Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Mini-Review Article

Biomedical Applications of Agar and its Composites: A Mini-Review

Author(s): Greeshma Surendran and Atul P. Sherje*

Volume 13, Issue 5, 2023

Published on: 10 October, 2022

Article ID: e150622206016 Pages: 8

DOI: 10.2174/2210315512666220615113320

Price: $65

conference banner
Abstract

Agar is a flexible biopolymer that forms jelly like consistency when mixed with water. It is extracted from seaweeds by treatment with alkali and can also be synthesized from fructose-6- phosphate. Agar and its composites were found to have applications in drug delivery, wound healing, tumour therapy and hyperthermia treatment. Agar gel formulations have been used for ultrasound imaging since it has the ability to scatter sound waves. It has been investigated that agar has the ability to act as a matrix for the modified release of drugs. Agar/collagen composites were found to be useful in the healing of wounds, burns, and ulcers. Agar also has the ability to act as a matrix for carbonyl iron, which is found to have good thermal conductivity and became useful for the treatment of hyperthermia. This review summarizes the properties, sources, biosynthesis, extraction, and recent biomedical applications of agar and its composites.

Keywords: Agar, agar composites, therapeutic applications, drug delivery, biomedical

Graphical Abstract

[1]
Lee, W.K.; Lim, Y.Y.; Leow, A.T.C.; Namasivayam, P.; Ong Abdullah, J.; Ho, C.L. Biosynthesis of agar in red seaweeds: A review. Carbohydr. Polym., 2017, 164, 23-30.
[http://dx.doi.org/10.1016/j.carbpol.2017.01.078] [PMID: 28325321]
[2]
Ficko-Blean, E.; Hervé, C.; Michel, G. Sweet and sour sugars from the sea: The biosynthesis and remodeling of sulfated cell wall polysaccharides from marine macroalgae. Perspect. Phycol., 2015, 2(1), 51-64.
[http://dx.doi.org/10.1127/pip/2015/0028]
[3]
Lahaye, M.; Rochas, C. Chemical structure and physico-chemical properties of agar. Hydrobiologia, 1991, 221(1), 137-148.
[http://dx.doi.org/10.1007/BF00028370]
[4]
Gioele, C.; Marilena, S.; Valbona, A.; Nunziacarla, S.; Andrea, S.; Antonio, M. Gracilaria gracilis, source of agar: A short review. Curr. Org. Chem., 2017, 21(5), 380-386.
[http://dx.doi.org/10.2174/1385272820666161017164605]
[5]
Zhang, Y.; Fu, X.; Duan, D.; Xu, J.; Gao, X. Preparation and characterization of agar, agarose, and agaropectin from the red alga Ahnfeltia plicata. J. Oceanol. Limnol., 2019, 37(3), 815-824.
[http://dx.doi.org/10.1007/s00343-019-8129-6]
[6]
Schiavi, A.; Cuccaro, R.; Troia, A. Strain-rate and temperature dependent material properties of Agar and Gellan gum used in biomedical applications. J. Mech. Behav. Biomed. Mater., 2016, 53, 119-130.
[http://dx.doi.org/10.1016/j.jmbbm.2015.08.011] [PMID: 26318572]
[7]
Culjat, M.O.; Goldenberg, D.; Tewari, P.; Singh, R.S. A review of tissue substitutes for ultrasound imaging. Ultrasound Med. Biol., 2010, 36(6), 861-873.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2010.02.012] [PMID: 20510184]
[8]
Rycerz, A.M.; Slack, P.; McNulty, A.K. Distribution assessment comparing continuous and periodic wound instillation in conjunction with negative pressure wound therapy using an agar-based model. Int. Wound J., 2013, 10(2), 214-220.
[http://dx.doi.org/10.1111/j.1742-481X.2012.00968.x] [PMID: 22487428]
[9]
Holder, I.A.; Boyce, S.T. Agar well diffusion assay testing of bacterial susceptibility to various antimicrobials in concentrations non-toxic for human cells in culture. Burns, 1994, 20(5), 426-429.
[http://dx.doi.org/10.1016/0305-4179(94)90035-3] [PMID: 7999271]
[10]
Mostafavi, F.S.; Zaeim, D. Agar-based edible films for food packaging applications - A review. Int. J. Biol. Macromol., 2020, 159, 1165-1176.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.123] [PMID: 32442572]
[11]
Tian, Y.C.; Jiao, C.C.; Wang, S.; Cong, H.L.; Shen, Y.Q.; Yu, B. Agar-based ZIF-90 antibacterial hydrogels for biomedical applications. Ferroelectrics, 2020, 563(1), 12-20.
[http://dx.doi.org/10.1080/00150193.2020.1760605]
[12]
Martínez-Castañón, G.A.; Niño-Martínez, N.; Martínez-Gutierrez, F.; Martínez-Mendoza, J.R.; Ruiz, F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J. Nanopart. Res., 2008, 10(8), 1343-1348.
[http://dx.doi.org/10.1007/s11051-008-9428-6]
[13]
Liu, L.; Cai, R.; Wang, Y.; Tao, G.; Ai, L.; Wang, P.; Yang, M.; Zuo, H.; Zhao, P.; Shen, H.; Umar, A.; He, H. Preparation and characterization of AgNPs in situ synthesis on polyelectrolyte membrane coated Sericin/Agar film for antimicrobial applications. Materials (Basel), 2018, 11(7), 1-14.
[http://dx.doi.org/10.3390/ma11071205] [PMID: 30011809]
[14]
Rhim, J.W.; Wang, L.F.; Hong, S.I. Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocoll., 2013, 33(2), 327-335.
[http://dx.doi.org/10.1016/j.foodhyd.2013.04.002]
[15]
Ding, F.; Zhong, Y.; Wu, S.; Liu, X.; Zou, X.; Li, H. Synthesis and characterization of quaternized agar in KOH/urea aqueous solution. New J. Chem., 2020, 44(39), 17062-17069.
[http://dx.doi.org/10.1039/D0NJ03412F]
[16]
Natrajan, N.; Sheldon, B.W. Inhibition of Salmonella on poultry skin using protein- and polysaccharide-based films containing a nisin formulation. J. Food Prot., 2000, 63(9), 1268-1272.
[http://dx.doi.org/10.4315/0362-028X-63.9.1268] [PMID: 10983804]
[17]
López de Lacey, A.M.; López-Caballero, M.E.; Montero, P. Agar films containing green tea extract and probiotic bacteria for extending fish shelf-life. Lebensm. Wiss. Technol., 2014, 55(2), 559-564.
[http://dx.doi.org/10.1016/j.lwt.2013.09.028]
[18]
Wang, L.F.; Rhim, J.W. Preparation and application of agar/alginate/collagen ternary blend functional food packaging films. Int. J. Biol. Macromol., 2015, 80, 460-468.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.07.007] [PMID: 26187189]
[19]
da Rocha, M.; Alemán, A.; Romani, V.P.; López-Caballero, M.E.; Gómez-Guillén, M.C.; Montero, P.; Prentice, C. Effects of agar films incorporated with fish protein hydrolysate or clove essential oil on flounder (Paralichthys orbignyanus) fillets shelf-life. Food Hydrocoll., 2018, 81, 351-363.
[http://dx.doi.org/10.1016/j.foodhyd.2018.03.017]
[20]
Rhim, J.W.; Wang, L.F. Mechanical and water barrier properties of agar/κ-carrageenan/konjac glucomannan ternary blend biohydrogel films. Carbohydr. Polym., 2013, 96(1), 71-81.
[http://dx.doi.org/10.1016/j.carbpol.2013.03.083] [PMID: 23688456]
[21]
Abdollahzadeh, E.; Mahmoodzadeh Hosseini, H.; Imani Fooladi, A.A. Antibacterial activity of agar-based films containing nisin, cinnamon EO, and ZnO nanoparticles. J. Food Saf., 2018, 38(3), 1-10.
[http://dx.doi.org/10.1111/jfs.12440]
[22]
Hussain, S.; Kaur, G.; Pamma, P. Overview of controlled drug delivery system. Adv. Biores., 2021, 12(3), 248-255.
[http://dx.doi.org/10.15515/abr.0976-4585.12.3.248255]
[23]
Price, A.H.; Clissold, S.P. Salbutamol in the 1980s. A reappraisal of its clinical efficacy. Drugs, 1989, 38(1), 77-122.
[http://dx.doi.org/10.2165/00003495-198938010-00004] [PMID: 2670512]
[24]
Saxena, A.; Tahir, A.; Kaloti, M.; Ali, J.; Bohidar, H.B. Effect of agar-gelatin compositions on the release of salbutamol tablets. Int. J. Pharm. Investig., 2011, 1(2), 93-98.
[http://dx.doi.org/10.4103/2230-973X.82407] [PMID: 23071927]
[25]
Balamurali, V.; Pramodkuma, T.M.; Srujana, N.; Venkatesh, M.P.; Gupta, N.V.; Krishna, K.L.; Gangadhara, H.V. pH sensitive drug delivery systems: A review. Am. J. Drug Discov. Dev., 2010, 1(1), 24-48.
[http://dx.doi.org/10.3923/ajdd.2011.24.48]
[26]
Yin, Z.C.; Wang, Y.L.; Wang, K. A pH-responsive composite hydrogel beads based on agar and alginate for oral drug delivery. J. Drug Deliv. Sci. Technol., 2018, 43, 12-18.
[http://dx.doi.org/10.1016/j.jddst.2017.09.009]
[27]
Wang, Y.; Dong, M.; Guo, M.; Wang, X.; Zhou, J.; Lei, J.; Guo, C.; Qin, C. Agar/gelatin bilayer gel matrix fabricated by simple thermo-responsive sol-gel transition method. Mater. Sci. Eng. C, 2017, 77, 293-299.
[http://dx.doi.org/10.1016/j.msec.2017.03.254] [PMID: 28532032]
[28]
Gurkan, T.; Duman, O.; Tunç, S. Preparation and characterization of environmentally friendly agar/κ-carrageenan/montmorillonite nanocomposite hydrogels. Colloids Surf. A Physicochem. Eng. Asp., 2020, 602, 124987.
[http://dx.doi.org/10.1016/j.colsurfa.2020.124987]
[29]
Gonzalez, A.C.D.O.; Costa, T.F.; Andrade, Z.A.; Medrado, A.R.A.P. Wound healing - A literature review. An. Bras. Dermatol., 2016, 91(5), 614-620.
[http://dx.doi.org/10.1590/abd1806-4841.20164741] [PMID: 27828635]
[30]
Sonker, A.K.; Belay, M.; Rathore, K.; Jahan, K.; Verma, S.; Ramanathan, G.; Verma, V. Crosslinking of agar by diisocyanates. Carbohydr. Polym., 2018, 202, 454-460.
[http://dx.doi.org/10.1016/j.carbpol.2018.08.138] [PMID: 30287022]
[31]
Basha, S.I.; Ghosh, S.; Vinothkumar, K.; Ramesh, B.; Kumari, P.H.P.; Mohan, K.V.M.; Sukumar, E. Fumaric acid incorporated Ag/agar-agar hybrid hydrogel: A multifunctional avenue to tackle wound healing. Mater. Sci. Eng. C, 2020, 111, 110743.
[http://dx.doi.org/10.1016/j.msec.2020.110743] [PMID: 32279739]
[32]
de Lima, G.G.; de Lima, D.W.F.; de Oliveira, M.J.A.; Lugão, A.B.; Alcântara, M.T.S.; Devine, D.M.; de Sá, M.J.C. Synthesis and in vivo behavior of PVP/CMC/Agar hydrogel membranes impregnated with silver nanoparticles for wound healing applications. ACS Appl. Bio Mater., 2018, 1(6), 1842-1852.
[http://dx.doi.org/10.1021/acsabm.8b00369] [PMID: 34996285]
[33]
Gomes, D.S.; Santos, A.M.C.; Neves, G.A.; Menezes, R.R. A brief review on hydroxyapatite production and use in biomedicine. Ceramica, 2019, 65(374), 282-302.
[http://dx.doi.org/10.1590/0366-69132019653742706]
[34]
Senthilarasan, K.; Ragu, A.; Sakthivel, P. Synthesis and characterization of nano hydroxyapatite with agar-agar biopolymer. Int. J. Sci. Res., 2014, 4(7), 55-59.
[35]
Bao, L.; Yang, W.; Mao, X.; Mou, S.; Tang, S. Agar/collagen membrane as skin dressing for wounds. Biomed. Mater., 2008, 3(4), 044108.
[http://dx.doi.org/10.1088/1748-6041/3/4/044108] [PMID: 19029613]
[36]
Diaz-Bleis, D.; Vales-Pinzón, C.; Freile-Pelegrín, Y.; Alvarado-Gil, J.J. Thermal characterization of magnetically aligned carbonyl iron/agar composites. Carbohydr. Polym., 2014, 99, 84-90.
[http://dx.doi.org/10.1016/j.carbpol.2013.07.053] [PMID: 24274482]
[37]
Díaz-Bleis, D.; Alvarado-Gil, J.J.; Martínez, A.I.; Gómez-Y-Gómez, Y.; Freile-Pelegrín, Y. On the preparation and characterization of superparamagnetic nanoparticles with Gelidium robustum agar coating for biomedical applications. Bull. Mater. Sci., 2018, 41(2), 1-9.
[http://dx.doi.org/10.1007/s12034-018-1546-x]
[38]
Wu, C.; Zhao, J.; Hu, F.; Zheng, Y.; Yang, H.; Pan, S.; Shi, S.; Chen, X.; Wang, S. Design of injectable agar-based composite hydrogel for multi-mode tumor therapy. Carbohydr. Polym., 2018, 180, 112-121.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.024] [PMID: 29103486]
[39]
Hsieh, S.; Huang, B.Y.; Hsieh, S.L.; Wu, C.C.; Wu, C.H.; Lin, P.Y.; Huang, Y.S.; Chang, C.W. Green fabrication of agar-conjugated Fe3O4 magnetic nanoparticles. Nanotechnology, 2010, 21(44), 445601.
[http://dx.doi.org/10.1088/0957-4484/21/44/445601] [PMID: 20935349]
[40]
Roy, S.; Rhim, J.W. Agar-based antioxidant composite films incorporated with melanin nanoparticles. Food Hydrocoll., 2019, 94, 391-398.
[http://dx.doi.org/10.1016/j.foodhyd.2019.03.038]
[41]
Vejdan, A.; Ojagh, S.M.; Abdollahi, M. Effect of gelatin/agar bilayer film incorporated with TiO2 nanoparticles as a UV absorbent on fish oil photooxidation. Int. J. Food Sci. Technol., 2017, 52(8), 1862-1868.
[http://dx.doi.org/10.1111/ijfs.13461]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy