Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Design, Docking, In silico ADME Prediction of Novel 2-substituted-5- hydroxy-1-(1-methyl-3-morpholinopropyl)-1H-indole-3-carboxamide Derivatives for Estrogen Receptor Alfa in AF-2 Domain for Effective Anticancer Treatment

Author(s): Sandip Narayan Wagh and Vivekanand Arvind Chatpalliwar*

Volume 20, Issue 8, 2023

Published on: 12 September, 2022

Page: [1066 - 1085] Pages: 20

DOI: 10.2174/1570180819666220613091348

Price: $65

Abstract

Aim: The present work has been designed to discover some novel 2-substituted -5-hydroxy-1- (1-methyl-3-morpholinopropyl)-1H-indole-3-carboxamide derivatives and their screening through computational molecular docking.

Background: The present manuscript describes designing novel 2-substituted-5-hydroxy-1-(1-methyl-3- morpholinopropyl)-1H-indole-3-carboxamide derivatives as specific ERα modulators, discusses the selection criteria for 1ERR, several interactions between the ligand and the amino acid residues that would probably elicit fruitful modulation of the receptor. Accordingly, a ligand was observed to yield a G Score of -10. 390, which was considered close and comparable with the standard ligand Raloxifene (-11.869).

Objective: Synthesize a few indole -3-carboxamide derivatives and test their ability to modulate ER-α through human cell line cultures for breast cancer. The present manuscript describes the designing of novel 2-substituted -5-hydroxy-1-(1-methyl-3-morpholinopropyl)-1H-indole-3-carboxamide derivatives as specific ERα modulators, discusses the selection criteria for 1ERR, several interactions between the ligand and the amino acid residues that would probably elicit fruitful modulation of the ER-alpha in the treatment of breast cancer.

Methods: This work involved designing a few 2-substituted-5-hydroxy-1-(1-methyl-3- morpholinopropyl)-1H-indole-3-carboxamide derivatives and their virtual screening for receptor modulation by carrying molecular docking studies to determine the binding interactions for best-fit conformations in AF-2 binding site of the ERα receptor, and ADME predictions by Quick Prop Tools. Those ligands that displayed satisfactory docking were selected for further studies. These revealed all-important functional groups that interact with active amino acid residues in the targeted cavity, substantiating their presence in molecules to elicit the desired response whence tested in vitro.

Results: Based on the docking studies of the designed derivatives, ligands BD59, BD60, BD65, BD58, BD64 BD61, BD54, BD32, BD48 and BD45 have shown better binding energy than the rest and were comparable with the interactions shown by the standard, Raloxifene. The observed results lamented the presence of a substitution at the C-2 position of indole scaffold, either straight or branched with terminal atom containing non-bonding electrons (halo/-NH2). Accordingly, ligand BD59 carrying chlorobenzene chain (G Score= -10.390), whereas BD60 carrying flurobenzene chain (G Score = -10.204), whereas BD65 carrying methylbenzene chain (G Score = -9.863) were found to interact suitably with the active amino acid residues in the targeted cavity that are reported to be involved in interaction with the standard.

Conclusion: From the present results, we conclude that designed derivatives have the potential to modulate ERα receptors effectively, which can be synthesized and tested for their effectiveness, in vitro and in vivo against breast cancer.

Keywords: Docking, Breast cancer, estrogen receptor α, 5-hydroxymorpholinopropylindole derivatives, SERM, Raloxifene, Quick Prop.

Graphical Abstract

[1]
Douglas, H.; Robert, A. Weinberg. In: Hallmarks of Cancer: The Next Generation; Leading Edge Review, 2011; pp. 1-29.
[2]
Ariazi, E.A.; Ariazi, J.L.; Cordera, F.; Jordan, V.C. Estrogen receptors as therapeutic targets in breast cancer. Curr. Top. Med. Chem., 2006, 6(3), 181-202.
[http://dx.doi.org/10.2174/156802606776173483] [PMID: 16515478]
[3]
Leland, H. Cell Biology and Cancer. Rediscovering Biology; Molecular to Global Perspectives, 2018, pp. 1-17.
[4]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[5]
Benson, J.R.; Jatoi, I.; Keisch, M.; Esteva, F.J.; Makris, A.; Jordan, V.C. Early breast cancer. Lancet, 2009, 373(9673), 1463-1479.
[http://dx.doi.org/10.1016/S0140-6736(09)60316-0] [PMID: 19394537]
[6]
World Health Organization. Global Health Observatory; World health Organization: Geneva, 2018. Who.int/gho/database/
[7]
Pinkerton, J.V.; Thomas, S. Use of SERMs for treatment in postmenopausal women. J. Steroid Biochem. Mol. Biol., 2014, 142, 142-154.
[http://dx.doi.org/10.1016/j.jsbmb.2013.12.011] [PMID: 24373794]
[8]
Osz, J.; Brélivet, Y.; Peluso-Iltis, C.; Cura, V.; Eiler, S.; Ruff, M.; Bourguet, W.; Rochel, N.; Moras, D. Structural basis for a molecular allosteric control mechanism of cofactor binding to nuclear receptors. Proc. Natl. Acad. Sci. USA, 2012, 109(10), E588-E594.
[http://dx.doi.org/10.1073/pnas.1118192109] [PMID: 22355136]
[9]
Choi, K.C.; Jeung, E.B. The biomarker and endocrine disruptors in mammals. J. Reprod. Dev., 2003, 49(5), 337-345.
[http://dx.doi.org/10.1262/jrd.49.337] [PMID: 14967909]
[10]
Mangelsdorf, D.J.; Thummel, C.; Beato, M.; Herrlich, P.; Schütz, G.; Umesono, K.; Blumberg, B.; Kastner, P.; Mark, M.; Chambon, P.; Evans, R.M. The nuclear receptor superfamily: The second decade. Cell, 1995, 83(6), 835-839.
[http://dx.doi.org/10.1016/0092-8674(95)90199-X] [PMID: 8521507]
[11]
Pettersson, K.; Gustafsson, J.A. Role of estrogen receptor beta in estrogen action. Annu. Rev. Physiol., 2001, 63(1), 165-192.
[http://dx.doi.org/10.1146/annurev.physiol.63.1.165] [PMID: 11181953]
[12]
Kuiper, G.G.J.M.; Enmark, E.; Pelto-Huikko, M.; Nilsson, S.; Gustafsson, J.A. Cloning of a novel receptor expressed in rat prostate and ovary. Proc. Natl. Acad. Sci. USA, 1996, 93(12), 5925-5930.
[http://dx.doi.org/10.1073/pnas.93.12.5925] [PMID: 8650195]
[13]
Tsai, M.J.; O’Malley, B.W. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu. Rev. Biochem., 1994, 63(1), 451-486.
[http://dx.doi.org/10.1146/annurev.bi.63.070194.002315] [PMID: 7979245]
[14]
Bocchinfuso, W.P.; Korach, K.S. Mammary gland development and tumorigenesis in estrogen receptor knockout mice. J. Mammary Gland Biol. Neoplasia, 1997, 2(4), 323-334.
[http://dx.doi.org/10.1023/A:1026339111278] [PMID: 10935020]
[15]
Bocchinfuso, W.P.; Lindzey, J.K.; Hewitt, S.C.; Clark, J.A.; Myers, P.H.; Cooper, R.; Korach, K.S. Induction of mammary gland development in estrogen receptor-alpha knockout mice. Endocrinology, 2000, 141(8), 2982-2994.
[http://dx.doi.org/10.1210/endo.141.8.7609] [PMID: 10919287]
[16]
Gruber, C.J.; Tschugguel, W.; Schneeberger, C.; Huber, J.C. Production and actions of estrogens. N. Engl. J. Med., 2002, 346(5), 340-352.
[http://dx.doi.org/10.1056/NEJMra000471] [PMID: 11821512]
[17]
Duffy, M.J. Estrogen receptors: Role in breast cancer. Crit. Rev. Clin. Lab. Sci., 2006, 43(4), 325-347.
[http://dx.doi.org/10.1080/10408360600739218] [PMID: 16769596]
[18]
Liehr, J.G. Genotoxicity of the steroidal oestrogens oestrone and oestradiol: Possible mechanism of uterine and mammary cancer development. Hum. Reprod. Update, 2001, 7(3), 273-281.
[http://dx.doi.org/10.1093/humupd/7.3.273] [PMID: 11392373]
[19]
Fentiman, I.S. Oral contraceptives, hormone replacement therapy and breast cancer. Int. J. Clin. Pract., 2002, 56(10), 755-759.
[PMID: 12510949]
[20]
Beral, V.; Banks, E.; Reeves, G. Evidence from randomised trials on the long-term effects of hormone replacement therapy. Lancet, 2002, 360(9337), 942-944.
[http://dx.doi.org/10.1016/S0140-6736(02)11032-4] [PMID: 12354487]
[21]
Pike, M.C.; Spicer, D.V.; Dahmoush, L.; Press, M.F. Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol. Rev., 1993, 15(1), 17-35.
[http://dx.doi.org/10.1093/oxfordjournals.epirev.a036102] [PMID: 8405201]
[22]
Clemons, M.; Goss, P. Estrogen and the risk of breast cancer. N. Engl. J. Med., 2001, 344(4), 276-285.
[http://dx.doi.org/10.1056/NEJM200101253440407] [PMID: 11172156]
[23]
Dahlman-Wright, K.; Cavailles, V.; Fuqua, S.A.; Jordan, V.C.; Katzenellenbogen, J.A.; Korach, K.S.; Maggi, A.; Muramatsu, M.; Parker, M.G.; Gustafsson, J.A. International union of pharmacology. LXIV. Estrogen receptors. Pharmacol. Rev., 2006, 58(4), 773-781.
[http://dx.doi.org/10.1124/pr.58.4.8] [PMID: 17132854]
[24]
Heldring, N.; Pike, A.; Andersson, S.; Matthews, J.; Cheng, G.; Hartman, J.; Tujague, M.; Ström, A.; Treuter, E.; Warner, M.; Gustafsson, J.Å. Estrogen receptors: How do they signal and what are their targets. Physiol. Rev., 2007, 87(3), 905-931.
[http://dx.doi.org/10.1152/physrev.00026.2006] [PMID: 17615392]
[25]
Ilaria, P.; Carlotta, G.; John, A.K.; Filippo, M. Estrogen receptors alpha (ERa) and beta (ERb): Subtype-selective ligands and clinical potential. Steroids, 2014, 1-17.
[26]
Omoto, Y.; Iwase, H. Clinical significance of estrogen receptor β in breast and prostate cancer from biological aspects. Cancer Sci., 2015, 106(4), 337-343.
[http://dx.doi.org/10.1111/cas.12613] [PMID: 25611678]
[27]
Lee, H.R.; Kim, T.H.; Choi, K.C. Functions and physiological roles of two types of estrogen receptors, ERα and ERβ identified by estrogen receptor knockout mouse. Lab. Anim. Res., 2012, 28(2), 71-76.
[http://dx.doi.org/10.5625/lar.2012.28.2.71] [PMID: 22787479]
[28]
Jensen, E.V.; Jacobson, H.I. Basic guides to the mechanism of estrogen action. Recent Prog. Horm. Res., 1962, 18, 387-414.
[29]
Green, S.; Walter, P.; Kumar, V.; Krust, A.; Bornert, J.M.; Argos, P.; Chambon, P. Human oestrogen receptor cDNA: Sequence, expression and homology to v-erb-A. Nature, 1986, 320(6058), 134-139.
[http://dx.doi.org/10.1038/320134a0] [PMID: 3754034]
[30]
Mosselman, S.; Polman, J.; Dijkema, R. ER beta: Identification and characterization of a novel human estrogen receptor. FEBS Lett., 1996, 392(1), 49-53.
[http://dx.doi.org/10.1016/0014-5793(96)00782-X] [PMID: 8769313]
[31]
Jaffe, A.B.; Toran-Allerand, C.D.; Greengard, P.; Gandy, S.E. Estrogen regulates metabolism of Alzheimer amyloid beta precursor protein. J. Biol. Chem., 1994, 269(18), 13065-13068.
[http://dx.doi.org/10.1016/S0021-9258(17)36796-0] [PMID: 8175728]
[32]
Resnick, S.M.; Maki, P.M.; Golski, S.; Kraut, M.A.; Zonderman, A.B. Effects of estrogen replacement therapy on PET cerebral blood flow and neuropsychological performance. Horm. Behav., 1998, 34(2), 171-182.
[http://dx.doi.org/10.1006/hbeh.1998.1476] [PMID: 9799627]
[33]
Dechering, K.; Boersma, C.; Mosselman, S. Estrogen receptors α and β Two receptors of a kind? Curr. Med. Chem., 2000, 7(5), 561-576.
[http://dx.doi.org/10.2174/0929867003375010] [PMID: 10702625]
[34]
Fisher, B.; Costantino, J.P.; Wickerham, D.L.; Redmond, C.K.; Kavanah, M.; Cronin, W.M.; Vogel, V.; Robidoux, A.; Dimitrov, N.; Atkins, J.; Daly, M.; Wieand, S.; Tan-Chiu, E.; Ford, L.; Wolmark, N. Tamoxifen for prevention of breast cancer: Report of the National Surgical adjuvant Breast and Bowel Project P-1 Study. J. Natl. Cancer Inst., 1998, 90(18), 1371-1388.
[http://dx.doi.org/10.1093/jnci/90.18.1371] [PMID: 9747868]
[35]
Evans, R.M. The steroid and thyroid hormone receptor superfamily. Science, 1988, 240(4854), 889-895.
[http://dx.doi.org/10.1126/science.3283939] [PMID: 3283939]
[36]
Singh, R.R.; Kumar, R. Steroid hormone receptor signaling in tumorigenesis. J. Cell. Biochem., 2005, 96(3), 490-505.
[http://dx.doi.org/10.1002/jcb.20566] [PMID: 16092128]
[37]
McDonnell, D.P.; Norris, J.D. Connections and regulation of the human estrogen receptor. Science, 2002, 296(5573), 1642-1644.
[http://dx.doi.org/10.1126/science.1071884] [PMID: 12040178]
[38]
Burns, K.A.; Korach, K.S. Estrogen receptors and human disease: An update. Arch. Toxicol., 2012, 86(10), 1491-1504.
[http://dx.doi.org/10.1007/s00204-012-0868-5] [PMID: 22648069]
[39]
Fisher, B.; Costantino, J.P.; Wickerham, D.L.; Cecchini, R.S.; Cronin, W.M.; Robidoux, A.; Bevers, T.B.; Kavanah, M.T.; Atkins, J.N.; Margolese, R.G.; Runowicz, C.D.; James, J.M.; Ford, L.G.; Wolmark, N. Tamoxifen for the prevention of breast cancer: Current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J. Natl. Cancer Inst., 2005, 97(22), 1652-1662.
[http://dx.doi.org/10.1093/jnci/dji372] [PMID: 16288118]
[40]
Ettinger, B.; Black, D.M.; Mitlak, B.H.; Knickerbocker, R.K.; Nickelsen, T.; Genant, H.K.; Christiansen, C.; Delmas, P.D.; Zanchetta, J.R.; Stakkestad, J.; Glüer, C.C.; Krueger, K.; Cohen, F.J.; Eckert, S.; Ensrud, K.E.; Avioli, L.V.; Lips, P.; Cummings, S.R. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: Results from a 3-year randomized clinical trial. JAMA, 1999, 282(7), 637-645.
[http://dx.doi.org/10.1001/jama.282.7.637] [PMID: 10517716]
[41]
Vogel, V.G.; Costantino, J.P.; Wickerham, D.L.; Cronin, W.M.; Cecchini, R.S.; Atkins, J.N.; Bevers, T.B.; Fehrenbacher, L.; Pajon, E.R., Jr; Wade, J.L., III; Robidoux, A.; Margolese, R.G.; James, J.; Lippman, S.M.; Runowicz, C.D.; Ganz, P.A.; Reis, S.E.; McCaskill-Stevens, W.; Ford, L.G.; Jordan, V.C.; Wolmark, N. Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: The NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA, 2006, 295(23), 2727-2741.
[http://dx.doi.org/10.1001/jama.295.23.joc60074] [PMID: 16754727]
[42]
Vastag, B. Raloxifene prevails in STAR trial, may face easier road to acceptance than previous drugs. J. Natl. Cancer Inst., 2006, 98(11), 733-735.
[http://dx.doi.org/10.1093/jnci/djj253] [PMID: 16757696]
[43]
Stefanick, M.L. Risk-benefit profiles of raloxifene for women. N. Engl. J. Med., 2006, 355(2), 190-192.
[http://dx.doi.org/10.1056/NEJMe068120] [PMID: 16837684]
[44]
Jordan, V.C.; Gapstur, S.; Morrow, M. Selective estrogen receptor modulation and reduction in risk of breast cancer, osteoporosis, and coronary heart disease. J. Natl. Cancer Inst., 2001, 93(19), 1449-1457.
[http://dx.doi.org/10.1093/jnci/93.19.1449] [PMID: 11584060]
[45]
Bernstein, L.; Deapen, D.; Cerhan, J.R.; Schwartz, S.M.; Liff, J.; McGann-Maloney, E.; Perlman, J.A.; Ford, L. Tamoxifen therapy for breast cancer and endometrial cancer risk. J. Natl. Cancer Inst., 1999, 91(19), 1654-1662.
[http://dx.doi.org/10.1093/jnci/91.19.1654] [PMID: 10511593]
[46]
Wu, C.J.; Peng, Y.J.; Yu, M.H.; Chen, C.H. Secretory endometrial adenocarcinoma in a tamoxifen user with breast cancer after menopause. Taiwan. J. Obstet. Gynecol., 2007, 46(1), 88-90.
[http://dx.doi.org/10.1016/S1028-4559(08)60118-7] [PMID: 17389201]
[47]
Wang, P.H.; Chao, H.T. A reconsideration of tamoxifen use for breast cancer. Taiwan. J. Obstet. Gynecol., 2007, 46(2), 93-95.
[http://dx.doi.org/10.1016/S1028-4559(07)60001-1] [PMID: 17638615]
[48]
Chen, P.; Yang, C.C.; Chen, Y.J.; Wang, P.H. Tamoxifen-induced endometrial cancer. Eur. J. Gynaecol. Oncol., 2003, 24(2), 135-137.
[PMID: 12701962]
[49]
Vogel, V.G. The NSABP study of Tamoxifen and Raloxifen (STAR) trial. Expert Rev. Anticancer Ther., 2009, 9(1), 51-60.
[http://dx.doi.org/10.1586/14737140.9.1.51] [PMID: 19105706]
[50]
Komm, B.S. A new approach to menopausal therapy: The tissue selective estrogen complex. Reprod. Sci., 2008, 15(10), 984-992.
[http://dx.doi.org/10.1177/1933719108325759] [PMID: 19088368]
[51]
Berrodin, T.J.; Chang, K.C.; Komm, B.S.; Freedman, L.P.; Nagpal, S. Differential biochemical and cellular actions of Premarin estrogens: Distinct pharmacology of bazedoxifene-conjugated estrogens combination. Mol. Endocrinol., 2009, 23(1), 74-85.
[http://dx.doi.org/10.1210/me.2008-0366] [PMID: 19036900]
[52]
Kharode, Y.; Bodine, P.V.; Miller, C.P.; Lyttle, C.R.; Komm, B.S. The pairing of a selective estrogen receptor modulator, bazedoxifene, with conjugated estrogens as a new paradigm for the treatment of menopausal symptoms and osteoporosis prevention. Endocrinology, 2008, 149(12), 6084-6091.
[http://dx.doi.org/10.1210/en.2008-0817] [PMID: 18703623]
[53]
Riggs, B.L.; Hartmann, L.C. Selective estrogen-receptor modulators -- mechanisms of action and application to clinical practice. N. Engl. J. Med., 2003, 348(7), 618-629.
[http://dx.doi.org/10.1056/NEJMra022219] [PMID: 12584371]
[54]
Stephen, M.; Darshan, S.; Sonia, L.P.; John, A. A. Selective estrogen receptor modulators: Tissue specificity and clinical utility. Dove press Journal, 2014, 1437-1452.
[55]
Wenlin, S.; Myles, B. Advances in estrogen receptor biology:prospects for improvement in targeted breast cancer therapy. Breast Cancer Res., 2004, 1, 39-52.
[56]
Kong, E.H.; Pike, A.C.; Hubbard, R.E. Structure and mechanism of the oestrogen receptor. Biochem. Soc. Trans., 2003, 31(Pt 1), 56-59.
[http://dx.doi.org/10.1042/bst0310056] [PMID: 12546653]
[57]
Geserickk, C.; Meyer, H.A.; Haendler, B. The role of DNA response element as allosteric modulator of steroid receptor function. Mol. Cell. Endocrinol., 2005, 12(1-2), 1-7.
[http://dx.doi.org/10.1016/j.mce.2005.03.007]
[58]
Beliakoff, J.; Whitesell, L. Hsp90: An emerging target for breast cancer therapy. Anticancer Drugs, 2004, 15(7), 651-662.
[http://dx.doi.org/10.1097/01.cad.0000136876.11928.be] [PMID: 15269596]
[59]
Edwards, D.P. The role of coactivators and corepressors in the biology and mechanism of action of steroid hormone receptors. J. Mammary Gland Biol. Neoplasia, 2000, 5(3), 307-324.
[http://dx.doi.org/10.1023/A:1009503029176] [PMID: 14973393]
[60]
McDevitt, M.A.; Glidewell-Kenney, C.; Jimenez, M.A.; Ahearn, P.C.; Weiss, J.; Jameson, J.L.; Levine, J.E. New insights into the classical and non-classical actions of estrogen: Evidence from estrogen receptor knock-out and knock-in mice. Mol. Cell. Endocrinol., 2008, 290(1-2), 24-30.
[http://dx.doi.org/10.1016/j.mce.2008.04.003] [PMID: 18534740]
[61]
Brzozowski, A.; Pike, A.; Dauter, Z.; Hubbard, R.; Bonn, T.; Engström, O.; Ohman, L.; Greene, G.; Gustafsson, J.; Carlquist, M. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature, 1997, 389(6652), 753-758.
[62]
Dube, P.N.; Chatpalliwar, V.A. 3, 5-Diphenylpyrazolylethanone Derivatives as Selective Estrogen Receptor Modulators: Design, Synthesis, Biological Evaluation and Docking Analysis. Indo-Glob. J. Pharm. Sci., 2020, 10(1), 25-32.
[http://dx.doi.org/10.35652/IGJPS.2020.10104]
[63]
Miller, P.D.; Chines, A.A.; Christiansen, C.; Hoeck, H.C.; Kendler, D.L.; Lewiecki, E.M.; Woodson, G.; Levine, A.B.; Constantine, G.; Delmas, P.D. Effects of bazedoxifene on BMD and bone turnover in postmenopausal women: 2-yr results of a randomized, double-blind, placebo-, and active-controlled study. J. Bone Miner. Res., 2008, 23(4), 525-535.
[http://dx.doi.org/10.1359/jbmr.071206] [PMID: 18072873]
[64]
Wagh, S.N.; Warude, B.J.; Chatpalliwar, V.A. Virtual screening of novel 2-substituted -5-hydroxy-1-(2- methyl-3-morpholinopropyl)-1H-indole-3-carboxamide Derivatives for Estrogen Receptor alpha in AF-2 domain for effective anticancer treatment. Research & Reviews. J. Pharm. Sci., 2021, 12(2), 31-55.

© 2024 Bentham Science Publishers | Privacy Policy