Abstract
Objective: In the present study, cupric sulfide (CuS) nanoparticles (NPs) were synthesized in deionized (DIW) water using an eco-benign, simple, and cost-effective chemical route that requires no surfactant or template.
Methods: Polypyrrole/cupric sulfide (PPy/CuS) hybrid nanocomposite (HNC) was synthesized using an in-situ chemical oxidative polymerization method in the presence of obtained CuS NPs. The X-ray diffraction (XRD) analysis confirmed the hexagonal structure of CuS, whose crystalline nature was preserved in the HNC. For CuS NPs and PPy/CuS HNC, elastic properties, such as intrinsic microstrain, internal stress, dislocation density, strain energy density, stacking faults, and intercrystalline separation, were used to analyze the crystal imperfections and distortions.
Results: Field emission scanning electron spectroscopy (FESEM) micrographs revealed that CuS NPs and PPy/CuS HNC have particulate and globular morphology, respectively. The values of the average intrinsic strain, dislocation density, internal stresses, and strain energy density of PPy/CuS HNC were estimated to be ~2 × 10-3, ~8.8166 × 1015 m-2, 164.263 MPa, and 127.278 KJ m−3, respectively, which were observed to be higher than those of CuS NPs.
Conclusion: The DC electrical conductivity of as-synthesized samples was measured at room temperature in pelletized form, using the standard four-probe method, and conductivity values were estimated to be ~480 Scm-1 and ~4 Scm-1 for CuS NPs and PPy/CuS HNC, respectively.
Keywords: CuS, polypyrrole, XRD, FESEM, elastic properties, electrical properties, microstrain, morphology.
Graphical Abstract
[http://dx.doi.org/10.1039/b712176h]
[http://dx.doi.org/10.1002/adfm.201704158]
[http://dx.doi.org/10.1002/pat.5201]
[http://dx.doi.org/10.1007/s00289-021-03840-5]
[http://dx.doi.org/10.1039/D0CE01059F]
[http://dx.doi.org/10.1007/s13204-020-01283-4]
[http://dx.doi.org/10.1016/j.cej.2020.128224]
[http://dx.doi.org/10.1021/jp4114706] [PMID: 24483728]
[http://dx.doi.org/10.1016/j.snb.2019.03.028]
[http://dx.doi.org/10.1134/S1063782620090262]
[http://dx.doi.org/10.3390/nano10010178] [PMID: 31968569]
[http://dx.doi.org/10.1016/j.jcis.2011.02.028] [PMID: 21388631]
[http://dx.doi.org/10.1016/j.jallcom.2013.10.056]
[http://dx.doi.org/10.1007/s13204-012-0113-9]
[http://dx.doi.org/10.1002/smll.201301174] [PMID: 24106015]
[http://dx.doi.org/10.1002/cphc.201500568] [PMID: 26312569]
[http://dx.doi.org/10.1039/D0QI00618A]
[http://dx.doi.org/10.1016/j.jallcom.2020.158228]
[http://dx.doi.org/10.1016/j.mtcomm.2020.101699]
[http://dx.doi.org/10.1016/j.jallcom.2020.157341]
[http://dx.doi.org/10.30919/es5e1007]
[http://dx.doi.org/10.1016/j.mssp.2019.01.035]
[http://dx.doi.org/10.1039/C7CE02173A]
[http://dx.doi.org/10.1016/j.matchemphys.2019.122030]
[http://dx.doi.org/10.1107/S0021889811038970]
[http://dx.doi.org/10.1002/slct.201600422]
[http://dx.doi.org/10.1007/s10904-020-01747-8]
[http://dx.doi.org/10.1016/j.physe.2017.07.001]
[http://dx.doi.org/10.1016/j.synthmet.2013.06.022]
[http://dx.doi.org/10.1080/17458080.2018.1445306]
[http://dx.doi.org/10.1016/j.jascer.2017.08.002]
[http://dx.doi.org/10.1039/C7CP07986A] [PMID: 29423485]
[http://dx.doi.org/10.1016/j.jssc.2021.122501]
[http://dx.doi.org/10.1016/j.rinp.2018.08.011]
[http://dx.doi.org/10.1016/j.matchemphys.2019.122021]
[http://dx.doi.org/10.1016/j.apsusc.2019.144971]
[http://dx.doi.org/10.1080/25740881.2019.1669646]
[http://dx.doi.org/10.1016/j.solidstatesciences.2010.11.024]
[http://dx.doi.org/10.1016/j.ssc.2006.05.026]
[http://dx.doi.org/10.1063/1.1709787]
[http://dx.doi.org/10.1002/slct.202002777]
[http://dx.doi.org/10.1007/s11581-014-1122-3]
[http://dx.doi.org/10.1016/j.synthmet.2014.11.031]
[http://dx.doi.org/10.1016/j.jcis.2008.10.033] [PMID: 18977489]
[http://dx.doi.org/10.1016/j.synthmet.2018.12.001]
[http://dx.doi.org/10.1016/j.jpowsour.2017.04.052]