Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Construction and Investigation of circRNA-associated ceRNA Regulatory Network in Molecular Subtypes of Breast Cancer

Author(s): Yinming Zhong, Sicen Pan, Shunji Zhi, Yue Li, Zhiping Xiu, Changran Wei and Jiesi Luo*

Volume 18, Issue 3, 2022

Published on: 05 August, 2022

Page: [185 - 195] Pages: 11

DOI: 10.2174/1573409918666220615151614

Price: $65

Abstract

Background: Circular RNAs (circRNAs) act as competing endogenous RNAs (ceRNAs) that indirectly regulate gene expression and function by binding microRNAs (miRNAs). A growing body of evidence indicates that the ceRNA networks can be used as an effective method to investigate cancer; however, the construction and analysis of ceRNA networks, especially circRNA-miRNA-mRNA regulatory network, in different subtypes of breast cancer have not been previously performed.

Objectives: In the present study, we generated a ceRNA network to explore their roles in two BC subtypes, namely Luminal A and triple negative breast cancer (TNBC).

Methods: First, the expression profiles of circRNA, miRNA, and mRNA were downloaded from the GEO database, differentially expressed genes were obtained using GEO2R, and a ceRNA network was constructed based on circRNA-miRNA pairs and miRNA-mRNA pairs, consisted of 10 circRNAs, 25 miRNAs and 39 mRNAs. Further studies of BC subtypes based on TCGA datasets were also performed to validate the effect of a novel ceRNA network.

Results and Discussion: Then, the related genes in the regulatory network were analyzed by GO functional annotation and KEGG pathway enrichment. The analysis showed that targeted genes were enriched in 97 GO terms and 25 KEGG pathways, involved in the molecular typing of breast cancer. Meanwhile, Kaplan-Meier analysis revealed that three key genes (MKI67, DEF8, and GFRA1) were significantly associated with BC tumor differentiation and prognosis.

Conclusion: The current study provides a potential application of the ceRNA network within BC subtypes and may offer new targets for their diagnosis, therapy and prognosis.

Keywords: Breast cancer (BC), TNBC, luminal A, competitive endogenous RNA (ceRNA), circular RNA (circRNA), miRNA.

Graphical Abstract

[1]
Anastasiadi, Z.; Lianos, G.D.; Ignatiadou, E.; Harissis, H.V.; Mitsis, M. Breast cancer in young women: An overview. Updates Surg., 2017, 69(3), 313-317.
[http://dx.doi.org/10.1007/s13304-017-0424-1]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[3]
Wu, L.; Shen, Y.; Peng, X.; Zhang, S.; Wang, M.; Xu, G.; Zheng, X.; Wang, J.; Lu, C. Aberrant promoter methylation of cancer-related genes in human breast cancer. Oncol. Lett., 2016, 12(6), 5145-5155.
[http://dx.doi.org/10.3892/ol.2016.5351] [PMID: 28105221]
[4]
Karsli-Ceppioglu, S.; Dagdemir, A.; Judes, G.; Ngollo, M.; Penault-Llorca, F.; Pajon, A.; Bignon, Y.J.; Bernard-Gallon, D. Epigenetic mecha-nisms of breast cancer: An update of the current knowledge. Epigenomics, 2014, 6(6), 651-664.
[http://dx.doi.org/10.2217/epi.14.59] [PMID: 25531258]
[5]
Bahn, J.H.; Zhang, Q.; Li, F.; Chan, T.M.; Lin, X.; Kim, Y.; Wong, D.T.; Xiao, X. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin. Chem., 2015, 61(1), 221-230.
[http://dx.doi.org/10.1373/clinchem.2014.230433] [PMID: 25376581]
[6]
Song, J.L.; Chen, C.; Yuan, J.P.; Sun, S.R. Progress in the clinical detection of heterogeneity in breast cancer. Cancer Med., 2016, 5(12), 3475-3488.
[http://dx.doi.org/10.1002/cam4.943] [PMID: 27774765]
[7]
Gao, J.J.; Swain, S.M.; Luminal, A. Breast cancer and molecular assays: A review. Oncologist, 2018, 23(5), 556-565.
[http://dx.doi.org/10.1634/theoncologist.2017-0535] [PMID: 29472313]
[8]
Balogun, O.D.; Formenti, S.C. Locally advanced breast cancer - strategies for developing nations. Front. Oncol., 2015, 5, 89.
[http://dx.doi.org/10.3389/fonc.2015.00089] [PMID: 25964882]
[9]
Vagia, E.; Mahalingam, D.; Cristofanilli, M. The landscape of targeted therapies in TNBC. Cancers (Basel), 2020, 12(4), 916.
[http://dx.doi.org/10.3390/cancers12040916] [PMID: 32276534]
[10]
Nedeljković, M.; Damjanović, A. Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge. Cells, 2019, 8(9), 957.
[http://dx.doi.org/10.3390/cells8090957] [PMID: 31443516]
[11]
Smillie, C.L.; Sirey, T.; Ponting, C.P. Complexities of post-transcriptional regulation and the modeling of ceRNA crosstalk. Crit. Rev. Biochem. Mol. Biol., 2018, 53(3), 231-245.
[http://dx.doi.org/10.1080/10409238.2018.1447542] [PMID: 29569941]
[12]
Chlebowski, R.T.; Manson, J.E.; Anderson, G.L.; Cauley, J.A.; Aragaki, A.K.; Stefanick, M.L.; Lane, D.S.; Johnson, K.C.; Wactawski-Wende, J.; Chen, C.; Qi, L.; Yasmeen, S.; Newcomb, P.A.; Prentice, R.L. Estrogen plus progestin and breast cancer incidence and mortality in the Women’s health initiative observational study. J. Natl. Cancer Inst., 2013, 105(8), 526-535.
[http://dx.doi.org/10.1093/jnci/djt043] [PMID: 23543779]
[13]
Lambertini, M.; Santoro, L.; Del Mastro, L.; Nguyen, B.; Livraghi, L.; Ugolini, D.; Peccatori, F.A.; Azim, H.A., Jr Reproductive behaviors and risk of developing breast cancer according to tumor subtype: A systematic review and meta-analysis of epidemiological studies. Cancer Treat. Rev., 2016, 49, 65-76.
[http://dx.doi.org/10.1016/j.ctrv.2016.07.006] [PMID: 27529149]
[14]
Rice, M.S.; Eliassen, A.H.; Hankinson, S.E.; Lenart, E.B.; Willett, W.C.; Tamimi, R.M. Breast cancer research in the nurses’ health studies: Exposures across the life course. Am. J. Public Health, 2016, 106(9), 1592-1598.
[http://dx.doi.org/10.2105/AJPH.2016.303325] [PMID: 27459456]
[15]
Zang, J.; Lu, D.; Xu, A. The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function. J. Neurosci. Res., 2020, 98(1), 87-97.
[http://dx.doi.org/10.1002/jnr.24356] [PMID: 30575990]
[16]
Kong, X.Q.; Dong, Y.P.; Wu, J.X.; He, J.Y.; Le, Y.Y.; Du, K.X.; Peng, Q.Q.; Li, J.L. High-biologically effective dose palliative radiotherapy for a tumor thrombus might improve the long-term prognosis of hepatocellular carcinoma: A retrospective study. Radiat. Oncol., 2017, 12(1), 92.
[http://dx.doi.org/10.1186/s13014-017-0831-y] [PMID: 28569169]
[17]
Peng, S.Y.; Wang, X.A.; Huang, C.Y.; Li, J.T.; Hong, D.F.; Wang, Y.F.; Xu, B. Better surgical treatment method for hepatocellular carcinoma with portal vein tumor thrombus. World J. Gastroenterol., 2018, 24(40), 4527-4535.
[http://dx.doi.org/10.3748/wjg.v24.i40.4527] [PMID: 30386102]
[18]
Wang, X.; Wan, J.; Xu, Z.; Jiang, S.; Ji, L.; Liu, Y.; Zhai, S.; Cui, R. Identification of competitive endogenous RNAs network in breast cancer. Cancer Med., 2019, 8(5), 2392-2403.
[http://dx.doi.org/10.1002/cam4.2099] [PMID: 30932362]
[19]
Qin, W.; Qi, F.; Li, J.; Li, P.; Zang, Y.S. Prognostic biomarkers on a competitive endogenous RNA network reveals overall survival in triple-negative breast cancer. Front. Oncol., 2021, 11, 681946.
[http://dx.doi.org/10.3389/fonc.2021.681946] [PMID: 34178671]
[20]
Song, X.; Zhang, C.; Liu, Z.; Liu, Q.; He, K.; Yu, Z. Characterization of ceRNA network to reveal potential prognostic biomarkers in triple-negative breast cancer. PeerJ, 2019, 7, e7522.
[http://dx.doi.org/10.7717/peerj.7522] [PMID: 31565554]
[21]
Song, Y.; Liu, X.; Wang, F.; Wang, X.; Cheng, G.; Peng, C. Identification of metastasis-associated biomarkers in synovial sarcoma using bioinformatics analysis. Front. Genet., 2020, 11, 530892.
[http://dx.doi.org/10.3389/fgene.2020.530892] [PMID: 33061942]
[22]
Siiskonen, S.J.; Zhang, M.; Li, W.Q.; Liang, L.; Kraft, P.; Nijsten, T.; Han, J.; Qureshi, A.A. A genome-wide association study of cutaneous squamous cell carcinoma among European descendants. Cancer Epidemiol. Biomarkers Prev., 2016, 25(4), 714-720.
[http://dx.doi.org/10.1158/1055-9965.EPI-15-1070] [PMID: 26908436]
[23]
Liang, Y.; Zhang, C.; Dai, D.Q. Identification of differentially expressed genes regulated by methylation in colon cancer based on bioinfor-matics analysis. World J. Gastroenterol., 2019, 25(26), 3392-3407.
[http://dx.doi.org/10.3748/wjg.v25.i26.3392] [PMID: 31341364]
[24]
Liu, M.; Wang, Q.; Shen, J.; Yang, B.B.; Ding, X. Circbank: A comprehensive database for circRNA with standard nomenclature. RNA Biol., 2019, 16(7), 899-905.
[http://dx.doi.org/10.1080/15476286.2019.1600395] [PMID: 31023147]
[25]
Dweep, H.; Sticht, C.; Pandey, P.; Gretz, N. miRWalk--database: Prediction of possible miRNA binding sites by “walking” the genes of three genomes. J. Biomed. Inform., 2011, 44(5), 839-847.
[http://dx.doi.org/10.1016/j.jbi.2011.05.002] [PMID: 21605702]
[26]
Dweep, H.; Gretz, N.; Sticht, C. miRWalk database for miRNA-target interactions. Methods Mol. Biol., 2014, 1182, 289-305.
[http://dx.doi.org/10.1007/978-1-4939-1062-5_25] [PMID: 25055920]
[27]
Chen, Y.; Wang, X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res., 2020, 48(D1), D127-D131.
[http://dx.doi.org/10.1093/nar/gkz757] [PMID: 31504780]
[28]
Fridrichova, I.; Zmetakova, I. MicroRNAs contribute to breast cancer invasiveness. Cells, 2019, 8(11), 1361.
[http://dx.doi.org/10.3390/cells8111361] [PMID: 31683635]
[29]
Zheng, Z.; Liu, J.; Yang, Z.; Wu, L.; Xie, H.; Jiang, C.; Lin, B.; Chen, T.; Xing, C.; Liu, Z.; Song, P.; Yin, S.; Zheng, S.; Zhou, L. MicroRNA-452 promotes stem-like cells of hepatocellular carcinoma by inhibiting Sox7 involving Wnt/β-catenin signaling pathway. Oncotarget, 2016, 7(19), 28000-28012.
[http://dx.doi.org/10.18632/oncotarget.8584] [PMID: 27058905]
[30]
Kolak, A.; Kamińska, M.; Sygit, K.; Budny, A.; Surdyka, D.; Kukiełka-Budny, B.; Burdan, F. Primary and secondary prevention of breast cancer. Ann. Agric. Environ. Med., 2017, 24(4), 549-553.
[http://dx.doi.org/10.26444/aaem/75943] [PMID: 29284222]
[31]
Ma, X.; Liu, C.; Gao, C.; Li, J.; Zhuang, J.; Liu, L.; Li, H.; Wang, X.; Zhang, X.; Dong, S.; Zhou, C.; Sun, C. circRNA-associated ceRNA net-work construction reveals the circRNAs involved in the progression and prognosis of breast cancer. J. Cell. Physiol., 2020, 235(4), 3973-3983.
[http://dx.doi.org/10.1002/jcp.29291] [PMID: 31617204]
[32]
Zhao, J.; Liu, H.; Wang, M.; Gu, L.; Guo, X.; Gu, F.; Fu, L. Characteristics and prognosis for molecular breast cancer subtypes in Chinese women. J. Surg. Oncol., 2009, 100(2), 89-94.
[http://dx.doi.org/10.1002/jso.21307] [PMID: 19544363]
[33]
Su, Y.; Zheng, Y.; Zheng, W.; Gu, K.; Chen, Z.; Li, G.; Cai, Q.; Lu, W.; Shu, X.O. Distinct distribution and prognostic significance of molecu-lar subtypes of breast cancer in Chinese women: A population-based cohort study. BMC Cancer, 2011, 11(1), 292.
[http://dx.doi.org/10.1186/1471-2407-11-292] [PMID: 21749714]
[34]
Chen, L.L.; Yang, L. Regulation of circRNA biogenesis. RNA Biol., 2015, 12(4), 381-388.
[http://dx.doi.org/10.1080/15476286.2015.1020271] [PMID: 25746834]
[35]
Schmidt, A.; Hall, A. Guanine nucleotide exchange factors for Rho GTPases: Turning on the switch. Genes Dev., 2002, 16(13), 1587-1609.
[http://dx.doi.org/10.1101/gad.1003302] [PMID: 12101119]
[36]
Zuo, T.T.; Zheng, R.S.; Zeng, H.M.; Zhang, S.W.; Chen, W.Q. Female breast cancer incidence and mortality in China, 2013. Thorac. Cancer, 2017, 8(3), 214-218.
[http://dx.doi.org/10.1111/1759-7714.12426] [PMID: 28296260]
[37]
Chen, R.X.; Liu, H.L.; Yang, L.L.; Kang, F.H.; Xin, L.P.; Huang, L.R.; Guo, Q.F.; Wang, Y.L. Circular RNA circRNA_0000285 promotes cervical cancer development by regulating FUS. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(20), 8771-8778.
[http://dx.doi.org/10.26355/eurrev_201910_19271] [PMID: 31696463]
[38]
Wang, J.; Zhao, X.; Wang, Y.; Ren, F.; Sun, D.; Yan, Y.; Kong, X.; Bu, J.; Liu, M.; Xu, S. circRNA-002178 act as a ceRNA to promote PDL1/PD1 expression in lung adenocarcinoma. Cell Death Dis., 2020, 11(1), 32.
[http://dx.doi.org/10.1038/s41419-020-2230-9] [PMID: 31949130]
[39]
Lu, Q.; Liu, T.; Feng, H.; Yang, R.; Zhao, X.; Chen, W.; Jiang, B.; Qin, H.; Guo, X.; Liu, M.; Li, L.; Guo, H. Circular RNA circSLC8A1 acts as a sponge of miR-130b/miR-494 in suppressing bladder cancer progression via regulating PTEN. Mol. Cancer, 2019, 18(1), 111.
[http://dx.doi.org/10.1186/s12943-019-1040-0] [PMID: 31228937]
[40]
Zhang, Z.Y.; Gao, X.H.; Ma, M.Y.; Zhao, C.L.; Zhang, Y.L.; Guo, S.S. CircRNA_101237 promotes NSCLC progression via the miRNA-490-3p/MAPK1 axis. Sci. Rep., 2020, 10(1), 9024.
[http://dx.doi.org/10.1038/s41598-020-65920-2] [PMID: 32494004]
[41]
Wang, T.; Zhang, Y.; He, Y.; Liu, Y.; Qi, P. Screening and bioinformatics analysis of competitive endogenous RNA regulatory network --Related to circular RNA in breast cancer. BioMed Res. Int., 2021, 2021, 5575286.
[http://dx.doi.org/10.1155/2021/5575286] [PMID: 34545330]
[42]
Sharma, V.R.; Gupta, G.K.; Sharma, A.K.; Batra, N.; Sharma, D.K.; Joshi, A.; Sharma, A.K. PI3K/Akt/mTOR intracellular pathway and breast cancer: Factors, mechanism and regulation. Curr. Pharm. Des., 2017, 23(11), 1633-1638.
[http://dx.doi.org/10.2174/1381612823666161116125218] [PMID: 27848885]
[43]
Chen, J.; Ou, Y.; Yang, Y.; Li, W.; Xu, Y.; Xie, Y.; Liu, Y. KLHL22 activates amino-acid-dependent mTORC1 signalling to promote tumor-igenesis and ageing. Nature, 2018, 557(7706), 585-589.
[http://dx.doi.org/10.1038/s41586-018-0128-9] [PMID: 29769719]
[44]
Peng, M.; Yin, N.; Li, M.O. SZT2 dictates GATOR control of mTORC1 signalling. Nature, 2017, 543(7645), 433-437.
[http://dx.doi.org/10.1038/nature21378] [PMID: 28199315]
[45]
Liu, W.W.; Zhang, Y.H. Progress in GATOR1 protein complex and related epilepsy. Zhonghua Er Ke Za Zhi, 2020, 58(11), 945-948.
[http://dx.doi.org/10.3760/cma.j.cn112140-20200901-00840] [PMID: 33120472]
[46]
Chen, X.; Cao, Q.; Liao, R.; Wu, X.; Xun, S.; Huang, J.; Dong, C. Loss of ABAT-mediated GABAergic system promotes basal-like breast cancer progression by activating Ca2+-NFAT1 axis. Theranostics, 2019, 9(1), 34-47.
[http://dx.doi.org/10.7150/thno.29407] [PMID: 30662552]
[47]
Jewell, J.L.; Kim, Y.C.; Russell, R.C.; Yu, F.X.; Park, H.W.; Plouffe, S.W.; Tagliabracci, V.S.; Guan, K.L. Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science, 2015, 347(6218), 194-198.
[http://dx.doi.org/10.1126/science.1259472] [PMID: 25567907]
[48]
Yen, W.H.; Ke, W.S.; Hung, J.J.; Chen, T.M.; Chen, J.S.; Sun, H.S. Sp1-mediated ectopic expression of T-cell lymphoma invasion and metas-tasis 2 in hepatocellular carcinoma. Cancer Med., 2016, 5(3), 465-477.
[http://dx.doi.org/10.1002/cam4.611] [PMID: 26763486]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy