Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Research Article

Structural and Electrical Properties of CuS Nanoparticles and PPy/CuS Hybrid Nanocomposite Chemically Synthesized by Facile Approach

Author(s): Narinder Singh and Manish Taunk*

Volume 16, Issue 1, 2023

Published on: 22 August, 2022

Page: [72 - 84] Pages: 13

DOI: 10.2174/2666145415666220614102724

Price: $65

Abstract

Objective: In the present study, cupric sulfide (CuS) nanoparticles (NPs) were synthesized in deionized (DIW) water using an eco-benign, simple, and cost-effective chemical route that requires no surfactant or template.

Methods: Polypyrrole/cupric sulfide (PPy/CuS) hybrid nanocomposite (HNC) was synthesized using an in-situ chemical oxidative polymerization method in the presence of obtained CuS NPs. The X-ray diffraction (XRD) analysis confirmed the hexagonal structure of CuS, whose crystalline nature was preserved in the HNC. For CuS NPs and PPy/CuS HNC, elastic properties, such as intrinsic microstrain, internal stress, dislocation density, strain energy density, stacking faults, and intercrystalline separation, were used to analyze the crystal imperfections and distortions.

Results: Field emission scanning electron spectroscopy (FESEM) micrographs revealed that CuS NPs and PPy/CuS HNC have particulate and globular morphology, respectively. The values of the average intrinsic strain, dislocation density, internal stresses, and strain energy density of PPy/CuS HNC were estimated to be ~2 × 10-3, ~8.8166 × 1015 m-2, 164.263 MPa, and 127.278 KJ m−3, respectively, which were observed to be higher than those of CuS NPs.

Conclusion: The DC electrical conductivity of as-synthesized samples was measured at room temperature in pelletized form, using the standard four-probe method, and conductivity values were estimated to be ~480 Scm-1 and ~4 Scm-1 for CuS NPs and PPy/CuS HNC, respectively.

Keywords: CuS, polypyrrole, XRD, FESEM, elastic properties, electrical properties, microstrain, morphology.

Graphical Abstract

[1]
Holder E, Tessler N, Rogach AL. Hybrid nanocomposite materials with organic and inorganic components for optoelectronic devices. J Mater Chem 2008; 18(10): 1064-78.
[http://dx.doi.org/10.1039/b712176h]
[2]
Faustini M, Nicole L, Ruiz‐Hitzky E, Sanchez C. History of organic–inorganic hybrid materials: Prehistory, art, science, and advanced applications. Adv Funct Mater 2018; 28(27): 1704158.
[http://dx.doi.org/10.1002/adfm.201704158]
[3]
Pang AL, Arsad A, Ahmadipour M. Synthesis and factor affecting on the conductivity of polypyrrole: A short review. Polym Adv Technol 2021; 32(4): 1428-54.
[http://dx.doi.org/10.1002/pat.5201]
[4]
Singh N. Polypyrrole-based emerging and futuristic hybrid nanocomposites Polym Bull 2021.
[http://dx.doi.org/10.1007/s00289-021-03840-5]
[5]
Gu Y, Li T, Guo B, et al. Copper sulfide nanostructures and their sodium storage properties. CrystEngComm 2020; 22(42): 7082-9.
[http://dx.doi.org/10.1039/D0CE01059F]
[6]
Shawky A, El-Sheikh S, Gaber A, El-Hout SI, El-Sherbiny IM, Ahmed AI. Urchin-like CuS nanostructures: Simple synthesis and structural optimization with enhanced photocatalytic activity under direct sunlight. Appl Nanosci 2020; 10(7): 2153-64.
[http://dx.doi.org/10.1007/s13204-020-01283-4]
[7]
Zhou L, Chen F, Hou Z, Chen Y, Luo X. Injectable selfhealing CuS nanoparticle complex hydrogels with antibacterial, anti-cancer, and wound healing properties. Chem Eng J 2021; 409: 128224.
[http://dx.doi.org/10.1016/j.cej.2020.128224]
[8]
Morales-García A, Soares AL Jr, Dos Santos EC, de Abreu HA, Duarte HA. First-principles calculations and electron density topo-logical analysis of covellite (CuS). J Phys Chem A 2014; 118(31): 5823-31.
[http://dx.doi.org/10.1021/jp4114706] [PMID: 24483728]
[9]
Li J, Liu M, Jiang J, et al. Morphology-controlled electrochemical sensing properties of CuS crystals for tartrazine and sunset yellow. Sens Actuators B Chem 2019; 288: 552-63.
[http://dx.doi.org/10.1016/j.snb.2019.03.028]
[10]
Singh N, Taunk M. Structural, optical, and electrical studies of sonochemically synthesized cus nanoparticles. Semiconductors 2020; 54(9): 1016-22.
[http://dx.doi.org/10.1134/S1063782620090262]
[11]
Wang Y, Jiang F, Chen J, Sun X, Xian T, Yang H. in situ construction of CNT/CuS hybrids and their application in photodegradation for removing organic dyes. Nanomaterials (Basel) 2020; 10(1): 178.
[http://dx.doi.org/10.3390/nano10010178] [PMID: 31968569]
[12]
Jiang D, Hu W, Wang H, Shen B, Deng Y. A microemulsion-template-interfacial-reaction route to copper sulfide hollow spheres. J Colloid Interface Sci 2011; 357(2): 317-21.
[http://dx.doi.org/10.1016/j.jcis.2011.02.028] [PMID: 21388631]
[13]
Raj CJ, Kim BC, Cho W-J, Lee W-G, Seo Y, Yu K-H. Electrochemical capacitor behavior of copper sulfide (CuS) nanoplatelets. J Alloys Compd 2014; 586: 191-6.
[http://dx.doi.org/10.1016/j.jallcom.2013.10.056]
[14]
Nafees M, Ali S, Idrees S, Rashid K, Shafique MA. A simple microwave assists aqueous route to synthesis CuS nanoparticles and further aggregation to spherical shape. Appl Nanosci 2013; 3(2): 119-24.
[http://dx.doi.org/10.1007/s13204-012-0113-9]
[15]
Goel S, Chen F, Cai W. Synthesis and biomedical applications of copper sulfide nanoparticles: From sensors to theranostics. Small 2014; 10(4): 631-45.
[http://dx.doi.org/10.1002/smll.201301174] [PMID: 24106015]
[16]
Hosseinpour Z, Scarpellini A, Najafishirtari S, et al. Morphology-dependent electrochemical properties of cus hierarchical superstructures. ChemPhysChem 2015; 16(16): 3418-24.
[http://dx.doi.org/10.1002/cphc.201500568] [PMID: 26312569]
[17]
Tian Z, Qi Z, Yang Y, Yan H, Chen Q, Zhong Q. Anchoring CuS nanoparticles on accordion-like Ti 3 C 2 as high electrocatalytic activity counter electrodes for QDSSCs. Inorg Chem Front 2020; 7(19): 3727-34.
[http://dx.doi.org/10.1039/D0QI00618A]
[18]
Ahmed U, Shahid M, Shahabuddin S, et al. An efficient platform based on strontium titanate nanocubes interleaved polypyrrole nanohybrid as counter electrode for dyesensitized solar cell. J Alloys Compd 2021; 860: 158228.
[http://dx.doi.org/10.1016/j.jallcom.2020.158228]
[19]
Folorunso O, Hamam Y, Sadiku R, Ray SS, Adekoya GJ. Electrical resistance control model for polypyrrole-graphene nanocomposite: Energy storage applications. Mater Today Commun 2021; 26: 101699.
[http://dx.doi.org/10.1016/j.mtcomm.2020.101699]
[20]
Ansar MT, Ali A, Mustafa GM, et al. Polypyrrole-based nanocomposites architecture as multifunctional material for futuristic energy storage applications. J Alloys Compd 2021; 855: 157341.
[http://dx.doi.org/10.1016/j.jallcom.2020.157341]
[21]
Elayappan V, Murugadoss V, Fei Z, Dyson PJ, Angaiah S. Influence of polypyrrole incorporated electrospun poly (vinylidene fluoride-co-hexafluoropropylene) nanofibrous composite membrane electrolyte on the photovoltaic performance of dye sensitized solar cell. Eng Sci 2020; 10: 78-84.
[http://dx.doi.org/10.30919/es5e1007]
[22]
Choudhary R, Kandulna R. 2-D rGO impregnated circular-tetragonal-bipyramidal structure of PPY-TiO2-rGO nanocomposite as ETL for OLED and supercapacitor electrode materials. Mater Sci Semicond Process 2019; 94: 86-96.
[http://dx.doi.org/10.1016/j.mssp.2019.01.035]
[23]
Hassanien A, Akl AA, Sáaedi A. Synthesis, crystallography, microstructure, crystal defects, and morphology of Bi x Zn 1- x O nanoparticles prepared by sol–gel technique. CrystEngComm 2018; 20(12): 1716-30.
[http://dx.doi.org/10.1039/C7CE02173A]
[24]
Pejjai B, Reddivari M, Kotte TRR. Phase controllable synthesis of CuS nanoparticles by chemical co-precipitation method: Effect of copper precursors on the properties of CuS. Mater Chem Phys 2020; 239: 122030.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122030]
[25]
Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Cryst 2011; 44(6): 1272-6.
[http://dx.doi.org/10.1107/S0021889811038970]
[26]
Soares AL Jr, Dos Santos EC, Morales‐García Á, Duarte HA, De Abreu HA. (001) Surfaces. ChemistrySelect 2016; 1(11): 2730-41.
[http://dx.doi.org/10.1002/slct.201600422]
[27]
Singh N, Taunk M. In-situ chemical synthesis, microstructural, morphological and charge transport studies of polypyrrole-cus hybrid nanocomposites. J Inorg Organomet Polym Mater 2021; 31(1): 437-45.
[http://dx.doi.org/10.1007/s10904-020-01747-8]
[28]
Irshad M, Khan MA, Khan SA, et al. Improved electrical, magnetic and dielectric properties of polypyrol (PPy) substituted spinel ferrite composites. Physica E 2017; 93: 313-7.
[http://dx.doi.org/10.1016/j.physe.2017.07.001]
[29]
Khuspe G, Navale S, Chougule M, et al. Facile method of synthesis of polyaniline-SnO2 hybrid nanocomposites: Microstructural, optical and electrical transport properties. Synth Met 2013; 178: 1-9.
[http://dx.doi.org/10.1016/j.synthmet.2013.06.022]
[30]
Cullity BD. Elements of X-ray Diffraction. Addison-Wesley Publishing 1956.
[31]
Selvi SST, Linet JM, Sagadevan S. Influence of CTAB surfactant on structural and optical properties of CuS and CdS nanoparticles by hydrothermal route. J Exp Nanosci 2018; 13(1): 130-43.
[http://dx.doi.org/10.1080/17458080.2018.1445306]
[32]
Godavarti U, Mote V, Dasari M. Role of cobalt doping on the electrical conductivity of ZnO nanoparticles. J Asian Ceramic Soc 2017; 5(4): 391-6.
[http://dx.doi.org/10.1016/j.jascer.2017.08.002]
[33]
Tarachand Hussain S. Lalla NP, et al. hermoelectric properties of Ag-doped CuS nanocomposites synthesized by a facile polyol method. Phys Chem Chem Phys 2018; 20(8): 5926-35.
[http://dx.doi.org/10.1039/C7CP07986A] [PMID: 29423485]
[34]
Singh N, Chand S, Taunk M. Facile in-situ synthesis, microstructural, morphological and electrical transport properties of polypyrrole-cuprous iodide hybrid nanocomposites. J Solid State Chem 2021; 303: 122501.
[http://dx.doi.org/10.1016/j.jssc.2021.122501]
[35]
Gomathi M, Rajkumar P, Prakasam A. Study of dislocation density (defects such as Ag vacancies and interstitials) of silver nanoparti-cles, green-synthesized using Barleria cristata leaf extract and the impact of defects on the antibacterial activity. Results Phys 2018; 10: 858-64.
[http://dx.doi.org/10.1016/j.rinp.2018.08.011]
[36]
Nath D, Singh F, Das R. X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanopar-ticles-a comparative study. Mater Chem Phys 2020; 239: 122021.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122021]
[37]
Nakate UT, Ahmad R, Patil P, Yu Y, Hahn Y-B. Ultra thin NiO nanosheets for high performance hydrogen gas sensor device. Appl Surf Sci 2020; 506: 144971.
[http://dx.doi.org/10.1016/j.apsusc.2019.144971]
[38]
Al-Gunaid MQ, Saeed AM. G. HM, Basavarajaiah S. Impact of nano-perovskite La2CuO4 on dc-conduction, opto-electrical sensing and thermal behavior of PVA nanocomposite films. Polymer-Plastics Technol Mater 2020; 59: 469-83.
[http://dx.doi.org/10.1080/25740881.2019.1669646]
[39]
Zak AK, Majid WA, Abrishami ME, Yousefi R. X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot meth-ods. Solid State Sci 2011; 13: 251-6.
[http://dx.doi.org/10.1016/j.solidstatesciences.2010.11.024]
[40]
Zhang J-M, Zhang Y, Xu K-W, Ji V. General compliance transformation relation and applications for anisotropic hexagonal metals. Solid State Commun 2006; 139(3): 87-91.
[http://dx.doi.org/10.1016/j.ssc.2006.05.026]
[41]
Cline CF, Dunegan HL, Henderson GW. Elastic constants of hexagonal BeO, ZnS, and CdSe. J Appl Phys 1967; 38(4): 1944-8.
[http://dx.doi.org/10.1063/1.1709787]
[42]
Prabhu YT, Rao KV, Kumar VSS, Kumari BS. X-ray analysis by Williamson-Hall and size-strain plot methods of ZnO nanoparticles with fuel variation. World J Nano Sci Eng 2014; 4: 21-8.
[43]
Singh N, Taunk M. Effect of surfactants on the structural and luminescence properties of γ‐cui nanocrystals synthesized by facile sonochemical method. ChemistrySelect 2020; 5(39): 12236-42.
[http://dx.doi.org/10.1002/slct.202002777]
[44]
Nalage S, Mane A, Pawar R, Lee C, Patil V. Polypyrrole–NiO hybrid nanocomposite films: Highly selective, sensitive, and reproducible NO 2 sensors. Ionics 2014; 20(11): 1607-16.
[http://dx.doi.org/10.1007/s11581-014-1122-3]
[45]
Mane A, Navale S, Pawar R, Lee C, Patil V. Microstructural, optical and electrical transport properties of WO3 nanoparticles coated polypyrrole hybrid nanocomposites. Synth Met 2015; 199: 187-95.
[http://dx.doi.org/10.1016/j.synthmet.2014.11.031]
[46]
Xu B-H, Lin B-Z, Chen Z-J, Li X-L, Wang Q-Q. Preparation and electrical conductivity of polypyrrole/WS2 layered nanocomposites. J Colloid Interface Sci 2009; 330(1): 220-6.
[http://dx.doi.org/10.1016/j.jcis.2008.10.033] [PMID: 18977489]
[47]
Oliveira LV, Camilo FF. Facile synthesis of silver-polypyrrole nanocomposites: Use of ionic liquid as solvent and template. Synth Met 2019; 247: 219-27.
[http://dx.doi.org/10.1016/j.synthmet.2018.12.001]
[48]
Guo J, Zhang X, Sun Y, Zhang X, Tang L, Zhang X. Double-shell CuS nanocages as advanced supercapacitor electrode materials. J Power Sources 2017; 355: 31-5.
[http://dx.doi.org/10.1016/j.jpowsour.2017.04.052]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy