Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Phytochemical Characterization and Screening of the Anti-Pneumonia (Anti-COVID-19, Anti-Fungal, and Anti-Bacterial) Activities of Cuscuta Campestris Extract

Author(s): Haidar Saify Nabiabad*, Massoume Amini and Serwet Demirdas

Volume 20, Issue 8, 2023

Published on: 19 August, 2022

Page: [1055 - 1065] Pages: 11

DOI: 10.2174/1570180819666220513144625

Price: $65

conference banner
Abstract

Introduction: Although, several vaccines are being approved, no effective antiviral drug has been developed for COVID-19 infectious. The present investigation was aimed to increase the essential oils of Cuscuta campestris using far-red light treatment and examine the potential of crude extracts of C. campestris against selected pneumonia pathogens and COVID-19.

Methods: Anti-COVID-19 activity was determined in human lung cell lines and COVID-19 positive patients.

Results: Results demonstrated that the aqueous extract had the highest amount of anti-COVID-19, antibiotic and antioxidant activity. The far-red light treatment increased Scoparone, cineole, Benzofuran, 2, 3- dihydro, Cinnamic acid, and Benzo[h]quinoline, 2, 4-dimethyl, which are mainly effective components against COVID-19 inflammation and pneumonia microbes. CT scan and clinical laboratory tests in a clinical case study, a 30-year-old woman who presented with severe 2019-nCoV, demonstrated that inhalation of 30 mg extract nebulized/day for seven days resulted in significant improvement in consolidation and ground-glass opacity in lungs on the seventh day of treatment.

Conclusion: It is hoped that this study leads to the introduction of some compounds that could be used to formulate new and more potent anti-COVID-19 antibiotics, or other drugs of natural origin in medicine.

Keywords: Antibacterial, Anti-COVID-19, antifungal, Cuscutacampestris, GC/MS and far-red light.

Graphical Abstract

[1]
Lai, C.C.; Shih, T.P.; Ko, W.C.; Tang, H.J.; Hsueh, P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents, 2020, 55(3), 105924.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105924] [PMID: 32081636]
[2]
Bruni, R.; Barreca, D.; Protti, M.; Brighenti, V.; Righetti, L.; Anceschi, L.; Mercolini, L.; Benvenuti, S.; Gattuso, G.; Pellati, F. Botanical sources, chemistry, analysis, and biological activity of furanocoumarins of pharmaceutical interest. Molecules, 2019, 24(11), E2163.
[http://dx.doi.org/10.3390/molecules24112163] [PMID: 31181737]
[3]
Kanjanasirirat, P.; Suksatu, A.; Manopwisedjaroen, S.; Munyoo, B.; Tuchinda, P.; Jearawuttanakul, K.; Seemakhan, S.; Charoensutthivarakul, S.; Wongtrakoongate, P.; Rangkasenee, N.; Pitiporn, S.; Waranuch, N.; Chabang, N.; Khemawoot, P.; Sa-Ngiamsuntorn, K.; Pewkliang, Y.; Thongsri, P.; Chutipongtanate, S.; Hongeng, S.; Borwornpinyo, S.; Thitithanyanont, A. High-content screening of Thai medicinal plants reveals Boesenbergia rotunda extract and its component Panduratin A as anti-SARS-CoV-2 agents. Sci. Rep., 2020, 10(1), 19963.
[http://dx.doi.org/10.1038/s41598-020-77003-3] [PMID: 33203926]
[4]
Benarba, B.; Pandiella, A. Medicinal plants as sources of active molecules against COVID-19. Front. Pharmacol., 2020, 11(11), 1189.
[http://dx.doi.org/10.3389/fphar.2020.01189] [PMID: 32848790]
[5]
Jabbar, A.; Raza, M.A.; Iqbal, Z.; Khan, M.N. An inventory of the ethnobotanicals used as anthelmintics in the southern Punjab (Pakistan). J. Ethnopharmacol., 2006, 108(1), 152-154.
[http://dx.doi.org/10.1016/j.jep.2006.04.015] [PMID: 16730420]
[6]
Pandit, S.; Chauhan, N.S.; Dixit, V.K. Effect of Cuscuta reflexa Roxb on androgen-induced alopecia. J. Cosmet. Dermatol., 2008, 7(3), 199-204.
[http://dx.doi.org/10.1111/j.1473-2165.2008.00389.x] [PMID: 18789055]
[7]
Suresh, V.; Sruthi, V.; Padmaja, B.; Asha, V.V. In vitro anti-inflammatory and anti-cancer activities of Cuscuta reflexa Roxb. J. Ethnopharmacol., 2011, 134(3), 872-877.
[http://dx.doi.org/10.1016/j.jep.2011.01.043] [PMID: 21295129]
[8]
Dou, H.; Niu, G.; Gu, M.; Joseph, G. Effects of light quality on growth and phytonutrient accumulation of herbs under controlled environments. Horticulturae, 2017, 3(2), 36.
[http://dx.doi.org/10.3390/horticulturae3020036]
[9]
Mulas, G.; Gardner, Z.; Craker, L.E. Effect of light quality on growth and essential oil composition in rosemary. Acta Hortic., 2006, 723(723), 427-432.
[http://dx.doi.org/10.17660/ActaHortic.2006.723.60]
[10]
Quan, H.; Cao, Y.Y.; Xu, Z.; Zhao, J.X.; Gao, P.H.; Qin, X.F.; Jiang, Y.Y. Potent in vitro synergism of fluconazole and berberine chloride against clinical isolates of Candida albicans resistant to fluconazole. Antimicrob. Agents Chemother., 2006, 50(3), 1096-1099.
[http://dx.doi.org/10.1128/AAC.50.3.1096-1099.2006] [PMID: 16495278]
[11]
Kumar, S.; Bawa, S.; Gupta, H. Biological activities of quinoline derivatives. Mini Rev. Med. Chem., 2009, 9(14), 1648-1654.
[http://dx.doi.org/10.2174/138955709791012247] [PMID: 20088783]
[12]
Amna, A.; Muhammad, S.H.; Sana, H.; Nosheen, A. Assessment of the antibacterial activity of Cuscuta pedicellata Ledeb. Afr. J. Biotechnol., 2014, 13(3), 430-433.
[http://dx.doi.org/10.5897/AJB2013.12440]
[13]
Stojković, D.; Petrović, J.; Soković, M.; Glamočlija, J.; Kukić-Marković, J.; Petrović, S. In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p-coumaric acid and rutin, using food systems. J. Sci. Food Agric., 2013, 93(13), 3205-3208.
[http://dx.doi.org/10.1002/jsfa.6156] [PMID: 23553578]
[14]
Faiyyaz, I.B.; Rajesh, O.J.; Trushal, C.V.; Kapli, G. In vitro antimicrobial activity of Cuscuta reflexa ROXB. Int. Res. J. Pharm (Cairo), 2011, 2(4), 214-216.
[15]
Nabiabad, H.S.; Piri, K.; Amini, M. Expression of active chimeric-tissue plasminogen activator in tobacco hairy roots, identification of a DNA aptamer and purification by aptamer functionalized-MWCNTs chromatography. Protein Expr. Purif., 2018, 152, 137-145.
[http://dx.doi.org/10.1016/j.pep.2016.02.004] [PMID: 26876003]
[16]
Islam Dar, M.; Ashraf, R.; Shaheen, H. Comparative in vitro biological activity analysis of Cuscuta reflexa Roxb. and C. campestris yuncker. Bangladesh J. Bot., 2020, 49(2), 249-256.
[http://dx.doi.org/10.3329/bjb.v49i2.49298]
[17]
Jakovljević, V.D.; Vrvić, M.M.; Vrbničanin, S.; Sarić-Krsmanović, M. Phytochemical, free radical scavenging and antifungal profile of cuscuta campestris yunck. Seeds. Chem. Biodivers., 2018, 15(8), e1800174.
[http://dx.doi.org/10.1002/cbdv.201800174] [PMID: 29874415]
[18]
Al-Gburi, B.K.H.; Al-Sahaf, F.H.; Al-Fadhal, F.A.; Del Monte, J.P. Detection of phytochemical compounds and pigments in seeds and shoots of Cuscuta campestris parasitizing on eggplant. Physiol. Mol. Biol. Plants, 2019, 25(1), 253-261.
[http://dx.doi.org/10.1007/s12298-018-0630-4] [PMID: 30804647]
[19]
Selvi, E.; Turumtay, H.; Demir, A.; Turumtay, E. Phytochemical profiling and evaluation of the hepatoprotective effect of cuscuta campestris by high-performance liquid chromatography with diode array detection. Anal. Lett., 2017.
[http://dx.doi.org/10.1080/00032719.2017.1382502]
[20]
Naik, H.R.; Naik, H.S.; Naik, T.R.; Naika, H.R.; Gouthamchandra, K.; Mahmood, R.; Ahamed, B.M. Synthesis of novel benzo[h]quinolines: Wound healing, antibacterial, DNA binding and in vitro antioxidant activity. Eur. J. Med. Chem., 2009, 44(3), 981-989.
[http://dx.doi.org/10.1016/j.ejmech.2008.07.006] [PMID: 18722035]
[21]
Zhang, A.; Sun, H.; Dou, S.; Sun, W.; Wu, X.; Wang, P.; Wang, X. Metabolomics study on the hepatoprotective effect of scoparone using ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry. J. Anal., 2013, 138(1), 353-361.
[http://dx.doi.org/10.1039/C2AN36382H] [PMID: 23152956]
[22]
Diaz, P.; Phatak, S.S.; Xu, J.; Fronczek, F.R.; Astruc-Diaz, F.; Thompson, C.M.; Cavasotto, C.N.; Naguib, M. 2,3-Dihydro-1-benzofuran derivatives as a series of potent selective cannabinoid receptor 2 agonists: Design, synthesis, and binding mode prediction through ligand-steered modeling. ChemMedChem, 2009, 4(10), 1615-1629.
[http://dx.doi.org/10.1002/cmdc.200900226] [PMID: 19637157]
[23]
Juergens, U.R.; Dethlefsen, U.; Steinkamp, G.; Gillissen, A.; Repges, R.; Vetter, H. Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: A double-blind placebo-controlled trial. Respir. Med., 2003, 97(3), 250-256.
[http://dx.doi.org/10.1053/rmed.2003.1432] [PMID: 12645832]
[24]
Brown, S.K.; Garver, W.; Orlando, R. 1,8-cineole: An underappreciated anti-inflammatory therapeutic. J. Biomol. Res. Ther., 2017, 6(1), 1.
[http://dx.doi.org/10.4172/2167-7956.1000154]
[25]
Garbe, D. Cinnamic Acid; Ullmann's Encyclopedia of Industrial Chemistry Wiley Online Library, 2000.
[http://dx.doi.org/10.1002/14356007.a07_099]
[26]
Nelson, G.L.; Ronayne, C.T.; Solano, L.N.; Jonnalagadda, S.K.; Jonnalagadda, S.; Rumbley, J.; Holy, J.; Rose-Hellekant, T.; Drewes, L.R.; Mereddy, V.R. Development of novel silyl cyanocinnamic acid derivatives as metabolic plasticity inhibitors for cancer treatment. Sci. Rep., 2019, 9(1), 18266.
[http://dx.doi.org/10.1038/s41598-019-54709-7] [PMID: 31797891]
[27]
Yadav, D.K.; Rai, R.; Kumar, N.; Singh, S.; Misra, S.; Sharma, P.; Shaw, P.; Pérez-Sánchez, H.; Mancera, R.L.; Choi, E.H.; Kim, M.H.; Pratap, R. New arylated benzo[h]quinolines induce anti-cancer activity by oxidative stress-mediated DNA damage. Sci. Rep., 2016, 6(1), 38128.
[http://dx.doi.org/10.1038/srep38128] [PMID: 27922047]
[28]
Shen, Y. Protective effects of p-coumaric acid against oxidant and hyperlipidemia-an in vitro and in vivo evaluation. Biomedicine & Pharmacotherapy, 2018, 111, 579-587.
[http://dx.doi.org/10.1016/j.biopha.2018.12.074]
[29]
Abdullah, J.A.; Hammadi, A.A.; Hakem, R.; Hatef, Z.; Hussein, N. Study effect of plant extraction for Cuscuta europaea (Dodder) against two species of bacteria Staphylococcus aureus and Escherichia coli. J. Contemp. Med. Sci., 2016, 2(4), 133-137.
[http://dx.doi.org/10.22317/jcms.2016126]
[30]
Mateen, A.; Suresh, P.V.K.; Parwez, A. Evaluation of antibacterial activity of Cuscuta reflexa and abutilon indicum. Int. J. Pharma Bio Sci., 2011, 2(4), 355-361.
[31]
Ramirez, S.; Fernandez-Antuneza, C.; Long, V.; Phama, A. Efficient culture of SARS-CoV-2 in human hepatoma cells enhances viability of the virus in 2 human lung cancer cell lines permitting the screening of antiviral compounds. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.10.04.325316]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy