Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

Ayurvedic Herbs Advised for COVID-19 Management: Therapeutic Potential and Clinical Relevance

Author(s): Prashant Kumar Gupta, Kishor Sonewane, Mariappan Rajan, Nagendra Singh Chauhan and Awanish Kumar*

Volume 9, Issue 4, 2023

Published on: 17 October, 2022

Article ID: e100622205866 Pages: 14

DOI: 10.2174/2215083808666220610165459

Price: $65

conference banner
Abstract

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide. There is no effective medication for COVID- 19 as of now, so it would be good to take preventive measures that not only boost our immunity but also fight against infections. The use of traditional Chinese medicine in China to treat COVID-19 patients sets the prototype demonstrating that traditional medicines can contribute to prevention and treatment successfully. In India, the Ministry of AYUSH (Ayurveda, Yoga, Unani, Siddha, Homeopathy) released a self-care advisory during the COVID-19 crisis as a preventive aspect. This review article discusses the therapeutic potential and clinical relevance of some herbs [(Tulsi (Ocimum sanctum), Haridra (Curcuma longa), Tvaka (Cinnamon), Maricha (Piper longum), Shunthi (Zingiber officinale), Munakka (Dried grapes), Lavang (Syzigiumaromaticum), Pudina (Mentha arvensis), and Ajwain (Trachyspermum ammi)] advised by AUYSH to take during COVID-19 infection. They are effective in COVID-19 management, therefore, authors have discussed their detailed traditional uses as therapeutics and spotted scientific insight and clinical significance of the herbs mentioned above along with their mechanistic viewpoint, adequately, on a single platform. Provided information could be a treasure to open up a new research arena on natural products to manage human health crises effectively, caused not only by COVID-19 but also by other infectious diseases.

Keywords: Ayurvedic herbs, Traditional use, COVID-19, Prevention, Therapeutic potential, Clinical relevance.

[1]
Rajan M, Gupta P, Kumar A. Promising antiviral molecules from ayurvedic herbs and spices against COVID-19. Chin J Integr Med 2021; 27(4): 243-4.
[http://dx.doi.org/10.1007/s11655-021-3331-8] [PMID: 33544289]
[2]
Available from: https://ayush.gov.in
[3]
Mediratta PK, Sharma KK, Singh S. Evaluation of immunomodulatory potential of Ocimum sanctum seed oil and its possible mechanism of action. J Ethnopharmacol 2002; 80(1): 15-20.
[http://dx.doi.org/10.1016/S0378-8741(01)00373-7] [PMID: 11891082]
[4]
Goel A, Singh DK, Kumar S, Bhatia AK. Immunomodulating property of Ocimum sanctum by regulating the IL-2 production and its mRNA expression using rat’s splenocytes. Asian Pac J Trop Med 2010; 3(1): 8-12.
[http://dx.doi.org/10.1016/S1995-7645(10)60021-1]
[5]
Flores GA, Rodriguez VL, Licea QR, Guerra TP, Padilla RC. In vitro lymphocyte proliferation induced by Ocimum basilicum, Persea americana, Plantago virginica and Rosa spp. extracts J Med Plants Res 2008; 2(1): 005-10.
[6]
Saini A, Sharma S, Chhibber S. Induction of resistance to respiratory tract infection with Klebsiella pneumoniae in mice fed on a diet supplemented with tulsi (Ocimum sanctum) and clove (Syzgium aromaticum) oils. J Microbiol Immunol Infect 2009; 42(2): 107-13.
[PMID: 19597641]
[7]
Mondal S, Varma S, Bamola VD, et al. Double-blinded randomized controlled trial for immunomodulatory effects of Tulsi (Ocimum sanctum Linn.) leaf extract on healthy volunteers. J Ethnopharmacol 2011; 136(3): 452-6.
[http://dx.doi.org/10.1016/j.jep.2011.05.012] [PMID: 21619917]
[8]
Tabassum I, Siddiqui ZN, Rizvi SJ. Effects of Ocimum sanctum and Camellia sinensis on stress-induced anxiety and depression in male albino Rattus norvegicus. Indian J Pharmacol 2010; 42(5): 283-8.
[http://dx.doi.org/10.4103/0253-7613.70108] [PMID: 21206619]
[9]
Bhattacharyya D, Sur TK, Jana U, Debnath PK. Controlled programmed trial of Ocimum sanctum leaf on generalized anxiety disorders. Nepal Med Coll J 2008; 10(3): 176-9.
[PMID: 19253862]
[10]
Ahmad W, Hasan A, Ansari A, Tarannanum T. Curcuma longa, Linn – a review. Hippocratic J Unani Med 2010; 5: 179-90.
[11]
Catanzaro M, Corsini E, Rosini M, Racchi M, Lanni C. Immunomodulators inspired by nature: A review on curcumin and Echinacea. Molecules 2018; 23(11): 2778.
[http://dx.doi.org/10.3390/molecules23112778] [PMID: 30373170]
[12]
Kim DH, Lee HG, Choi JM. Curcumin elevates T follicular helper cells and germinal center B cell response for antibody production in mice. Immune Netw 2019; 19(5): e35.
[http://dx.doi.org/10.4110/in.2019.19.e35] [PMID: 31720046]
[13]
Park SJ, Lee D, Lee M, et al. The effects of curcuma longa l., purple sweet potato, and the mixtures of the two on immunomodulation in c57bl/6j mice infected with lp-bm5 murine leukemia retrovirus. J Med Food 2018; 21(7): 689-700.
[http://dx.doi.org/10.1089/jmf.2017.4093] [PMID: 29862890]
[14]
Afolayan FID, Erinwusi B, Oyeyemi OT. Immunomodulatory activity of curcumin-entrapped poly d,l-lactic-co-glycolic acid nanoparticles in mice. Integr Med Res 2018; 7(2): 168-75.
[http://dx.doi.org/10.1016/j.imr.2018.02.004] [PMID: 29989030]
[15]
Churchill M, Chadburn A, Bilinski RT, Bertagnolli MM. Inhibition of intestinal tumors by curcumin is associated with changes in the intestinal immune cell profile. J Surg Res 2000; 89(2): 169-75.
[http://dx.doi.org/10.1006/jsre.2000.5826] [PMID: 10729246]
[16]
Moghadamtousi SZ, Kadir HA, Hassandarvish P, Tajik H, Abubakar S, Zandi K. A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Res Int 2014; 2014: 186864.
[http://dx.doi.org/10.1155/2014/186864] [PMID: 24877064]
[17]
Kittima V, Nontawith A, Ngampong K, et al. Immunological and bactericidal effects of turmeric (Curcuma longa Linn.) extract in pacific white shrimps (Litopenaeus vannamei boone). Witthayasan Kasetsat Witthayasat 2010; 44: 850-8.
[18]
Ungphaiboon S, Supavita T, Singchangchai P, Sungkarak S, Rattanasuwan P, Itharat A. Study on antioxidant and antimicrobial activities of turmeric clear liquid soap for wound treatment of HIV patients. Songklanakarin J Sci Technol 2005; 27(2): 269-578.
[19]
Ranasinghe P, Pigera S, Premakumara GA, Galappaththy P, Constantine GR, Katulanda P. Medicinal properties of ‘true’ cinnamon (Cinnamomum zeylanicum): A systematic review. BMC Complement Altern Med 2013; 13: 275.
[http://dx.doi.org/10.1186/1472-6882-13-275] [PMID: 24148965]
[20]
Koh WS, Yoon SY, Kwon BM, Jeong TC, Nam KS, Han MY. Cinnamaldehyde inhibits lymphocyte proliferation and modulates T-cell differentiation. Int J Immunopharmacol 1998; 20(11): 643-60.
[http://dx.doi.org/10.1016/S0192-0561(98)00064-2] [PMID: 9848396]
[21]
Gonçalves JLS, Lopes RC, Oliveira DB, et al. In vitro anti-rotavirus activity of some medicinal plants used in Brazil against diarrhea. J Ethnopharmacol 2005; 99(3): 403-7.
[http://dx.doi.org/10.1016/j.jep.2005.01.032] [PMID: 15876501]
[22]
Rao HJ. Lakshmi: Anti-diarrhoeal activity of the aqueous extract of the bark of Cinnamomum zeylanicum Linn in mice. J Clin Diagn Res 2012; 6: 215-9.
[23]
Zhuang M, Jiang H, Suzuki Y, et al. Procyanidins and butanol extract of Cinnamomi cortex inhibit SARS-CoV infection. Antiviral Res 2009; 82(1): 73-81.
[http://dx.doi.org/10.1016/j.antiviral.2009.02.001] [PMID: 19428598]
[24]
Chouhan G, Islamuddin M, Want MY, et al. Leishmanicidal activity of Piper nigrum bioactive fractions is interceded via apoptosis in vitro and substantiated by Th1 immunostimulatory potential. In Vivo. Front Microbiol 2015; 6: 1368.
[http://dx.doi.org/10.3389/fmicb.2015.01368]
[25]
Pathak N, Khandelwal S. Cytoprotective and immunomodulating properties of piperine on murine splenocytes: An in vitro study. Eur J Pharmacol 2007; 576(1-3): 160-70.
[http://dx.doi.org/10.1016/j.ejphar.2007.07.033] [PMID: 17706638]
[26]
Hegeto LA, Caleffi-Ferracioli KR, Perez de Souza J, et al. Promising antituberculosis activity of piperine combined with antimicrobials: A systematic review. Microb Drug Resist 2019; 25(1): 120-6.
[http://dx.doi.org/10.1089/mdr.2018.0107] [PMID: 30096263]
[27]
Karsha PV, Lakshmi OB. Antibacterial activity of black pepper (Piper nigrum L.) with special reference to its mode of action bacteria. Indian J Nat Prod Resour 2010; 1(2): 213-5.
[28]
Dügenci SK, Arda N, Candan A. Some medicinal plants as immunostimulant for fish. J Ethnopharmacol 2003; 88(1): 99-106.
[http://dx.doi.org/10.1016/S0378-8741(03)00182-X] [PMID: 12902058]
[29]
Puri A, Sahai R, Singh KL, Saxena RP, Tandon JS, Saxena KC. Immunostimulant activity of dry fruits and plant materials used in Indian traditional medical system for mothers after child birth and invalids. J Ethnopharmacol 2000; 71(1-2): 89-92.
[http://dx.doi.org/10.1016/S0378-8741(99)00181-6] [PMID: 10904150]
[30]
Carrasco FR, Schmidt G, Romero AL, et al. Immunomodulatory activity of Zingiber officinale Roscoe, Salvia officinalis L. and Syzygium aromaticum L. essential oils: Evidence for humor- and cell-mediated responses. J Pharm Pharmacol 2009; 61(7): 961-7.
[http://dx.doi.org/10.1211/jpp/61.07.0017] [PMID: 19589240]
[31]
Chakraborty B, Nath A, Saikia H, Sengupta M. Bactericidal activity of selected medicinal plants against multidrug resistant bacterial strains from clinical isolates. Asian Pac J Trop Med 2014; 45(14): 35-41.
[http://dx.doi.org/10.1016/S1995-7645(14)60271-6]
[32]
Chakotiya AS, Tanwar A, Narula A, Sharma RK. Zingiber officinale: Its antibacterial activity on Pseudomonas aeruginosa and mode of action evaluated by flow cytometry. Microb Pathog 2017; 107: 254-60.
[http://dx.doi.org/10.1016/j.micpath.2017.03.029] [PMID: 28389345]
[33]
Maekawa LE, Rossoni RD, Barbosa JO, Jorge AO, Junqueira JC, Valera MC. Different extracts of Zingiber officinale decrease Enterococcus faecalis infection in Galleria mellonella. Braz Dent J 2015; 26(2): 105-9.
[http://dx.doi.org/10.1590/0103-6440201300199] [PMID: 25831098]
[34]
Alsamarai AM, Hamid MA, Alobaidi AHA. Therapeutic and immunologic effects of Zingiber officiale in allergic rhinitis. In: Pereira C, Ed. Allergic Dieases. London: IntechOpen 2015.
[http://dx.doi.org/10.5772/59377]
[35]
Awodele O, Olayemi SO, Adeyemo TA, Sanya TA, Dolapo DC. Use of complementary medicine amongst patients on antiretroviral drugs in an HIV treatment Centre in Lagos, Nigeria. Curr Drug Saf 2012; 7(2): 120-5.
[http://dx.doi.org/10.2174/157488612802715627] [PMID: 22873496]
[36]
Williamson G, Carughi A. Polyphenol content and health benefits of raisins. Nutr Res 2010; 30(8): 511-9.
[http://dx.doi.org/10.1016/j.nutres.2010.07.005] [PMID: 20851304]
[37]
Rivero-Cruz JF, Zhu M, Kinghorn AD, Wu CD. Antimicrobial constituents of Thompson seedless raisins (Vitis vinifera) against selected oral pathogens. Phytochem Lett 2008; 1(3): 151-4.
[http://dx.doi.org/10.1016/j.phytol.2008.07.007]
[38]
Joshi SS, Su X, D’Souza DH. Antiviral effects of grape seed extract against feline calicivirus, murine norovirus, and hepatitis A virus in model food systems and under gastric conditions. Food Microbiol 2015; 52: 1-10.
[http://dx.doi.org/10.1016/j.fm.2015.05.011] [PMID: 26338111]
[39]
Tomé-Carneiro J, Larrosa M, Yáñez-Gascón MJ, et al. One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol Res 2013; 72: 69-82.
[http://dx.doi.org/10.1016/j.phrs.2013.03.011] [PMID: 23557933]
[40]
Sharma R, Martins N, Kuca K, et al. Chyawanprash: A traditional Indian bioactive health supplement. Biomolecules 2019; 9(5): 161.
[http://dx.doi.org/10.3390/biom9050161] [PMID: 31035513]
[41]
Madaan A, Kanjilal S, Gupta A, et al. Evaluation of immunostimulatory activity of Chyawanprash using in vitro assays. Indian J Exp Biol 2015; 53(3): 158-63.
[PMID: 25872246]
[42]
Gupta A, Kumar S, Dole S, et al. Evaluation of Cyavanaprasha on health and immunity related parameters in healthy children: A two arm, randomized, open labeled, prospective, multicenter, clinical study. Anc Sci Life 2017; 36(3): 141-50.
[http://dx.doi.org/10.4103/asl.ASL_8_17] [PMID: 28867858]
[43]
Sastry JLN, Gupta A, Brindavanam NB, et al. Quantification of immunity status of Dabur chyawanprash-a review part-1 (experimental studies). Int J Appl Res 2014; 4: 20-4.
[44]
Cortés-Rojas DF, de Souza CR, Oliveira WP. Clove (Syzygium aromaticum): A precious spice. Asian Pac J Trop Biomed 2014; 4(2): 90-6.
[http://dx.doi.org/10.1016/S2221-1691(14)60215-X] [PMID: 25182278]
[45]
Dibazar SP, Fateh S, Daneshmandi S. Immunomodulatory effects of clove (Syzygium aromaticum) constituents on macrophages: In vitro evaluations of aqueous and ethanolic components. J Immunotoxicol 2015; 12(2): 124-31.
[http://dx.doi.org/10.3109/1547691X.2014.912698] [PMID: 24873744]
[46]
Kurokawa M, Hozumi T, Basnet P, et al. Purification and characterization of eugeniin as an anti-herpesvirus compound from Geum japonicum and Syzygium aromaticum. J Pharmacol Exp Ther 1998; 284(2): 728-35.
[PMID: 9454821]
[47]
Dai JP, Zhao XF, Zeng J, et al. Drug screening for autophagy inhibitors based on the dissociation of Beclin1-Bcl2 complex using BiFC technique and mechanism of eugenol on anti-influenza A virus activity. PLoS One 2013; 8(4): e61026.
[http://dx.doi.org/10.1371/journal.pone.0061026] [PMID: 23613775]
[48]
Thawkar BS, Jawarkar AG, Kalamkar PV, Pawar K, Kale MK. Phytochemical and pharmacological review of Mentha aevensis. Int J Green Pharm 2016; 10: 71-6.
[49]
Tian W, Akanda MR, Islam A, et al. The anti-stress effect of Mentha arvensis in immobilized rats. Int J Mol Sci 2018; 19(2): 355.
[http://dx.doi.org/10.3390/ijms19020355] [PMID: 29370076]
[50]
do Nascimento EMM, Rodrigues FFG, Campos AR, da Costa JGM. Phytochemical prospection, toxicity and antimicrobial activity of Mentha arvensis (labiatae) from northeast of Brazil. J Young Pharm 2009; 1(3): 210-2.
[51]
Bairwa R, Sodha RS, Rajawat BS. Trachyspermum ammi. Pharmacogn Rev 2012; 6(11): 56-60.
[http://dx.doi.org/10.4103/0973-7847.95871] [PMID: 22654405]
[52]
Shruthi RR, Venkatesh Y, Gudipati M. In vitro immunomodulatory potential of macromolecular components derived from the aqueous extract of ajowan. Indian J Tradit Knowl 2017; 16: 506-13.
[53]
Mehdi H, Bayat Z, Saeidi S. Antimicrobial activity of Trachyspermum ammi essential oil against human bacterial. Int J Adv Biol Biomed Res 2014; 2(1): 18-24.
[54]
Liu X, Zhang M, He L, Li Y. Chinese herbs combined with Western medicine for Severe Acute Respiratory Syndrome (SARS). Cochrane Database Syst Rev 2012; 10: CD004882.
[http://dx.doi.org/10.1002/14651858.CD004882.pub3] [PMID: 23076910]
[55]
Ren JL, Zhang AH, Wang XJ. Traditional Chinese medicine for COVID-19 treatment. Pharmacol Res 2020; 155: 104743.
[http://dx.doi.org/10.1016/j.phrs.2020.104743] [PMID: 32145402]
[56]
No F. Ministry of AYUSH dated 21 April 2020AS. Government of India 2020.
[57]
Romeilah RM, Fayed SA, Mahmoud GI. Chemical compositions, antiviral and antioxidant activities of seven essential oils. J Appl Sci Res 2010; 6(1): 50-62.
[58]
Ingok AM, Guler FK. Cardamom, cumin, and Dill weed essential oils: Chemical compositions, antimicrobial activitities, and mechanisms of action against Campylobacter spp. Molecules 2017; 22(7): 1191.
[http://dx.doi.org/10.3390/molecules22071191]
[59]
Kakarla P, Floyd J, Mukherjee M, et al. Inhibition of the multidrug efflux pump LmrS from Staphylococcus aureus by cumin spice Cuminum cyminum. Arch Microbiol 2017; 199(3): 465-74.
[http://dx.doi.org/10.1007/s00203-016-1314-5] [PMID: 27830269]
[60]
Masoud ZS, Mohammad A, Leila E. Biological activities of a new antimicrobial peptide from Coriandrum sativum. Int J Biol Sci 2014; 4(6): 89-99.
[61]
Duarte A, Ferreira S, Silva F, Domingues FC. Synergistic activity of coriander oil and conventional antibiotics against Acinetobacter baumannii. Phytomedicine 2012; 19(3-4): 236-8.
[http://dx.doi.org/10.1016/j.phymed.2011.11.010] [PMID: 22240078]
[62]
Yucharoen R, Anuchapreeda S, Tragoolpua Y. Anti-herpes simplex virus activity of extracts from the culinary herbs Ocimum sanctum L. Ocimum basilicum L. and Ocimum americanum L. Afr J Biotechnol 2011; 10(5): 860-6.
[63]
Ghoke SS, Sood R, Kumar N, et al. Evaluation of antiviral activity of Ocimum sanctum and Acacia arabica leaves extracts against H9N2 virus using embryonated chicken egg model. BMC Complement Altern Med 2018; 18(1): 174.
[http://dx.doi.org/10.1186/s12906-018-2238-1] [PMID: 29866088]
[64]
Ichsyani M, Ridhanya A, Risanti M, et al. Antiviral effects of Curcuma longa L. against dengue virus in vitro and in vivo. IOP Conf Ser Earth Environ Sci 2017; 101: 012005.
[http://dx.doi.org/10.1088/1755-1315/101/1/012005]
[65]
Hayashi K, Imanishi N, Kashiwayama Y, et al. Inhibitory effect of cinnamaldehyde, derived from Cinnamomi cortex, on the growth of influenza A/PR/8 virus in vitro and in vivo. Antiviral Res 2007; 74(1): 1-8. [Google Scholar.]
[http://dx.doi.org/10.1016/j.antiviral.2007.01.003] [PMID: 17303260]
[66]
Premanathan M, Rajendran S, Ramanathan T, Kathiresan K, Nakashima H, Yamamoto N. A survey of some Indian medicinal plants for anti-Human Immunodeficiency Virus (HIV) activity. Indian J Med Res 2000; 112: 73-7.
[PMID: 11094851]
[67]
Lu M, Han Z, Xu Y, Yao L. In vitro and in vivo anti-tobacco mosaic virus activities of essential oils and individual compounds. J Microbiol Biotechnol 2013; 23(6): 771-8.
[http://dx.doi.org/10.4014/jmb.1210.10078] [PMID: 23676919]
[68]
Chen WC, Tseng C-K, Chen B-H, Lin C-K, Lee J-C. Grape seed extract attenuates hepatitis C virus replication and virus-induced inflammation. Front Pharmacol 2016; 7: 490.
[http://dx.doi.org/10.3389/fphar.2016.00490] [PMID: 28066241]
[69]
Aboubakr HA, Nauertz A, Luong NT, et al. In vitro antiviral activity of clove and ginger aqueous extracts against feline calicivirus, a surrogate for human Norovirus. J Food Prot 2016; 79(6): 1001-12.
[http://dx.doi.org/10.4315/0362-028X.JFP-15-593] [PMID: 27296605]
[70]
Roy S, Chaurvedi P, Chowdhary A. Evaluation of antiviral activity of essential oil of Trachyspermum ammi against Japanese encephalitis virus. Pharmacognosy Res 2015; 7(3): 263-7.
[http://dx.doi.org/10.4103/0974-8490.157977] [PMID: 26130938]
[71]
James JS. Curcumin: Clinical trial finds no antiviral effect. AIDS Treat News 1996; (242): 1-2.
[PMID: 11363190]
[72]
Ishikawa H, Saeki T, Otani T, et al. Aged garlic extract prevents a decline of NK cell number and activity in patients with advanced cancer. J Nutr 2006; 136(3) (Suppl.): 816S-20S.
[http://dx.doi.org/10.1093/jn/136.3.816S] [PMID: 16484572]
[73]
Josling P. Preventing the common cold with a garlic supplement: A double-blind, placebo-controlled survey. Adv Ther 2001; 18(4): 189-93.
[http://dx.doi.org/10.1007/BF02850113] [PMID: 11697022]
[74]
Nantz MP, Rowe CA, Muller CE, Creasy RA, Stanilka JM, Percival SS. Supplementation with aged garlic extract improves both NK and γδ-T cell function and reduces the severity of cold and flu symptoms: A randomized, double-blind, placebo-controlled nutrition intervention. Clin Nutr 2012; 31(3): 337-44.
[http://dx.doi.org/10.1016/j.clnu.2011.11.019] [PMID: 22280901]
[75]
Paidi RK, Jana M, Raha S, et al. Eugenol, a component of holy basil (Tulsi) and common spice clove, inhibits the interaction between SARS-CoV-2 spike S1 and ACE2 to induce therapeutic responses. J Neuroimmune Pharmacol 2021; 16(4): 743-55.
[http://dx.doi.org/10.1007/s11481-021-10028-1] [PMID: 34677731]
[76]
Bormann M, Alt M, Schipper L, et al. Turmeric root and its bioactive ingredient curcumin effectively neutralize SARS-CoV-2 in vitro. Viruses 2021; 13(10): 1914.
[http://dx.doi.org/10.3390/v13101914] [PMID: 34696344]
[77]
Shekunov EV, Efimova SS, Yudintceva NM, et al. Plant alkaloids inhibit membrane fusion mediated by calcium and fragments of MERS-CoV and SARS-CoV/SARS-CoV-2 fusion peptides. Biomedicines 2021; 9(10): 1434.
[http://dx.doi.org/10.3390/biomedicines9101434] [PMID: 34680551]
[78]
Nag A, Paul S, Banerjee R, Kundu R. In silico study of some selective phytochemicals against a hypothetical SARS-CoV-2 spike RBD using molecular docking tools. Comput Biol Med 2021; 137: 104818.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104818] [PMID: 34481181]
[79]
Maurya VK, Kumar S, Prasad AK, Bhatt MLB, Saxena SK. Structure-based drug designing for potential antiviral activity of selected natural products from Ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor. Virusdisease 2020; 31(2): 179-93.
[http://dx.doi.org/10.1007/s13337-020-00598-8] [PMID: 32656311]
[80]
Ahkam AH, Hermanto FE, Alamsyah A, Aliyyah IH, Fatchiyah F. Virtual prediction of antiviral potential of ginger (Zingiber officinale) bioactive compounds against spike and MPro of SARS‐CoV2 protein. BerkalaPenelitianHayati 2020; 25(2): 52-7.
[http://dx.doi.org/10.23869/bphjbr.25.2.20207]
[81]
Shree P, Mishra P, Selvaraj C, et al. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants - Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) - a molecular docking study. J Biomol Struct Dyn 2022; 40(1): 190-203.
[http://dx.doi.org/10.1080/07391102.2020.1810778] [PMID: 32851919]
[82]
Pandey P, Khan F, Kumar A, Srivastava A, Jha NK. Screening of potent inhibitors against 2019 novel coronavirus (COVID-19) from Allium sativum and Allium cepa: An in silico approach. Biointerface Res Appl Chem 2021; 11(1): 7981-93.
[http://dx.doi.org/10.33263/BRIAC111.79817993]
[83]
Muthumanickam S, Kamaladevi A, Boomi P, Gowrishankar S, Pandian SK. Indian ethnomedicinal phytochemicals as promising inhibitors of RNA-binding domain of SARS-CoV-2 nucleocapsid phosphoprotein: An in silico study. Front Mol Biosci 2021; 8: 637329.
[http://dx.doi.org/10.3389/fmolb.2021.637329] [PMID: 34277698]
[84]
Chayan AM. Syzygium aromaticum as a possible source of SARS-CoV-2 main protease inhibitors: Evidence from a computational investigation. J Adv Biotechnol Exp Ther 2022; 5(1): 218-28.
[http://dx.doi.org/10.5455/jabet.2022.d109]
[85]
Suresh Kumar G, Manivannan R, Nivetha B. In silico identification of flavonoids from Corriandrum sativum seeds against coronavirus covid-19 main protease. J Drug Deliv Ther 2021; 11(2): 145-52.
[http://dx.doi.org/10.22270/jddt.v11i2.4610]
[86]
Devpura G, Tomar BS, Nathiya D, et al. Randomized placebo-controlled pilot clinical trial on the efficacy of ayurvedic treatment regime on COVID-19 positive patients. Phytomedicine 2021; 84: 153494.
[http://dx.doi.org/10.1016/j.phymed.2021.153494] [PMID: 33596494]
[87]
Kataria S, Sharma P, Ram JP, et al. A pilot clinical study of an add-on Ayurvedic formulation containing Tinospora cordifolia and Piper longum in mild to moderate COVID-19. J Ayurveda Integr Med 2022; 13(2): 100454.
[http://dx.doi.org/10.1016/j.jaim.2021.05.008] [PMID: 34127896]
[88]
Wanjarkhedkar P, Sarade G, Purandare B, Kelkar D. A prospective clinical study of an Ayurveda regimen in COVID 19 patients. J Ayurveda Integr Med 2022; 13(1): 100365.
[http://dx.doi.org/10.1016/j.jaim.2020.10.008] [PMID: 33100779]
[89]
Gupta A, Vedula S, Srivastava R, et al. Prospective, randomized, open-label, blinded end point, Two-Arm, comparative clinical study to evaluate the efficacy and safety of a Fixed Ayurvedic Regimen (FAR) as add-on to conventional treatment in the management of mild and moderate COVID-19 patients. J Pharm Bioallied Sci 2021; 13(2): 256-67.
[http://dx.doi.org/10.4103/jpbs.jpbs_242_21] [PMID: 34349488]
[90]
Rais A, Negi DS, Yadav A, et al. A Randomized open label parallel group pilot study to evaluate efficacy of Ayurveda interventions in the management of Asymptomatic and Mild COVID-19 patients-experiences of a Lucknow based Level 2 hospital of Uttar Pradesh, India. J Ayurveda Integr Med 2022; 13(2): 100393.
[http://dx.doi.org/10.1016/j.jaim.2020.12.013]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy