport in a hepatocellular carcinoma model. J. Transl. Med., 2009, 7, 22.
[http://dx.doi.org/10.1186/1479-5876-7-22] [PMID: 19321006]
[106]
Popat, R.; Plesner, T.; Davies, F.; Cook, G.; Cook, M.; Elliott, P.; Jacobson, E.; Gumbleton, T.; Oakervee, H.; Cavenagh, J. A phase 2 study of SRT501 (resveratrol) with bortezomib for patients with relapsed and or refractory multiple myeloma. Br. J. Haematol., 2013, 160(5), 714-717.
[http://dx.doi.org/10.1111/bjh.12154] [PMID: 23205612]
[107]
Tan, L.; Wang, W.; He, G.; Kuick, R.D.; Gossner, G.; Kueck, A.S.; Wahl, H.; Opipari, A.W.; Liu, J.R. Resveratrol inhibits ovarian tumor growth in an in vivo mouse model. Cancer, 2016, 122(5), 722-729.
[http://dx.doi.org/10.1002/cncr.29793] [PMID: 26619367]
[108]
Pizzato, M.; Carioli, G.; Rosso, S.; Zanetti, R.; Negri, E.; La Vecchia, C. Cigarettes smoking and androgen receptor-positive breast cancer. Eur. J. Cancer Prev., 2021, 30(6), 469-471.
[109]
Mohapatra, P.; Satapathy, S.R.; Das, D.; Siddharth, S.; Choudhuri, T.; Kundu, C.N. Resveratrol mediated cell death in cigarette smoke transformed breast epithelial cells is through induction of p21Waf1/Cip1 and inhibition of long patch base excision repair pathway. Toxicol. Appl. Pharmacol., 2014, 275(3), 221-231.
[http://dx.doi.org/10.1016/j.taap.2014.01.011] [PMID: 24467951]
[110]
Beloribi-Djefaflia, S.; Vasseur, S.; Guillaumond, F. Lipid metabolic reprogramming in cancer cells. Oncogenesis, 2016, 5, e189.
[http://dx.doi.org/10.1038/oncsis.2015.49] [PMID: 26807644]
[111]
Morad, S.A.; Cabot, M.C. Tamoxifen regulation of sphingolipid metabolism-Therapeutic implications. Biochim. Biophys. Acta, 2015, 1851(9), 1134-1145.
[http://dx.doi.org/10.1016/j.bbalip.2015.05.001] [PMID: 25964209]
[112]
Kulkarni, S.S.; Cantó, C. The molecular targets of resveratrol. Biochim. Biophys. Acta, 2015, 1852(6), 1114-1123.
[http://dx.doi.org/10.1016/j.bbadis.2014.10.005] [PMID: 25315298]
[113]
Gomes, L.; Viana, L.; Silva, J.L.; Mermelstein, C.; Atella, G.; Fialho, E. Resveratrol modifies lipid composition of two cancer cell lines. BioMed Res. Int., 2020, e5393041.
[114]
Dong, H.; Strome, S.E.; Salomao, D.R.; Tamura, H.; Hirano, F.; Flies, D.B.; Roche, P.C.; Lu, J.; Zhu, G.; Tamada, K.; Lennon, V.A.; Celis, E.; Chen, L. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med., 2002, 8(8), 793-800.
[http://dx.doi.org/10.1038/nm730] [PMID: 12091876]
[115]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[116]
Yamazaki, T.; Akiba, H.; Iwai, H.; Matsuda, H.; Aoki, M.; Tanno, Y.; Shin, T.; Tsuchiya, H.; Pardoll, D.M.; Okumura, K.; Azuma, M.; Yagita, H. Expression of programmed death 1 ligands by murine T cells and APC. J. Immunol., 2002, 169(10), 5538-5545.
[http://dx.doi.org/10.4049/jimmunol.169.10.5538] [PMID: 12421930]
[117]
Hino, R.; Kabashima, K.; Kato, Y.; Yagi, H.; Nakamura, M.; Honjo, T.; Okazaki, T.; Tokura, Y. Tumor cell expression of programmed cell death-1 ligand 1 is a prognostic factor for malignant melanoma. Cancer, 2010, 116(7), 1757-1766.
[http://dx.doi.org/10.1002/cncr.24899] [PMID: 20143437]
[118]
Liu, J.; Hamrouni, A.; Wolowiec, D.; Coiteux, V.; Kuliczkowski, K.; Hetuin, D.; Saudemont, A.; Quesnel, B. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-gamma and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood, 2007, 110(1), 296-304.
[http://dx.doi.org/10.1182/blood-2006-10-051482] [PMID: 17363736]
[119]
Akbay, E.A.; Koyama, S.; Carretero, J.; Altabef, A.; Tchaicha, J.H.; Christensen, C.L.; Mikse, O.R.; Cherniack, A.D.; Beauchamp, E.M.; Pugh, T.J.; Wilkerson, M.D.; Fecci, P.E.; Butaney, M.; Reibel, J.B.; Soucheray, M.; Cohoon, T.J.; Janne, P.A.; Meyerson, M.; Hayes, D.N.; Shapiro, G.I.; Shimamura, T.; Sholl, L.M.; Rodig, S.J.; Freeman, G.J.; Hammerman, P.S.; Dranoff, G.; Wong, K.K. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov., 2013, 3(12), 1355-1363.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0310] [PMID: 24078774]
[120]
Lyford-Pike, S.; Peng, S.; Young, G.D.; Taube, J.M.; Westra, W.H.; Akpeng, B.; Bruno, T.C.; Richmon, J.D.; Wang, H.; Bishop, J.A.; Chen, L.; Drake, C.G.; Topalian, S.L.; Pardoll, D.M.; Pai, S.I. Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res., 2013, 73(6), 1733-1741.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2384] [PMID: 23288508]
[121]
Mittal, D.; Gubin, M.M.; Schreiber, R.D.; Smyth, M.J. New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr. Opin. Immunol., 2014, 27, 16-25.
[http://dx.doi.org/10.1016/j.coi.2014.01.004] [PMID: 24531241]
[122]
He, J.; Hu, Y.; Hu, M.; Li, B. Development of PD-1/PD-L1 pathway in tumor immune microenvironment and treatment for non-small cell lung cancer. Sci. Rep., 2015, 5, 13110.
[http://dx.doi.org/10.1038/srep13110] [PMID: 26279307]
[123]
Noh, H.; Hu, J.; Wang, X.; Xia, X.; Satelli, A.; Li, S. Immune checkpoint regulator PD-L1 expression on tumor cells by contacting CD11b positive bone marrow derived stromal cells. Cell Commun. Signal., 2015, 13, 14.
[http://dx.doi.org/10.1186/s12964-015-0093-y] [PMID: 25889536]
[124]
Kim, J.M.; Chen, D.S. Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Ann. Oncol., 2016, 27(8), 1492-1504.
[http://dx.doi.org/10.1093/annonc/mdw217] [PMID: 27207108]
[125]
Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; Leming, P.D.; Spigel, D.R.; Antonia, S.J.; Horn, L.; Drake, C.G.; Pardoll, D.M.; Chen, L.; Sharfman, W.H.; Anders, R.A.; Taube, J.M.; McMiller, T.L.; Xu, H.; Korman, A.J.; Jure-Kunkel, M.; Agrawal, S.; McDonald, D.; Kollia, G.D.; Gupta, A.; Wigginton, J.M.; Sznol, M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med., 2012, 366(26), 2443-2454.
[http://dx.doi.org/10.1056/NEJMoa1200690] [PMID: 22658127]
[126]
Topalian, S.L.; Sznol, M.; McDermott, D.F.; Kluger, H.M.; Carvajal, R.D.; Sharfman, W.H.; Brahmer, J.R.; Lawrence, D.P.; Atkins, M.B.; Powderly, J.D.; Leming, P.D.; Lipson, E.J.; Puzanov, I.; Smith, D.C.; Taube, J.M.; Wigginton, J.M.; Kollia, G.D.; Gupta, A.; Pardoll, D.M.; Sosman, J.A.; Hodi, F.S. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J. Clin. Oncol., 2014, 32(10), 1020-1030.
[http://dx.doi.org/10.1200/JCO.2013.53.0105] [PMID: 24590637]
[127]
Hamid, O.; Robert, C.; Daud, A.; Hodi, F.S.; Hwu, W.J.; Kefford, R.; Wolchok, J.D.; Hersey, P.; Joseph, R.W.; Weber, J.S.; Dronca, R.; Gangadhar, T.C.; Patnaik, A.; Zarour, H.; Joshua, A.M.; Gergich, K.; Elassaiss-Schaap, J.; Algazi, A.; Mateus, C.; Boasberg, P.; Tumeh, P.C.; Chmielowski, B.; Ebbinghaus, S.W.; Li, X.N.; Kang, S.P.; Ribas, A. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med., 2013, 369(2), 134-144.
[http://dx.doi.org/10.1056/NEJMoa1305133] [PMID: 23724846]
[128]
Gadiot, J.; Hooijkaas, A.I.; Kaiser, A.D.; van Tinteren, H.; van Boven, H.; Blank, C. Overall survival and PD-L1 expression in metastasized malignant melanoma. Cancer, 2011, 117(10), 2192-2201.
[http://dx.doi.org/10.1002/cncr.25747] [PMID: 21523733]
[129]
Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; Barlesi, F.; Kohlhäufl, M.; Arrieta, O.; Burgio, M.A.; Fayette, J.; Lena, H.; Poddubskaya, E.; Gerber, D.E.; Gettinger, S.N.; Rudin, C.M.; Rizvi, N.; Crinò, L.; Blumenschein, G.R., Jr; Antonia, S.J.; Dorange, C.; Harbison, C.T.; Graf Finckenstein, F.; Brahmer, J.R. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med., 2015, 373(17), 1627-1639.
[http://dx.doi.org/10.1056/NEJMoa1507643] [PMID: 26412456]
[130]
Brahmer, J.; Reckamp, K.L.; Baas, P.; Crinò, L.; Eberhardt, W.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; Waterhouse, D.; Ready, N.; Gainor, J.; Arén Frontera, O.; Havel, L.; Steins, M.; Garassino, M.C.; Aerts, J.G.; Domine, M.; Paz-Ares, L.; Reck, M.; Baudelet, C.; Harbison, C.T.; Lestini, B.; Spigel, D.R. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med., 2015, 373(2), 123-135.
[http://dx.doi.org/10.1056/NEJMoa1504627] [PMID: 26028407]
[131]
Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.Y.; Molina, J.; Kim, J.H.; Arvis, C.D.; Ahn, M.J.; Majem, M.; Fidler, M.J.; de Castro, G., Jr; Garrido, M.; Lubiniecki, G.M.; Shentu, Y. Im, E.; Dolled-Filhart, M.; Garon, E.B. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet, 2016, 387(10027), 1540-1550.
[http://dx.doi.org/10.1016/S0140-6736(15)01281-7] [PMID: 26712084]
[132]
Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.; Plimack, E.R.; Castellano, D.; Choueiri, T.K.; Gurney, H.; Donskov, F.; Bono, P.; Wagstaff, J.; Gauler, T.C.; Ueda, T.; Tomita, Y.; Schutz, F.A.; Kollmannsberger, C.; Larkin, J.; Ravaud, A.; Simon, J.S.; Xu, L.A.; Waxman, I.M.; Sharma, P. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med., 2015, 373(19), 1803-1813.
[http://dx.doi.org/10.1056/NEJMoa1510665] [PMID: 26406148]
[133]
Chen, L.; Flies, D.B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol., 2013, 13(4), 227-242.
[http://dx.doi.org/10.1038/nri3405] [PMID: 23470321]
[134]
Yang, Y. Cancer immunotherapy: Harnessing the immune system to battle cancer. J. Clin. Invest., 2015, 125(9), 3335-3337.
[http://dx.doi.org/10.1172/JCI83871] [PMID: 26325031]
[135]
Chen, L.; Han, X. Anti-PD-1/PD-L1 therapy of human cancer: Past, present, and future. J. Clin. Invest., 2015, 125(9), 3384-3391.
[http://dx.doi.org/10.1172/JCI80011] [PMID: 26325035]
[136]
Zou, W.; Wolchok, J.D.; Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci. Transl. Med., 2016, 8(328), 328rv4.
[http://dx.doi.org/10.1126/scitranslmed.aad7118] [PMID: 26936508]
[137]
Ansell, S.M.; Lesokhin, A.M.; Borrello, I.; Halwani, A.; Scott, E.C.; Gutierrez, M.; Schuster, S.J.; Millenson, M.M.; Cattry, D.; Freeman, G.J.; Rodig, S.J.; Chapuy, B.; Ligon, A.H.; Zhu, L.; Grosso, J.F.; Kim, S.Y.; Timmerman, J.M.; Shipp, M.A.; Armand, P. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med., 2015, 372(4), 311-319.
[http://dx.doi.org/10.1056/NEJMoa1411087] [PMID: 25482239]
[138]
Lucas, J.; Hsieh, T.C.; Halicka, H.D.; Darzynkiewicz, Z.; Wu, J.M. Upregulation of PD L1 expression by resveratrol and piceatannol in breast and colorectal cancer cells occurs via HDAC3/p300 mediated NF κB signaling. Int. J. Oncol., 2018, 53(4), 1469-1480.
[http://dx.doi.org/10.3892/ijo.2018.4512] [PMID: 30066852]
[139]
Mani, S.A.; Guo, W.; Liao, M.J.; Eaton, E.N.; Ayyanan, A.; Zhou, A.Y.; Brooks, M.; Reinhard, F.; Zhang, C.C.; Shipitsin, M.; Campbell, L.L.; Polyak, K.; Brisken, C.; Yang, J.; Weinberg, R.A. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008, 133(4), 704-715.
[http://dx.doi.org/10.1016/j.cell.2008.03.027] [PMID: 18485877]
[140]
Singh, M.; Yelle, N.; Venugopal, C.; Singh, S.K. EMT: Mechanisms and therapeutic implications. Pharmacol. Ther., 2018, 182, 80-94.
[http://dx.doi.org/10.1016/j.pharmthera.2017.08.009] [PMID: 28834698]
[141]
Guarino, M. Epithelial-mesenchymal transition and tumour invasion. Int. J. Biochem. Cell Biol., 2007, 39(12), 2153-2160.
[http://dx.doi.org/10.1016/j.biocel.2007.07.011] [PMID: 17825600]
[142]
Cai, Z.; Wang, Q.; Zhou, Y.; Zheng, L.; Chiu, J.F.; He, Q.Y. Epidermal growth factor-induced epithelial-mesenchymal transition in human esophageal carcinoma cells--a model for the study of metastasis. Cancer Lett., 2010, 296(1), 88-95.
[http://dx.doi.org/10.1016/j.canlet.2010.03.020] [PMID: 20413216]
[143]
Ahmad, A.; Biersack, B.; Li, Y.; Kong, D.; Bao, B.; Schobert, R.; Padhye, S.B.; Sarkar, F.H. Targeted regulation of PI3K/Akt/mTOR/NF-κB signaling by indole compounds and their derivatives: mechanistic details and biological implications for cancer therapy. Anticancer. Agents Med. Chem., 2013, 13(7), 1002-1013.
[http://dx.doi.org/10.2174/18715206113139990078] [PMID: 23272910]
[144]
Moreno-Bueno, G.; Peinado, H.; Molina, P.; Olmeda, D.; Cubillo, E.; Santos, V.; Palacios, J.; Portillo, F.; Cano, A. The morphological and molecular features of the epithelial-to-mesenchymal transition. Nat. Protoc., 2009, 4(11), 1591-1613.
[http://dx.doi.org/10.1038/nprot.2009.152] [PMID: 19834475]
[145]
Zhang, J.; Tian, X.J.; Xing, J. Signal Transduction pathways of EMT induced by TGF-β, SHH, and WNT and their crosstalks. J. Clin. Med., 2016, 5(4), 5.
[http://dx.doi.org/10.3390/jcm5040041] [PMID: 27043642]
[146]
Park, N.R.; Cha, J.H.; Jang, J.W.; Bae, S.H.; Jang, B.; Kim, J.H.; Hur, W.; Choi, J.Y.; Yoon, S.K. Synergistic effects of CD44 and TGF-β1 through AKT/GSK-3β/β-catenin signaling during epithelial-mesenchymal transition in liver cancer cells. Biochem. Biophys. Res. Commun., 2016, 477(4), 568-574.
[http://dx.doi.org/10.1016/j.bbrc.2016.06.077] [PMID: 27320862]
[147]
Zhang, K.; Liu, X.; Hao, F.; Dong, A.; Chen, D. Targeting TGF-β1 inhibits invasion of anaplastic thyroid carcinoma cell through SMAD2-dependent S100A4-MMP-2/9 signalling. Am. J. Transl. Res., 2016, 8(5), 2196-2209.
[PMID: 27347327]
[148]
Sun, Y.; Zhou, Q.M.; Lu, Y.Y.; Zhang, H.; Chen, Q.L.; Zhao, M.; Su, S.B. Resveratrol inhibits the migration and metastasis of MDA-MB-231 human breast cancer by reversing TGF-β1-induced epithelial-mesenchymal transition. Molecules, 2019, 24(6), 1131.
[http://dx.doi.org/10.3390/molecules24061131]
[149]
Venkatadri, R.; Muni, T.; Iyer, A.K.; Yakisich, J.S.; Azad, N. Role of apoptosis-related miRNAs in resveratrol-induced breast cancer cell death. Cell Death Dis., 2016, 7, e2104.
[http://dx.doi.org/10.1038/cddis.2016.6] [PMID: 26890143]
[150]
Dickson, M.A.; Schwartz, G.K. Development of cell-cycle inhibitors for cancer therapy. Curr. Oncol., 2009, 16(2), 36-43.
[http://dx.doi.org/10.3747/co.v16i2.428] [PMID: 19370178]
[151]
Wang, Z.; Li, W.; Meng, X.; Jia, B. Resveratrol induces gastric cancer cell apoptosis via reactive oxygen species, but independent of sirtuin1. Clin. Exp. Pharmacol. Physiol., 2012, 39(3), 227-232.
[http://dx.doi.org/10.1111/j.1440-1681.2011.05660.x] [PMID: 22211760]
[152]
Kong, Y.; Chen, J.; Zhou, Z.; Xia, H.; Qiu, M.H.; Chen, C. Cucurbitacin E induces cell cycle G2/M phase arrest and apoptosis in triple negative breast cancer. PLoS One, 2014, 9(7), e103760.
[http://dx.doi.org/10.1371/journal.pone.0103760] [PMID: 25072848]
[153]
Tan, T.W.; Tsai, H.R.; Lu, H.F.; Lin, H.L.; Tsou, M.F.; Lin, Y.T.; Tsai, H.Y.; Chen, Y.F.; Chung, J.G. Curcumin-induced cell cycle arrest and apoptosis in human acute promyelocytic leukemia HL-60 cells via MMP changes and caspase-3 activation. Anticancer Res., 2006, 26(6B), 4361-4371.
[PMID: 17201156]
[154]
Shah, A.A.; Leidinger, P.; Blin, N.; Meese, E. miRNA: Small molecules as potential novel biomarkers in cancer. Curr. Med. Chem., 2010, 17(36), 4427-4432.
[http://dx.doi.org/10.2174/092986710794182980] [PMID: 21062260]
[155]
Fish, J.E.; Santoro, M.M.; Morton, S.U.; Yu, S.; Yeh, R.F.; Wythe, J.D.; Ivey, K.N.; Bruneau, B.G.; Stainier, D.Y.; Srivastava, D. miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell, 2008, 15(2), 272-284.
[http://dx.doi.org/10.1016/j.devcel.2008.07.008] [PMID: 18694566]
[156]
Mulrane, L.; McGee, S.F.; Gallagher, W.M.; O’Connor, D.P. miRNA dysregulation in breast cancer. Cancer Res., 2013, 73(22), 6554-6562.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-1841] [PMID: 24204025]
[157]
Wang, S.; Aurora, A.B.; Johnson, B.A.; Qi, X.; McAnally, J.; Hill, J.A.; Richardson, J.A.; Bassel-Duby, R.; Olson, E.N. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell, 2008, 15(2), 261-271.
[http://dx.doi.org/10.1016/j.devcel.2008.07.002] [PMID: 18694565]
[158]
Wang, Z.; Wang, N.; Liu, P.; Chen, Q.; Situ, H.; Xie, T.; Zhang, J.; Peng, C.; Lin, Y.; Chen, J. MicroRNA-25 regulates chemoresistance-associated autophagy in breast cancer cells, a process modulated by the natural autophagy inducer isoliquiritigenin. Oncotarget, 2014, 5(16), 7013-7026.
[http://dx.doi.org/10.18632/oncotarget.2192] [PMID: 25026296]
[159]
Guo, J.; Miao, Y.; Xiao, B.; Huan, R.; Jiang, Z.; Meng, D.; Wang, Y. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J. Gastroenterol. Hepatol., 2009, 24(4), 652-657.
[http://dx.doi.org/10.1111/j.1440-1746.2008.05666.x] [PMID: 19175831]
[160]
Lim, W.K.; Micklem, G. MicroRNAs dysregulated in breast cancer preferentially target key oncogenic pathways. Mol. Biosyst., 2011, 7(9), 2571-2576.
[http://dx.doi.org/10.1039/c1mb05181d] [PMID: 21766137]
[161]
Yoon, S.O.; Chun, S.M.; Han, E.H.; Choi, J.; Jang, S.J.; Koh, S.A.; Hwang, S.; Yu, E. Deregulated expression of microRNA-221 with the potential for prognostic biomarkers in surgically resected hepatocellular carcinoma. Hum. Pathol., 2011, 42(10), 1391-1400.
[http://dx.doi.org/10.1016/j.humpath.2010.12.010] [PMID: 21458843]
[162]
Dhar, S.; Hicks, C.; Levenson, A.S. Resveratrol and prostate cancer: promising role for microRNAs. Mol. Nutr. Food Res., 2011, 55(8), 1219-1229.
[http://dx.doi.org/10.1002/mnfr.201100141] [PMID: 21714127]
[163]
Zhang, W.; Jiang, H.; Chen, Y.; Ren, F. Resveratrol chemosensitizes adriamycin-resistant breast cancer cells by modulating miR-122-5p. J. Cell. Biochem., 2019, 120, 16283-16292.
[164]
Bove, K.; Lincoln, D.W.; Tsan, M.F. Effect of resveratrol on growth of 4T1 breast cancer cells in vitro and in vivo. Biochem. Biophys. Res. Commun., 2002, 291(4), 1001-1005.
[http://dx.doi.org/10.1006/bbrc.2002.6554] [PMID: 11866465]
[165]
Schlachterman, A.; Valle, F.; Wall, K.M.; Azios, N.G.; Castillo, L.; Morell, L.; Washington, A.V.; Cubano, L.A.; Dharmawardhane, S.F. Combined resveratrol, quercetin, and catechin treatment reduces breast tumor growth in a nude mouse model. Transl. Oncol., 2008, 1(1), 19-27.
[http://dx.doi.org/10.1593/tlo.07100] [PMID: 18607509]
[166]
Gomes, L.; Viana, L.; Silva, J.L.; Mermelstein, C.; Atella, G.; Fialho, E. Resveratrol modifies lipid composition of two cancer cell lines. BioMed Res. Int., 2020, 2020, 5393041-5393041.
[http://dx.doi.org/10.1155/2020/5393041] [PMID: 32149115]
[167]
Ferraz da Costa, D.C.; Campos, N.P.C.; Santos, R.A.; Guedes-da-Silva, F.H.; Martins-Dinis, M.M.D.C.; Zanphorlin, L.; Ramos, C.; Rangel, L.P.; Silva, J.L. Resveratrol prevents p53 aggregation in vitro and in breast cancer cells. Oncotarget, 2018, 9(49), 29112-29122.
[http://dx.doi.org/10.18632/oncotarget.25631] [PMID: 30018739]
[168]
Andreani, C.; Bartolacci, C.; Wijnant, K.; Crinelli, R.; Bianchi, M.; Magnani, M.; Hysi, A.; Iezzi, M.; Amici, A.; Marchini, C. Resveratrol fuels HER2 and ERα-positive breast cancer behaving as proteasome inhibitor. Aging (Albany NY), 2017, 9(2), 508-523.
[http://dx.doi.org/10.18632/aging.101175] [PMID: 28238967]
[169]
Gao, Y.; Tollefsbol, T.O. Combinational proanthocyanidins and resveratrol synergistically inhibit human breast cancer cells and impact epigenetic−mediating machinery. Int. J. Mol. Sci., 2018, 19(8), 2204.
[http://dx.doi.org/10.3390/ijms19082204]
[170]
Wu, H.; Chen, L.; Zhu, F.; Han, X.; Sun, L.; Chen, K. The cytotoxicity effect of resveratrol: Cell cycle arrest and induced apoptosis of breast cancer 4T1 cells. Toxins (Basel), 2019, 11(12), 11.
[http://dx.doi.org/10.3390/toxins11120731] [PMID: 31847250]
[171]
Subedi, L.; Teli, M.K.; Lee, J.H.; Gaire, B.P.; Kim, M.H.; Kim, S.Y. A stilbenoid isorhapontigenin as a potential anti-cancer agent against breast cancer through inhibiting sphingosine kinases/tubulin stabilization. Cancers (Basel), 2019, 11(12), 11.
[http://dx.doi.org/10.3390/cancers11121947] [PMID: 31817453]
[172]
Tili, E.; Michaille, J-J.; Adair, B.; Alder, H.; Limagne, E.; Taccioli, C.; Ferracin, M.; Delmas, D.; Latruffe, N.; Croce, C.M. Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis, 2010, 31(9), 1561-1566.
[http://dx.doi.org/10.1093/carcin/bgq143] [PMID: 20622002]
[173]
Kim, J.S.; Jeong, S.K.; Oh, S.J.; Lee, C.G.; Kang, Y.R.; Jo, W.S.; Jeong, M.H. The resveratrol analogue, HS 1793, enhances the effects of radiation therapy through the induction of anti tumor immunity in mammary tumor growth. Int. J. Oncol., 2020, 56(6), 1405-1416.
[http://dx.doi.org/10.3892/ijo.2020.5017] [PMID: 32236622]
[174]
Vargas, J.E.; Puga, R.; Lenz, G.; Trindade, C.; Filippi-Chiela, E. Cellular mechanisms triggered by the cotreatment of resveratrol and doxorubicin in breast cancer: a translational in vitro in silico model. Oxid. Med. Cell. Longev., 2020, 2020, 5432651-5432651.
[http://dx.doi.org/10.1155/2020/5432651] [PMID: 33204396]
[175]
Peiffer, D.S.; Ma, E.; Wyatt, D.; Albain, K.S.; Osipo, C. DAXX-inducing phytoestrogens inhibit ER+ tumor initiating cells and delay tumor development. NPJ Breast Cancer, 2020, 6, 37.
[http://dx.doi.org/10.1038/s41523-020-00178-5] [PMID: 32864429]
[176]
Schmidt, B.; Ferreira, C.; Alves Passos, C.L.; Silva, J.L.; Fialho, E. Resveratrol, curcumin and piperine alter human glyoxalase 1 in MCF-7 breast cancer cells. Int. J. Mol. Sci., 2020, 21(15), 5244.
[http://dx.doi.org/10.3390/ijms21155244] [PMID: 32721999]
[177]
Guo, X.; Zhao, Z.; Chen, D.; Qiao, M.; Wan, F.; Cun, D.; Sun, Y.; Yang, M. Co-delivery of resveratrol and docetaxel via polymeric micelles to improve the treatment of drug-resistant tumors. Asian J Pharm Sci, 2019, 14(1), 78-85.
[http://dx.doi.org/10.1016/j.ajps.2018.03.002] [PMID: 32104440]
[178]
García-Quiroz, J.; García-Becerra, R.; Santos-Cuevas, C.; Ramírez-Nava, G.J.; Morales-Guadarrama, G.; Cárdenas-Ochoa, N.; Segovia-Mendoza, M.; Prado-Garcia, H.; Ordaz-Rosado, D.; Avila, E.; Olmos-Ortiz, A.; López-Cisneros, S.; Larrea, F.; Díaz, L. Synergistic antitumorigenic activity of calcitriol with curcumin or resveratrol is mediated by angiogenesis inhibition in triple negative breast cancer xenografts. Cancers (Basel), 2019, 11(11), 11.
[http://dx.doi.org/10.3390/cancers11111739] [PMID: 31698751]
[179]
Gomes, L.; Sorgine, M.; Passos, C.L.A.; Ferreira, C.; de Andrade, I.R.; Silva, J.L.; Atella, G.C.; Mermelstein, C.S.; Fialho, E. Increase in fatty acids and flotillins upon resveratrol treatment of human breast cancer cells. Sci. Rep., 2019, 9(1), 13960.
[http://dx.doi.org/10.1038/s41598-019-50416-5] [PMID: 31562347]
[180]
Chen, K.Y.; Chen, C.C.; Chang, Y.C.; Chang, M.C. Resveratrol induced premature senescence and inhibited epithelial-mesenchymal transition of cancer cells via induction of tumor suppressor Rad9. PLoS One, 2019, 14(7), e0219317.
[http://dx.doi.org/10.1371/journal.pone.0219317] [PMID: 31310624]
[181]
Iturri, J.; Weber, A.; Moreno-Cencerrado, A.; Vivanco, M.D.; Benítez, R.; Leporatti, S.; Toca-Herrera, J.L. Resveratrol-induced temporal variation in the mechanical properties of MCF-7 breast cancer cells investigated by atomic force microscopy. Int. J. Mol. Sci., 2019, 20(13), 20.
[http://dx.doi.org/10.3390/ijms20133275] [PMID: 31277289]
[182]
van den Brand, A.D.; Villevoye, J.; Nijmeijer, S.M.; van den Berg, M.; van Duursen, M.B.M. Anti-tumor properties of methoxylated analogues of resveratrol in malignant MCF-7 but not in non-tumorigenic MCF-10A mammary epithelial cell lines. Toxicology, 2019, 422, 35-43.
[http://dx.doi.org/10.1016/j.tox.2019.04.009] [PMID: 31004704]
[183]
Amini, P.; Nodooshan, S.J.; Ashrafizadeh, M.; Eftekhari, S.M.; Aryafar, T.; Khalafi, L.; Musa, A.E.; Mahdavi, S.R.; Najafi, M.; Farhood, B. Resveratrol induces apoptosis and attenuates proliferation of MCF-7 cells in combination with radiation and hyperthermia. Curr. Mol. Med., 2020, 21(2), 142-150.
[PMID: 32436827]
[184]
Zhao, Y.N.; Cao, Y.N.; Sun, J.; Liang, Z.; Wu, Q.; Cui, S.H.; Zhi, D.F.; Guo, S.T.; Zhen, Y.H.; Zhang, S.B. Anti-breast cancer activity of resveratrol encapsulated in liposomes. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(1), 27-37.
[http://dx.doi.org/10.1039/C9TB02051A] [PMID: 31746932]
[185]
Szaefer, H.; Licznerska, B.; Cykowiak, M.; Baer-Dubowska, W. Expression of CYP2S1 and CYP2W1 in breast cancer epithelial cells and modulation of their expression by synthetic methoxy stilbenes. Pharmacol. Rep., 2019, 71(6), 1001-1005.
[http://dx.doi.org/10.1016/j.pharep.2019.08.005] [PMID: 31561186]
[186]
Fan, C.; Kong, F.; Shetti, D.; Zhang, B.; Yang, Y.; Wei, K. Resveratrol loaded oxidized mesoporous carbon nanoparticles: A promising tool to treat triple negative breast cancer. Biochem. Biophys. Res. Commun., 2019, 519(2), 378-384.
[http://dx.doi.org/10.1016/j.bbrc.2019.09.016] [PMID: 31519327]
[187]
Giménez-Bastida, J.A.; Ávila-Gálvez, M.Á.; Espín, J.C.; González-Sarrías, A. Conjugated physiological resveratrol metabolites induce senescence in breast cancer cells: Role of p53/p21 and p16/Rb pathways, and ABC transporters. Mol. Nutr. Food Res., 2019, 63(22), e1900629.
[http://dx.doi.org/10.1002/mnfr.201900629] [PMID: 31441212]
[188]
Chatterjee, B.; Ghosh, K.; Kanade, S.R. Resveratrol modulates epigenetic regulators of promoter histone methylation and acetylation that restores BRCA1, p53, p21CIP1 in human breast cancer cell lines. Biofactors, 2019, 45(5), 818-829.
[http://dx.doi.org/10.1002/biof.1544] [PMID: 31317586]
[189]
Izquierdo-Torres, E.; Hernández-Oliveras, A.; Meneses-Morales, I.; Rodríguez, G.; Fuentes-García, G.; Zarain-Herzberg, Á. Resveratrol up-regulates ATP2A3 gene expression in breast cancer cell lines through epigenetic mechanisms. Int. J. Biochem. Cell Biol., 2019, 113, 37-47.
[http://dx.doi.org/10.1016/j.biocel.2019.05.020] [PMID: 31173924]
[190]
Zhang, W.; Jiang, H.; Chen, Y.; Ren, F. Resveratrol chemosensitizes adriamycin-resistant breast cancer cells by modulating miR-122-5p. J. Cell. Biochem., 2019, 120(9), 16283-16292.
[http://dx.doi.org/10.1002/jcb.28910] [PMID: 31155753]
[191]
Aghamiri, S.; Jafarpour, A.; Zandsalimi, F.; Aghemiri, M.; Shoja, M. Effect of resveratrol on the radiosensitivity of 5-FU in human breast cancer MCF-7 cells. J. Cell. Biochem., 2019, 120(9), 15671-15677.
[http://dx.doi.org/10.1002/jcb.28836] [PMID: 31069826]
[192]
Horgan, X.J.; Tatum, H.; Brannan, E.; Paull, D.H.; Rhodes, L.V. Resveratrol analogues surprisingly effective against triple negative breast cancer, independent of ERα. Oncol. Rep., 2019, 41(6), 3517-3526.
[http://dx.doi.org/10.3892/or.2019.7122] [PMID: 31002359]
[193]
Huang, C.; Huang, Y.L.; Wang, C.C.; Pan, Y.L.; Lai, Y.H.; Huang, H.C.; Ampelopsins, A. Ampelopsins A and C induce apoptosis and metastasis through downregulating AxL, TYRO3, and FYN expressions in MDA-MB-231 breast cancer cells. J. Agric. Food Chem., 2019, 67(10), 2818-2830.
[http://dx.doi.org/10.1021/acs.jafc.8b06444] [PMID: 30789269]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy