Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

In vivo, in vitro and Molecular Modelling Analysis of Isoquercetin, Roseoside, Coreximine, Anonaine, and Arianacin Molecules

Author(s): Fatma Kübra Ata, Fahriye Ercan and Serap Yalcin Azarkan*

Volume 18, Issue 3, 2022

Published on: 15 August, 2022

Page: [168 - 184] Pages: 17

DOI: 10.2174/1573409918666220509213313

Price: $65

Abstract

Introduction: Annona muricata is a member of the Annonaceae family. This plant has a high concentration of acetogenin, which gives it excellent therapeutic property. Researchers have tested this miraculous herb in breast cancer cells treatment and observed that it could be a source of anti-cancer agents. The proposed study focused on screening the anticancer biological activity of Annona muricata plant by using the in vitro, in vivo, and in silico methods.

Methods: In in vitro analysis, the IC50 was determined on two-dimensional and three-dimensional breast cancer cells. 2D cells were cultured on flat dishes typically made of plastic, while 3D cells were cultured using the hanging drop method. In in vivo analysis, Drosophila melanogaster was preferred, and the LC50 was determined. In in silico analysis, molecular docking studies have been carried out on the different classes of Annona muricata acetogenins against the target proteins. Nearly, five acetogenins were selected from the literature, and docking was performed against human Bcl-2, Bad and Akt-1 proteins.

Results: In vitro and in vivo results revealed the IC50 value of 2D MDA-MB-231 cells as 330 μg.mℓ-1, of 2D MCF-7 cells as290 μg.mℓ-1, and of 3D MCF-7 and MDA-MB-231 cells about 0.005 g.mℓ-1; the LC50 value of Drosophila melanogaster was determined as 0.1 g.mℓ-1. In silico results revealed that the docked complex formed by Isoquercetin showed better binding affinity towards target proteins.

Conclusion: As a result of the analysis, the Annona muricata plant has been observed to be effective against cancer and likely to be a potential drug.

Keywords: Annona muricata, 2D-3D cell culture, Drosophila melanogaster, breast cancer, molecular docking, cancer.

[1]
Lodish, H.; Berk, A.; Kaiser, C.A.; Amon, A.; Ploegh, H.; Bretscher, A.; Kieger, M.; Martin, K.C. Moleculer Cell Biology. Moleculer Cell Biology. In: Chapter 10;Freeman, WF., Ed.. 2008, 10, 1107-1110.
[2]
Syed Najmuddin, S.U.; Romli, M.F.; Hamid, M.; Alitheen, N.B.; Nik Abd Rahman, N.M. Anti-cancer effect of Annona muricata linn leaves crude extract (AMCE) on breast cancer cell line. BMC Complement. Altern. Med., 2016, 16(1), 311.
[http://dx.doi.org/10.1186/s12906-016-1290-y] [PMID: 27558166]
[3]
Minarni, A.; Artika, I.M.; Julistiono, H.; Bermawie, N.; Riyanti, E.I. Hasim; Hasan, A.E.Z. Anticancer activity test of ethyl acetate extract of endophytic fungi isolated from soursop leaf (Annona muricata L.). Asian Pac. J. Trop. Med., 2017, 10(6), 566-571.
[http://dx.doi.org/10.1016/j.apjtm.2017.06.004] [PMID: 28756920]
[4]
Kim, J.Y.; Dao, T.T.P.; Song, K.; Park, S.B.; Jang, H.; Park, M.K.; Gan, S.U.; Kim, Y.S. Annona muricata leaf extract triggered intrinsic apop-totic pathway to attenuate cancerous features of triple negative breast cancer MDA-MB-231 cells. Evid. Based Complement. Alternat. Med., 2018, 2018, 7972916.
[http://dx.doi.org/10.1155/2018/7972916] [PMID: 30105068]
[5]
Moghadamtousi, S.Z.; Fadaeinasab, M.; Nikzad, S.; Mohan, G.; Ali, H.M.; Kadir, H.A. Annona muricata (Annonaceae): A review of its tradi-tional uses, isolated acetogenins and biological activities. Int. J. Mol. Sci., 2015, 16(7), 15625-15658.
[http://dx.doi.org/10.3390/ijms160715625] [PMID: 26184167]
[6]
Foty, R. A simple hanging drop cell culture protocol for generation of 3D spheroids. J. Vis. Exp., 2011, (51), 2720.
[http://dx.doi.org/10.3791/2720] [PMID: 21587162]
[7]
Bernards, A.; Hariharan, I.K. Of flies and men--studying human disease in Drosophila. Curr. Opin. Genet. Dev., 2001, 11(3), 274-278.
[http://dx.doi.org/10.1016/S0959-437X(00)00190-8] [PMID: 11377963]
[8]
D’Angelo, A.; Garzia, L.; André, A.; Carotenuto, P.; Aglio, V.; Guardiola, O.; Arrigoni, G.; Cossu, A.; Palmieri, G.; Aravind, L.; Zollo, M. Prune cAMP phosphodiesterase binds nm23-H1 and promotes cancer metastasis. Cancer Cell, 2004, 5(2), 137-149.
[http://dx.doi.org/10.1016/S1535-6108(04)00021-2] [PMID: 14998490]
[9]
Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc., 2016, 11(5), 905-919.
[http://dx.doi.org/10.1038/nprot.2016.051] [PMID: 27077332]
[10]
Rosdi, M.N.M.; Daud, N.N.N.N.M.; Zulkifli, R.M.; Ya’akob, H. Cytotoxic effect of Annona muricata linn leaves extract on capan-1 cells. J. Appl. Pharm. Sci., 2015, 5, 45-48.
[http://dx.doi.org/10.7324/JAPS.2015.50508]
[11]
Piper, M.D.; Blanc, E.; Leitão-Gonçalves, R.; Yang, M.; He, X.; Linford, N.J.; Hoddinott, M.P.; Hopfen, C.; Soultoukis, G.A.; Niemeyer, C.; Kerr, F.; Pletcher, S.D.; Ribeiro, C.; Partridge, L. A holistic medium for Drosophila melanogaster [published correction appears in Nat Meth-ods. 2014 Sep;11(9):971] [published correction appears in Nat Methods. Nat. Methods, 2014, 11(1), 100-105.
[http://dx.doi.org/10.1038/nmeth.2731] [PMID: 24240321]
[12]
Nichols, C.D.; Becnel, J.; Pandey, U.B. Methods to assay drosophila behavior. J. Vis. Exp., 2012, (61), 3795.
[PMID: 22433384]
[13]
Flybase. A Database of Drosophila Genes & Genomes. Available: https://flybase.org [01.07.2019]
[14]
FDA Covid-19 Response. Available: https://www.fda.gov [10.07.2019]
[15]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[16]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33-38-27-28.
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[17]
Wang, Z.; Wang, X.; Li, Y.; Lei, T.; Wang, E.; Li, D.; Kang, Y.; Zhu, F.; Hou, T. farPPI: A webserver for accurate prediction of protein-ligand binding structures for small-molecule PPI inhibitors by MM/PB(GB)SA methods. Bioinformatics, 2019, 35(10), 1777-1779.
[http://dx.doi.org/10.1093/bioinformatics/bty879] [PMID: 30329012]
[18]
Ntie-Kang, F.; Lifongo, L.L.; Mbah, J.A.; Owono Owono, L.C.; Megnassan, E.; Mbaze, L.M.; Judson, P.N.; Sippl, W.; Efange, S.M. In silico drug metabolism and pharmacokinetic profiles of natural products from medicinal plants in the congo basin. In Silico Pharmacol., 2013, 1, 12.
[http://dx.doi.org/10.1186/2193-9616-1-12] [PMID: 25505657]
[19]
Zoete, V.; Daina, A.; Bovigny, C.; Michielin, O. Swiss Similarity: A web tool for low to ultra high throughput ligand-based virtual screening. J. Chem. Inf. Model., 2016, 56(8), 1399-1404.
[http://dx.doi.org/10.1021/acs.jcim.6b00174] [PMID: 27391578]
[20]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friend-liness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[21]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeabil-ity in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[22]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[23]
Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1999, 1(1), 55-68.
[http://dx.doi.org/10.1021/cc9800071] [PMID: 10746014]
[24]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[25]
Simon, M.A.; Bowtell, D.D.; Dodson, G.S.; Laverty, T.R.; Rubin, G.M. Ras1 and a putative guanine nucleotide exchange factor perform cru-cial steps in signaling by the sevenless protein tyrosine kinase. Cell, 1991, 67(4), 701-716.
[http://dx.doi.org/10.1016/0092-8674(91)90065-7] [PMID: 1934068]
[26]
Banfi, S.; Borsani, G.; Rossi, E.; Bernard, L.; Guffanti, A.; Rubboli, F.; Marchitiello, A.; Giglio, S.; Coluccia, E.; Zollo, M.; Zuffardi, O.; Bal-labio, A. Identification and mapping of human cDNAs homologous to Drosophila mutant genes through EST database searching. Nat. Genet., 1996, 13(2), 167-174.
[http://dx.doi.org/10.1038/ng0696-167] [PMID: 8640222]
[27]
Rubin, G.M.; Yandell, M.D.; Wortman, J.R.; Gabor Miklos, G.L.; Nelson, C.R.; Hariharan, I.K.; Fortini, M.E.; Li, P.W.; Apweiler, R.; Fleischmann, W.; Cherry, J.M.; Henikoff, S.; Skupski, M.P.; Misra, S.; Ashburner, M.; Birney, E.; Boguski, M.S.; Brody, T.; Brokstein, P.; Celniker, S.E.; Chervitz, S.A.; Coates, D.; Cravchik, A.; Gabrielian, A.; Galle, R.F.; Gelbart, W.M.; George, R.A.; Goldstein, L.S.; Gong, F.; Guan, P.; Harris, N.L.; Hay, B.A.; Hoskins, R.A.; Li, J.; Li, Z.; Hynes, R.O.; Jones, S.J.; Kuehl, P.M.; Lemaitre, B.; Littleton, J.T.; Morrison, D.K.; Mungall, C.; O’Farrell, P.H.; Pickeral, O.K.; Shue, C.; Vosshall, L.B.; Zhang, J.; Zhao, Q.; Zheng, X.H.; Lewis, S. Comparative ge-nomics of the eukaryotes. Science, 2000, 287(5461), 2204-2215.
[http://dx.doi.org/10.1126/science.287.5461.2204] [PMID: 10731134]
[28]
Perrimon, N.; Pitsouli, C.; Shilo, B.Z. Signaling mechanisms controlling cell fate and embryonic patterning. Cold Spring Harb. Perspect. Biol., 2012, 4(8), a005975.
[http://dx.doi.org/10.1101/cshperspect.a005975] [PMID: 22855721]
[29]
FDA Monkeypox Response. Available: https://www.fda.gov/default.htm
[30]
Prasad, S.K.; Veeresh, P.M.; Ramesh, P.S.; Natraj, S.M.; Madhunapantula, S.V.; Devegowda, D. Phytochemical fractions from Annona muri-cata seeds and fruit pulp inhibited the growth of breast cancer cells through cell cycle arrest at G0/G1 phase. J. Cancer Res. Ther., 2020, 16(6), 1235-1249.
[PMID: 33342779]
[31]
Alshaeri, H.K.; Alasmari, M.M.; Natto, Z.S.; Pino-Figueroa, A. Effects of Annona muricata extract on triple-negative breast cancer cells me-diated through EGFR signaling. Cancer Manag. Res., 2020, 12(12), 12519-12526.
[http://dx.doi.org/10.2147/CMAR.S278647] [PMID: 33304106]
[32]
Akpan, U.M.; Pellegrini, M.; Salifu, A.A.; Obayemi, J.D.; Ezenwafor, T.; Browe, D.; Ani, C.J.; Danyuo, Y.; Dozie-Nwachukwu, S.; Odusanya, O.S.; Freeman, J.; Soboyejo, W.O. In vitro studies of Annona muricata L. extract-loaded electrospun scaffolds for localized treatment of breast cancer. J. Biomed. Mater. Res. B Appl. Biomater., 2021, 109(12), 2041-2056.
[http://dx.doi.org/10.1002/jbm.b.34852] [PMID: 33960623]
[33]
Antony, P.; Vijayan, R. Acetogenins from Annona muricata as potential inhibitors of antiapoptotic proteins: A molecular modeling study. Drug Des. Devel. Ther., 2016, 10, 1399-1410.
[PMID: 27110097]
[34]
Mohamad Rosdi, M.N.; Mohd Arif, S.; Abu Bakar, M.H.; Razali, S.A.; Mohamed Zulkifli, R.; Ya’akob, H. Molecular docking studies of bioactive compounds from Annona muricata Linn as potential inhibitors for Bcl-2, Bcl-w and Mcl-1 antiapoptotic proteins. Apoptosis, 2018, 23(1), 27-40.
[35]
Buonerba, C.; De Placido, P.; Bruzzese, D.; Pagliuca, M.; Ungaro, P.; Bosso, D.; Ribera, D.; Iaccarino, S.; Scafuri, L.; Liotti, A.; Romeo, V.; Izzo, M.; Perri, F.; Casale, B.; Grimaldi, G.; Vitrone, F.; Brunetti, A.; Terracciano, D.; Marinelli, A.; De Placido, S.; Di Lorenzo, G. Isoquerce-tin as an adjunct therapy in patients with kidney cancer receiving first-line sunitinib (QUASAR): Results of a phase i trial. Front. Pharmacol., 2018, 9, 189.
[http://dx.doi.org/10.3389/fphar.2018.00189] [PMID: 29615901]
[36]
Costa, E.V.; Soares, L.D.N.; Chaar, J.D.S.; Silva, V.R.; Santos, L.S.; Koolen, H.H.F.; Silva, F.M.A.D.; Tavares, J.F.; Zengin, G.; Soares, M.B.P.; Bezerra, D.P. Benzylated dihydroflavones and isoquinoline-derived alkaloids from the bark of Diclinanona calycina (Annonaceae) and their cytotoxicities. Molecules, 2021, 26(12), 3714.
[http://dx.doi.org/10.3390/molecules26123714] [PMID: 34207059]
[37]
Zhang, M.Q.; Wilkinson, B. Drug discovery beyond the ‘rule-of-five’. Curr. Opin. Biotechnol., 2007, 18(6), 478-488.
[http://dx.doi.org/10.1016/j.copbio.2007.10.005] [PMID: 18035532]
[38]
Turner, J.V.; Agatonovic-Kustrin, S. In silico prediction of oral bioavailability. Comprehensive Medicinal Chemistry II ADME Tox Approach-es; Elsevier Ltd., 2007.
[http://dx.doi.org/10.1016/B0-08-045044-X/00147-4]
[39]
Yalçın, S.; Yalçınkaya, S.; Ercan, F. In silico detection of inhibitor potential of Passiflora compounds against SARS-Cov-2(Covid-19) main protease by using molecular docking and dynamic analyses. J. Mol. Struct., 2021, 1240, 130556.
[http://dx.doi.org/10.1016/j.molstruc.2021.130556] [PMID: 33967343]
[40]
Yalçın, S.; Yalçınkaya, S.; Ercan, F. Determination of potential drug candidate molecules of the Hypericum perforatum for COVID-19 Treat-ment. Curr. Pharmacol. Rep., 2021, 1-7.
[PMID: 33680715]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy