Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Synthesis, Characterization, In vitro Antimicrobial Evaluation and Molecular Docking Studies of Pyrazole Based Pyrimidine and Pyrazolone Motifs

Author(s): Nisheeth C. Desai*, Ashvinkumar G. Khasiya, Bharti P. Dave and Vijay M. Khedkar

Volume 20, Issue 5, 2022

Published on: 06 September, 2022

Article ID: e160622206072 Pages: 9

DOI: 10.2174/2211352520666220616105540

Price: $65

Abstract

Background: In the past few decades, mankind has been suffering from tormented life-threatening infectious diseases caused by multidrug-resistant bacteria. As a result, new antimicrobial classes with distinct modes of action are required to combat multidrug-resistant infections.

Objective: The pyrazole-based pyrimidine and pyrazolone motifs were synthesized, characterized, and screened for their antimicrobial activity. Molecular docking was carried out for the development of antimicrobial agents based on the results of biological activity obtained.

Methods: We have synthesized a new series of pyrazole containing pyrimidine-pyrazolone hybrids by using multi-step reactions in the search for antimicrobial agents (7a-o). The structures were determined by 1H NMR, 13C NMR, IR, and mass spectroscopy techniques. Moreover, synthesized compounds were evaluated for their antimicrobial activity by using the serial Broth dilution method.

Results: Antimicrobial activity of synthesized compounds has been tested against bacterial and fungal strains. Compound 7o was most effective against S. aureus with MIC = 0.096 M/mL. A molecular docking study against microbial DNA gyrase revealed important information about the mechanisms underlying antimicrobial efficacy. Through significant interactions with active site residues, all of the compounds were able to dock well into the enzyme's active site. Furthermore, compounds 7a (0.531 M/mL), 7b (0.456 M/mL), and 7m (0.485 M/mL) showed excellent antifungal activity against C. albicans compared to the positive control griseofulvin.

Conclusion: It has been concluded that compounds containing electron-donating groups are found to be most active against bacterial strains, while compounds having both electron-donating as well as electron-withdrawing groups are most favorable for antifungal activity.

Keywords: Pyrazole, pyrimidine, pyrazolone, antibacterial activity, antifungal activity, molecular docking.

Graphical Abstract

[1]
Ali Mohamed, H.; Ammar, Y.A.; Elhagali, G.; A., Eyada H.; S Aboul-Magd, D.; Ragab, A. In vitro antimicrobial evaluation, single-point resistance study, and radiosterilization of novel pyrazole incorporating thiazol-4-one/thiophene derivatives as dual DNA Gyrase and DHFR Inhibitors against MDR Pathogens. ACS Omega, 2022, 7(6), 4970-4990.
[http://dx.doi.org/10.1021/acsomega.1c05801] [PMID: 35187315]
[2]
Payne, D.J.; Gwynn, M.N.; Holmes, D.J.; Pompliano, D.L. Drugs for bad bugs: Confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov., 2007, 6(1), 29-40.
[http://dx.doi.org/10.1038/nrd2201] [PMID: 17159923]
[3]
Salem, M.A.; Ragab, A.; Askar, A.A.; El-Khalafawy, A.; Makhlouf, A.H. One-pot synthesis and molecular docking of some new spiropyranindol-2-one derivatives as immunomodulatory agents and in vitro antimicrobial potential with DNA gyrase inhibitor. Eur. J. Med. Chem., 2020, 188, 111977.
[http://dx.doi.org/10.1016/j.ejmech.2019.111977] [PMID: 31927313]
[4]
Administration, U. S. F. and D. Drugs@ FDA: FDA Approved Drug Products; US Food and Drug Administration: Rockville, MD, 2011.
[5]
Luepke, K.H.; Suda, K.J.; Boucher, H.; Russo, R.L.; Bonney, M.W.; Hunt, T.D.; Mohr, J.F. III Past, present, and future of antibacterial economics: Increasing bacterial resistance, limited antibiotic pipeline, and societal implications. Pharmacotherapy, 2017, 37(1), 71-84.
[http://dx.doi.org/10.1002/phar.1868] [PMID: 27859453]
[6]
Dofe, V.S.; Sarkate, A.P.; Shaikh, Z.M.; Jadhav, C.K.; Nipte, A.S.; Gill, C.H. Ultrasound-assisted synthesis of novel pyrazole and pyrimidine derivatives as antimicrobial agents. J. Heterocycl. Chem., 2018, 55(3), 756-762.
[http://dx.doi.org/10.1002/jhet.3105]
[7]
Faisal, M.; Saeed, A.; Hussain, S.; Dar, P.; Larik, F.A. Recent developments in synthetic chemistry and biological activities of pyrazole derivatives. J. Chem. Sci., 2019, 131(8), 70.
[http://dx.doi.org/10.1007/s12039-019-1646-1]
[8]
Wang, G.; Liu, W.; Peng, Z.; Huang, Y.; Gong, Z.; Li, Y. Design, synthesis, molecular modeling, and biological evaluation of pyrazole-naphthalene derivatives as potential anticancer agents on MCF-7 breast cancer cells by inhibiting tubulin polymerization. Bioorg. Chem., 2020, 103, 104141.
[http://dx.doi.org/10.1016/j.bioorg.2020.104141] [PMID: 32750611]
[9]
Desai, N.C.; Vaghani, H.V.; Jethawa, A.M.; Khedkar, V.M. In silico molecular docking studies of oxadiazole and pyrimidine bearing heterocyclic compounds as potential antimicrobial agents. Arch. Pharm. (Weinheim), 2021, 354(10), e2100134.
[http://dx.doi.org/10.1002/ardp.202100134] [PMID: 34169569]
[10]
Maurya, S.S.; Khan, S.I.; Bahuguna, A.; Kumar, D.; Rawat, D.S. Synthesis, antimalarial activity, heme binding and docking studies of N-substituted 4-aminoquinoline-pyrimidine molecular hybrids. Eur. J. Med. Chem., 2017, 129, 175-185.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.024] [PMID: 28222317]
[11]
Hassan, A.S.; Moustafa, G.O.; Awad, H.M. Synthesis and in vitro anticancer activity of pyrazolo [1, 5-a] pyrimidines and pyrazolo [3,4-d] [1,2,3] triazines. Synth. Commun., 2017, 47(21), 1963-1972.
[http://dx.doi.org/10.1080/00397911.2017.1358368]
[12]
Desai, N.C.; Trivedi, A.R.; Khedkar, V.M. Preparation, biological evaluation and molecular docking study of imidazolyl dihydropyrimidines as potential Mycobacterium tuberculosis dihydrofolate reductase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(16), 4030-4035.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.082] [PMID: 27397497]
[13]
Desai, N.C.; Vaghani, H.V.; Patel, B.Y.; Karkar, T.J. Synthesis and antimicrobial activity of fluorine containing pyrazole-clubbed dihydropyrimidinones. Indian J. Pharm. Sci., 2018, 80(2), 242-252.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000351]
[14]
El Sayed, M.T.; El-Sharief, M.A.M.S.; Zarie, E.S.; Morsy, N.M.; Elsheakh, A.R.; Voronkov, A.; Berishvili, V.; Hassan, G.S. Design, synthesis, anti-inflammatory activity and molecular docking of potential novel antipyrine and pyrazolone analogs as cyclooxygenase enzyme (COX) inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(5), 952-957.
[http://dx.doi.org/10.1016/j.bmcl.2018.01.043] [PMID: 29426771]
[15]
Abdelgawad, M.A.; Labib, M.B.; Ali, W.A.M.; Kamel, G.; Azouz, A.A.; El-Nahass, E.S. Design, synthesis, analgesic, anti-inflammatory activity of novel pyrazolones possessing aminosulfonyl pharmacophore as inhibitors of COX-2/5-LOX enzymes: Histopathological and docking studies. Bioorg. Chem., 2018, 78, 103-114.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.011] [PMID: 29550530]
[16]
Krishnasamy, S.K.; Namasivayam, V.; Mathew, S.; Eakambaram, R.S.; Ibrahim, I.A.; Natarajan, A.; Palaniappan, S. Design, synthesis, and characterization of some hybridized pyrazolone pharmacophore analogs against Mycobacterium tuberculosis. Arch. Pharm. (Weinheim), 2016, 349(5), 383-397.
[http://dx.doi.org/10.1002/ardp.201600019] [PMID: 27135906]
[17]
Orabi, E.A.; Orabi, M.A.; Mahross, M.H.; Abdel-Hakim, M. Computational investigation of the structure and antioxidant activity of some pyrazole and pyrazolone derivatives. J. Saudi Chem. Soc., 2018, 22(6), 705-714.
[http://dx.doi.org/10.1016/j.jscs.2017.12.003]
[18]
Nastasa, C.; Vodnar, D.C. Ionuţ, I.; Stana, A.; Benedec, D.; Tamaian, R.; Oniga, O.; Tiperciuc, B. Antibacterial evaluation and virtual screening of new thiazolyl-triazole schiff bases as potential DNA-gyrase inhibitors. Int. J. Mol. Sci., 2018, 19(1), 222.
[http://dx.doi.org/10.3390/ijms19010222]
[19]
Kashyap, A.; Singh, P.K.; Silakari, O. Chemical classes targeting energy supplying GyrB domain of Mycobacterium tuberculosis. Tuberculosis (Edinb.), 2018, 113, 43-54.
[http://dx.doi.org/10.1016/j.tube.2018.09.001] [PMID: 30514513]
[20]
Collin, F.; Karkare, S.; Maxwell, A. Exploiting bacterial DNA gyrase as a drug target: Current state and perspectives. Appl. Microbiol. Biotechnol., 2011, 92(3), 479-497.
[http://dx.doi.org/10.1007/s00253-011-3557-z] [PMID: 21904817]
[21]
Ammar, Y.A.; Farag, A.A.; Ali, A.M.; Ragab, A.; Askar, A.A.; Elsisi, D.M.; Belal, A. Design, synthesis, antimicrobial activity and molecular docking studies of some novel di-substituted sulfonylquinoxaline derivatives. Bioorg. Chem., 2020, 104, 104164.
[http://dx.doi.org/10.1016/j.bioorg.2020.104164] [PMID: 32896807]
[22]
Salem, M.A.; Ragab, A.; El-Khalafawy, A.; Makhlouf, A.H.; Askar, A.A.; Ammar, Y.A. Design, synthesis, in vitro antimicrobial evaluation and molecular docking studies of indol-2-one tagged with morpholinosulfonyl moiety as DNA gyrase inhibitors. Bioorg. Chem., 2020, 96, 103619.
[http://dx.doi.org/10.1016/j.bioorg.2020.103619] [PMID: 32036161]
[23]
Fayed, E.A.; Ammar, Y.A.; Saleh, M.A.; Bayoumi, A.H.; Belal, A.; Mehany, A.B.M.; Ragab, A. Design, synthesis, antiproliferative evaluation, and molecular docking study of new quinoxaline derivatives as apoptotic inducers and EGFR inhibitors. J. Mol. Struct., 2021, 1236, 130317.
[http://dx.doi.org/10.1016/j.molstruc.2021.130317]
[24]
El-Sharief, A.M.S.; Ammar, Y.A.; Belal, A.; El-Sharief, M.A.M.S.; Mohamed, Y.A.; Mehany, A.B.M.; Elhag Ali, G.A.M.; Ragab, A. Design, synthesis, molecular docking and biological activity evaluation of some novel indole derivatives as potent anticancer active agents and apoptosis inducers. Bioorg. Chem., 2019, 85, 399-412.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.016] [PMID: 30665034]
[25]
Ammar, Y.A.Sh.; El-Sharief, A.M.; Belal, A.; Abbas, S.Y.; Mohamed, Y.A.; Mehany, A.B.M.; Ragab, A. Design, synthesis, antiproliferative activity, molecular docking and cell cycle analysis of some novel (morpholinosulfonyl) isatins with potential EGFR inhibitory activity. Eur. J. Med. Chem., 2018, 156, 918-932.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.061] [PMID: 30096580]
[26]
Wassel, M.M.S.; Ammar, Y.A.; Elhag Ali, G.A.M.; Belal, A.; Mehany, A.B.M.; Ragab, A. Development of adamantane scaffold containing 1,3,4-thiadiazole derivatives: Design, synthesis, anti-proliferative activity and molecular docking study targeting EGFR. Bioorg. Chem., 2021, 110, 104794.
[http://dx.doi.org/10.1016/j.bioorg.2021.104794] [PMID: 33735711]
[27]
Ragab, A.; Fouad, S.A.; Ali, O.A.A.; Ahmed, E.M.; Ali, A.M.; Askar, A.A.; Ammar, Y.A. Sulfaguanidine hybrid with some new pyridine-2-one derivatives: Design, synthesis, and antimicrobial activity against multidrug-resistant bacteria as dual DNA gyrase and DHFR inhibitors. Antibiotics (Basel), 2021, 10(2), 162.
[http://dx.doi.org/10.3390/antibiotics10020162] [PMID: 33562582]
[28]
Khattab, E.S.A.E.H.; Ragab, A.; Abol-Ftouh, M.A.; Elhenawy, A.A. Therapeutic strategies for COVID-19 based on molecular docking and dynamic studies to the ACE-2 receptors, Furin, and viral spike proteins. J. Biomol. Struct. Dyn., 2021, 40, 1-19.
[http://dx.doi.org/10.1080/07391102.2021.1989036] [PMID: 34647855]
[29]
Ammar, Y.A.; Elhagali, G.A.M.; Abusaif, M.S.; Selim, M.R.; Zahran, M.A.; Naser, T.; Mehany, A.B.M.; Fayed, E.A. Carboxamide appended quinoline moieties as potential antiproliferative agents, apoptotic inducers and Pim-1 kinase inhibitors. Med. Chem. Res., 2021, 30(9), 1649-1668.
[http://dx.doi.org/10.1007/s00044-021-02765-y]
[30]
Desai, N.C.; Joshi, S.B.; Jadeja, K.A. A one-pot multicomponent Biginelli reaction for the preparation of novel pyrimidinthione derivatives as antimicrobial agents. J. Heterocycl. Chem., 2020, 57(2), 791-795.
[http://dx.doi.org/10.1002/jhet.3821]
[31]
Desai, N.; Shihory, N.; Khasiya, A.; Pandit, U.; Khedkar, V. Quinazoline clubbed thiazole and 1, 3, 4-oxadiazole heterocycles: Synthesis, characterization, antibacterial evaluation, and molecular docking studies. Phosphorus Sulfur Silicon Relat. Elem., 2021, 196(6), 569-577.
[http://dx.doi.org/10.1080/10426507.2021.1871732]
[32]
Desai, N.C.; Joshi, S.B.; Khedkar, V.M. Synthesis, antimicrobial activity and molecular docking of pyrazole bearing the benzodiazepine moiety. Anal. Chem. Lett., 2020, 10(3), 307-320.
[http://dx.doi.org/10.1080/22297928.2020.1785325]
[33]
Desai, N.C.; Rupala, Y.M.; Khasiya, A.G.; Shah, K.N.; Pandit, U.P.; Khedkar, V.M. Synthesis, biological evaluation, and molecular docking study of thiophene-, piperazine-, and thiazolidinone‐based hybrids as potential antimicrobial agents. J. Heterocycl. Chem., 2021, 59(1), 75-87.
[http://dx.doi.org/10.1002/jhet.4366]
[34]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[35]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47(7), 1750-1759.
[http://dx.doi.org/10.1021/jm030644s] [PMID: 15027866]
[36]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[37]
Lafitte, D.; Lamour, V.; Tsvetkov, P.O.; Makarov, A.A.; Klich, M.; Deprez, P.; Moras, D.; Briand, C.; Gilli, R. DNA gyrase interaction with coumarin-based inhibitors: The role of the hydroxybenzoate isopentenyl moiety and the 5′-methyl group of the noviose. Biochemistry, 2002, 41(23), 7217-7223.
[http://dx.doi.org/10.1021/bi0159837] [PMID: 12044152]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy