Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Overview of Advancement in Biosensing Technology, Including its Applications in Healthcare

Author(s): Sakshi Mishra and Rohitas Deshmukh*

Volume 24, Issue 3, 2023

Published on: 29 August, 2022

Page: [411 - 426] Pages: 16

DOI: 10.2174/1389201023666220610163343

Price: $65

Abstract

Clinical analysis necessitates using rapid and dependable diagnostic methodologies and approaches. Biomarkers may be an appropriate choice to fulfill this objective, as they are designed uncomplicated in use, specialized for the desired metabolite, susceptible to ongoing analysis and providing excellent outcomes, relatively affordable in the budget, and easily accessible. Biosensing devices are increasingly extensively utilized for treatment, and therefore a variety of applications such as prudence treatment and illness advancement surveillance, environment sensing, product standard, medicine development, toxicology, and scientific engineering. Biosensors can be developed using a wide variety of ways. Its combination with high-affinity macromolecules enables them to monitor a diverse variety of solutes in a specific as well as responsive manner. Enhanced sensing innovation leads to the detection of infection as well as the monitoring of people's reactions after treatment. Sensing tools are essential for a range of low and better implantable implants. Nanosensors offer a lot of prospects because they are simple, flexible, yet economical to develop. This article presents a detailed overview of breakthroughs in the subject and demonstrations of the variety of biosensors and the extension of nanoscience and nanotechnology methodologies that are applicable today.

Keywords: Alzheimer’s disease, biosensors, optical biosensors, cardiovascular disease, electrochemical biosensors, immunological biosensors, COVID-19.

Graphical Abstract

[1]
Higgins, I.J.; Lowe, C.R.; Akhtar, M.; Lowe, C.R.; Higgins, I.J. Introduction to the principles and applications of biosensors. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1987, 316(1176), 3-11.
[http://dx.doi.org/10.1098/rstb.1987.0013] [PMID: 2889231]
[2]
Mehrotra, P. Biosensors and their applications - A review. J. Oral Biol. Craniofac. Res., 2016, 6(2), 153-159.
[http://dx.doi.org/10.1016/j.jobcr.2015.12.002] [PMID: 27195214]
[3]
Filip, J.; Tkac, J. Enzymatic electrodes: Characteristics, fabrication methods, and applications. Encyclopedia of Interfacial Chemistry; Wandelt, K., Ed.; Elsevier: Oxford, , 2018; pp. 190-199.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.13471-7]
[4]
Patel, S.; Nanda, R.; Sahoo, S.; Mohapatra, E. Biosensors in health care: The milestones achieved in their development towards lab-onchip-analysis. Biochem. Res. Int., 2016, 2016, 3130469.
[http://dx.doi.org/10.1155/2016/3130469] [PMID: 27042353]
[5]
Yoo, E.H.; Lee, S.Y. Glucose biosensors: An overview of use in clinical practice. Sensors , 2010, 10(5), 4558-4576.
[http://dx.doi.org/10.3390/s100504558] [PMID: 22399892]
[6]
Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R.; Rab, S. Biosensors applications in medical field: A brief review. Sens. Int., 2021, 2, 100100.
[http://dx.doi.org/10.1016/j.sintl.2021.100100]
[7]
Giepmans, B.N.; Adams, S.R.; Ellisman, M.H.; Tsien, R.Y. The fluorescent toolbox for assessing protein location and function. Science, 2006, 312(5771), 217-224.
[http://dx.doi.org/10.1126/science.1124618] [PMID: 16614209]
[8]
Karlsson, R.; Fält, A. Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. J. Immunol. Methods, 1997, 200(1-2), 121-133.
[http://dx.doi.org/10.1016/S0022-1759(96)00195-0] [PMID: 9005951]
[9]
Kłos-Witkowska, A. Enzyme-based fluorescent biosensors and their environmental, clinical and industrial applications. J. Environ. Stuc., 2015, 24(1), 19-25.
[10]
Cui, Y.; Wei, Q.; Park, H.; Lieber, C.M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical spe-cies. Science, 2001, 293(5533), 1289-1292.
[http://dx.doi.org/10.1126/science.1062711] [PMID: 11509722]
[11]
Boeneman, K.; Delehanty, J.B.; Susumu, K.; Stewart, M.H.; Deschamps, J.R.; Medintz, I.L. Quantum dots and fluorescent protein FRET-based biosensors. Adv. Exp. Med. Biol., 2012, 733, 63-74.
[http://dx.doi.org/10.1007/978-94-007-2555-3_7] [PMID: 22101713]
[12]
Pourasl, A.H.; Ahmadi, M.T.; Rahmani, M.; Chin, H.C.; Lim, C.S.; Ismail, R.; Tan, M.L. Analytical modeling of glucose biosensors based on carbon nanotubes. Nanoscale Res. Lett., 2014, 9(1), 33.
[http://dx.doi.org/10.1186/1556-276X-9-33] [PMID: 24428818]
[13]
Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to biosensors. Essays Biochem., 2016, 60(1), 1-8.
[http://dx.doi.org/10.1042/EBC20150001] [PMID: 27365030]
[14]
Minopoli, A.; Della Ventura, B.; Lenyk, B.; Gentile, F.; Tanner, J.A.; Offenhäusser, A.; Mayer, D.; Velotta, R. Ultrasensitive antibody-aptamer plasmonic biosensor for malaria biomarker detection in whole blood. Nat. Commun., 2020, 11(1), 6134.
[http://dx.doi.org/10.1038/s41467-020-19755-0] [PMID: 33262332]
[15]
Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron., 2001, 16(1-2), 121-131.
[PMID: 11261847]
[16]
Morales, M.A.; Halpern, J.M. Guide to selecting a biorecognition element for biosensors. Bioconjug. Chem., 2018, 29(10), 3231-3239.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00592] [PMID: 30216055]
[17]
Gouvea, C. Biosensors for health applications. In: Biosensors for Health. Environment and Biosecurity; , 2011.
[18]
Antuña-Jiménez, D.; González-García, M.B.; Hernández-Santos, D.; Fanjul-Bolado, P. Screen-printed electrodes modified with metal nanoparticles for small molecule sensing. Biosensors , 2020, 10(2), E9.
[http://dx.doi.org/10.3390/bios10020009] [PMID: 32024126]
[19]
Saylan, Y.; Erdem, Ö.; Ünal, S.; Denizli, A. An alternative medical diagnosis method: Biosensors for virus detection. Biosensors , 2019, 9(2), E65.
[http://dx.doi.org/10.3390/bios9020065] [PMID: 31117262]
[20]
Russo, L.; Leva Bueno, J.; Bergua, J.F.; Costantini, M.; Giannetto, M.; Puntes, V.; de la Escosura-Muñiz, A.; Merkoçi, A. Low-cost strate-gy for the development of a rapid electrochemical assay for bacteria detection based on AuAg nanoshells. ACS Omega, 2018, 3(12), 18849-18856.
[http://dx.doi.org/10.1021/acsomega.8b02458]
[21]
Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical biosensors - sensor principles and architectures. Sensors , 2008, 8(3), 1400-1458.
[http://dx.doi.org/10.3390/s80314000] [PMID: 27879772]
[22]
Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron., 2001, 34(5), 635-659.
[23]
Malekzad, H.; Zangabad, P.S.; Mirshekari, H.; Karimi, M.; Hamblin, M.R. Noble metal nanoparticles in biosensors: Recent studies and applications. Nanotechnol. Rev., 2017, 6(3), 301-329.
[http://dx.doi.org/10.1515/ntrev-2016-0014] [PMID: 29335674]
[24]
Zhu, J.; Gan, H.; Wu, J.; Ju, H. Molecular machine powered surface programmatic chain reaction for highly sensitive electrochemical de-tection of protein. Anal. Chem., 2018, 90(8), 5503-5508.
[http://dx.doi.org/10.1021/acs.analchem.8b01217] [PMID: 29616804]
[25]
Kuralay, F.; Dükar, N.; Bayramlı, Y. Poly-L-lysine coated surfaces for ultrasensitive nucleic acid detection. Electroanalysis, 2018, 30(7), 1556-1565.
[http://dx.doi.org/10.1002/elan.201800153] [PMID: 32313411]
[26]
Saylan, Y.; Akgönüllü, S.; Yavuz, H.; Ünal, S.; Denizli, A. Molecularly imprinted polymer based sensors for medical applications. Sensors , 2019, 19(6), E1279.
[http://dx.doi.org/10.3390/s19061279] [PMID: 30871280]
[27]
Lim, H.J.; Saha, T.; Tey, B.T.; Tan, W.S.; Ooi, C.W. Quartz crystal microbalance-based biosensors as rapid diagnostic devices for infectious diseases. Biosens. Bioelectron., 2020, 168, 112513.
[http://dx.doi.org/10.1016/j.bios.2020.112513] [PMID: 32889395]
[28]
Pohanka, M. Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials , 2018, 11(3), E448.
[http://dx.doi.org/10.3390/ma11030448] [PMID: 29562700]
[29]
Zu, H.; Wu, H.; Wang, Q.M. High-temperature piezoelectric crystals for acoustic wave sensor applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2016, 63(3), 486-505.
[http://dx.doi.org/10.1109/TUFFC.2016.2527599] [PMID: 26886982]
[30]
Hagood, N.W.; von Flotow, A. Damping of structural vibrations with piezoelectric materials and passive electrical networks. J. Sound Vibrat., 1991, 146(2), 243-268.
[http://dx.doi.org/10.1016/0022-460X(91)90762-9]
[31]
Hees, J.; Heidrich, N.; Pletschen, W.; Sah, R.E.; Wolfer, M.; Williams, O.A.; Lebedev, V.; Nebel, C.E.; Ambacher, O. Piezoelectric actuated micro-resonators based on the growth of diamond on aluminum nitride thin films. Nanotechnology, 2013, 24(2), 025601.
[http://dx.doi.org/10.1088/0957-4484/24/2/025601] [PMID: 23220817]
[32]
Meyers, F.N.; Loh, K.J.; Dodds, J.S.; Baltazar, A. Active sensing and damage detection using piezoelectric zinc oxide-based nanocomposites. Nanotechnology, 2013, 24(18), 185501.
[http://dx.doi.org/10.1088/0957-4484/24/18/185501] [PMID: 23579369]
[33]
Ferreira, P.; Hou, R.Z.; Wu, A.; Willinger, M.G.; Vilarinho, P.M.; Mosa, J.; Laberty-Robert, C.; Boissière, C.; Grosso, D.; Sanchez, C. Nanoporous piezo- and ferroelectric thin films. Langmuir, 2012, 28(5), 2944-2949.
[http://dx.doi.org/10.1021/la204168w] [PMID: 22206407]
[34]
Wang, H.; Wereszczak, A.A. Effects of electric field and biaxial flexure on the failure of poled lead zirconate titanate. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2008, 55(12), 2559-2570.
[http://dx.doi.org/10.1109/TUFFC.2008.972] [PMID: 19126481]
[35]
Fukada, E. History and recent progress in piezoelectric polymers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2000, 47(6), 1277-1290.
[http://dx.doi.org/10.1109/58.883516] [PMID: 18238673]
[36]
Wang, H.; Zhao, Y.; Bie, S.; Suo, T.; Jia, G.; Liu, B.; Ye, R.; Li, Z. Development of an Electrochemical biosensor for rapid and effective detection of pathogenic Escherichia coli in licorice extract. Appl. Sci. , 2019, 9(2), 295.
[http://dx.doi.org/10.3390/app9020295]
[37]
Özgür, E. a.; Yilmaz, E.; Sener, G.; Uzun, L.; Say, R.; Denizli, A. A new molecular imprinting based mas“ sensitive sensor for real time detection of 17β estradiol from aqueous solution 2013, 32, 1164-1169.
[38]
Bunroddith, K.; Viseshakul, N.; Chansiri, K.; Lieberzeit, P. QCMbased rapid detection of PCR amplification products of Ehrlichia canis. Anal. Chim. Acta, 2018, 1001, 106-111.
[http://dx.doi.org/10.1016/j.aca.2017.10.037] [PMID: 29291792]
[39]
Dey, D.; Goswami, T. Optical biosensors: A revolution towards quantum nanoscale electronics device fabrication. J. Biomed. Biotechnol., 2011, 2011, 348218.
[http://dx.doi.org/10.1155/2011/348218] [PMID: 22131802]
[40]
Zhang, J.; Zhao, J. Immuno-Biosensor. Nano-Inspired Biosensors for Protein Assay with Clinical Applications; Li, G., Ed.; Elsevier: Amsterdam, 2019, pp. 115-137.
[http://dx.doi.org/10.1016/B978-0-12-815053-5.00005-2]
[41]
Sciacca, B.; François, A.; Hoffmann, P.; Monro, T.M. Multiplexing of radiative-surface plasmon resonance for the detection of gastric cancer biomarkers in a single optical fiber. Sens. Actuators B Chem., 2013, 183, 454-458.
[http://dx.doi.org/10.1016/j.snb.2013.03.131]
[42]
Mancuso, V.; Stramba-Badiale, C.; Cavedoni, S.; Cipresso, P. Biosensors and biofeedback in clinical psychology. In: Reference Module in Neuroscience and Biobehavioral Psychology; Elsevier: Amsterdam, 2020.
[43]
Rogers, K.R. Principles of affinity-based biosensors. Mol. Biotechnol., 2000, 14(2), 109-129.
[http://dx.doi.org/10.1385/MB:14:2:109] [PMID: 10872504]
[44]
Ramanathan, K.; Danielsson, B. Principles and applications of thermal biosensors. Biosens. Bioelectron., 2001, 16(6), 417-423.
[http://dx.doi.org/10.1016/S0956-5663(01)00124-5] [PMID: 11672656]
[45]
Saini, A.; Kaur, N.; Singh, N. A highly fluorescent sensor based on hybrid nanoparticles for selective determination of furosemide in aqueous medium. Sens. Actuators B Chem., 2016, 228, 221-230.
[http://dx.doi.org/10.1016/j.snb.2016.01.026]
[46]
Lakshmipriya, T.; Gopinath, S.C.B. 1 - An Introduction to Biosensors and Biomolecules. Nanobiosensors for Biomolecular Targeting; Gopinath, S.C.B; Lakshmipriya, T., Ed.; Elsevier: Amsterdam, 2019, pp. 1-21.
[http://dx.doi.org/10.1016/B978-0-12-813900-4.00001-4]
[47]
Kaur, H.; Bhosale, A.; Shrivastav, S. Biosensors: Classification, Fundamental Characterization and New Trends: A Review. IJHS, 2018, 8, 315-333.
[48]
Justino, C.I.L.; Rocha-Santos, T.A.P.; Cardoso, S.; Duarte, A.C. Strategies for enhancing the analytical performance of nanomaterial-based sensors. Trends Analyt. Chem., 2013, 47, 27-36.
[http://dx.doi.org/10.1016/j.trac.2013.02.004] [PMID: 32287538]
[49]
Dükar, N.; Tunç, S.; Öztürk, K.; Demirci, S.; Dumangöz, M.; Çelebi, M.S.; Kuralay, F. Highly sensitive and selective dopamine sensing in biological fluids with one-pot prepared graphene/poly(ophenylenediamine) modified electrodes. Mater. Chem. Phys., 2019, 228, 357-362.
[http://dx.doi.org/10.1016/j.matchemphys.2019.02.043]
[50]
Saylan, Y.; Akgönüllü, S.; Çimen, D.; Derazshamshir, A.; Bereli, N.; Yılmaz, F.; Denizli, A. Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides. Sens. Actuators B Chem., 2017, 241, 446-454.
[http://dx.doi.org/10.1016/j.snb.2016.10.017]
[51]
Theint, H.T.; Walsh, J.E.; Wong, S.T.; Voon, K.; Shitan, M. Development of an optical biosensor for the detection of Trypanosoma evansi and Plasmodium berghei. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 218, 348-358.
[http://dx.doi.org/10.1016/j.saa.2019.04.008] [PMID: 31026712]
[52]
Abolhasan, R.; Mehdizadeh, A.; Rashidi, M.R.; Aghebati-Maleki, L.; Yousefi, M. Application of hairpin DNA-based biosensors with various signal amplification strategies in clinical diagnosis. Biosens. Bioelectron., 2019, 129, 164-174.
[http://dx.doi.org/10.1016/j.bios.2019.01.008] [PMID: 30708263]
[53]
Choi, D-H.; Thaxton, A.; Jeong, I.C.; Kim, K.; Sosnay, P.R.; Cutting, G.R.; Searson, P.C. Sweat test for cystic fibrosis: Wearable sweat sensor vs. standard laboratory test. J. Cyst. Fibros., 2018, 17(4), e35-e38.
[http://dx.doi.org/10.1016/j.jcf.2018.03.005] [PMID: 29580829]
[54]
Ahmed, M.U.; Saaem, I.; Wu, P.C.; Brown, A.S. Personalized diagnostics and biosensors: A review of the biology and technology needed for personalized medicine. Crit. Rev. Biotechnol., 2014, 34(2), 180-196.
[http://dx.doi.org/10.3109/07388551.2013.778228] [PMID: 23607309]
[55]
Tan, T.H.; Gochoo, M.; Chen, Y.F.; Hu, J.J.; Chiang, J.Y.; Chang, C.S.; Lee, M.H.; Hsu, Y.N.; Hsu, J.C. Ubiquitous emergency medical service system based on wireless biosensors, traffic information, and wireless communication technologies: development and evaluation. Sensors , 2017, 17(1), E202.
[http://dx.doi.org/10.3390/s17010202] [PMID: 28117724]
[56]
Jenik, M.; Schirhagl, R.; Schirk, C.; Hayden, O.; Lieberzeit, P.; Blaas, D.; Paul, G.; Dickert, F.L. Sensing picornaviruses using molecular imprinting techniques on a quartz crystal microbalance. Anal. Chem., 2009, 81(13), 5320-5326.
[http://dx.doi.org/10.1021/ac8019569] [PMID: 19469532]
[57]
Schirhagl, R.; Lieberzeit, P.A.; Blaas, D.; Dickert, F.L. Chemosensors for viruses based on artificial immunoglobulin copies. Adv. Mater., 2010, 22(18), 2078-2081.
[http://dx.doi.org/10.1002/adma.200903517] [PMID: 20544894]
[58]
Cheng, D.; Yu, M.; Fu, F.; Han, W.; Li, G.; Xie, J.; Song, Y.; Swihart, M.T.; Song, E. Dual recognition strategy for specific and sensitive detection of bacteria using aptamer-coated magnetic beads and antibiotic-capped gold nanoclusters. Anal. Chem., 2016, 88(1), 820-825.
[http://dx.doi.org/10.1021/acs.analchem.5b03320] [PMID: 26641108]
[59]
Zhang, Z.; Sohgawa, M.; Yamashita, K.; Noda, M. A micromechanical cantilever-based liposome biosensor for characterization of protein-membrane interaction. Electroanalysis, 2016, 28(3), 620-625.
[http://dx.doi.org/10.1002/elan.201500412]
[60]
Tardivo, M.; Toffoli, V.; Fracasso, G.; Borin, D.; Dal Zilio, S.; Colusso, A.; Carrato, S.; Scoles, G.; Meneghetti, M.; Colombatti, M.; Lazzarino, M. Parallel optical read-out of micromechanical pillars applied to prostate specific membrane antigen detection. Biosens. Bioelectron., 2015, 72, 393-399.
[http://dx.doi.org/10.1016/j.bios.2015.05.026] [PMID: 26025134]
[61]
Casadio, S.; Lowdon, J.W.; Betlem, K.; Ueta, J.T.; Foster, C.W.; Cleij, T.J.; van Grinsven, B.; Sutcliffe, O.B.; Banks, C.E.; Peeters, M. Development of a novel flexible polymer-based biosensor platform for the thermal detection of noradrenaline in aqueous solutions. Chem. Eng. J., 2017, 315, 459-468.
[http://dx.doi.org/10.1016/j.cej.2017.01.050]
[62]
Liu, X.; Zhang, C.; Liu, K.; Wang, H.; Lu, C.; Li, H.; Hua, K.; Zhu, J.; Hui, W.; Cui, Y.; Zhang, X. Multiple SNPs detection based on lateral flow assay for phenylketonuria diagnostic. Anal. Chem., 2018, 90(5), 3430-3436.
[http://dx.doi.org/10.1021/acs.analchem.7b05113] [PMID: 29451781]
[63]
Wang, Z.; Jinlong, L.; An, Z.; Kimura, M.; Ono, T. Enzyme immobilization in completely packaged freestanding SU-8 microfluidic channel by electro click chemistry for compact thermal biosensor. Process Biochem., 2019, 79, 57-64.
[http://dx.doi.org/10.1016/j.procbio.2018.12.007]
[64]
Khan, M.S.; Misra, S.K.; Dighe, K.; Wang, Z.; Schwartz-Duval, A.S.; Sar, D.; Pan, D. Electrically-receptive and thermallyresponsive paper-based sensor chip for rapid detection of bacterial cells. Biosens. Bioelectron., 2018, 110, 132-140.
[http://dx.doi.org/10.1016/j.bios.2018.03.044] [PMID: 29605712]
[65]
van Grinsven, B.; Eersels, K.; Akkermans, O.; Ellermann, S.; Kordek, A.; Peeters, M.; Deschaume, O.; Bartic, C.; Diliën, H. Steen Redeker, E.; Wagner, P.; Cleij, T.J. Label-free detection of Escherichia coli based on thermal transport through surface imprinted polymers. ACS Sens., 2016, 1(9), 1140-1147.
[http://dx.doi.org/10.1021/acssensors.6b00435]
[66]
Inci, F.; Tokel, O.; Wang, S.; Gurkan, U.A.; Tasoglu, S.; Kuritzkes, D.R.; Demirci, U. Nanoplasmonic quantitative detection of intact virus-es from unprocessed whole blood. ACS Nano, 2013, 7(6), 4733-4745.
[http://dx.doi.org/10.1021/nn3036232] [PMID: 23688050]
[67]
Vashistha, R.; Dangi, A. K.; Kumar, A.; Chhabra, D.; Shukla, P. Futuristic biosensors for cardiac health care: An artificial intelligence approach. 3 Biotech 2018, 8(8), 358.
[68]
Babamiri, B.; Salimi, A.; Hallaj, R. A molecularly imprinted electrochemiluminescence sensor for ultrasensitive HIV-1 gene detection using EuS nanocrystals as luminophore. Biosens. Bioelectron., 2018, 117, 332-339.
[http://dx.doi.org/10.1016/j.bios.2018.06.003] [PMID: 29933224]
[69]
Lu, C.H.; Zhang, Y.; Tang, S.F.; Fang, Z.B.; Yang, H.H.; Chen, X.; Chen, G.N. Sensing HIV related protein using epitope imprinted hydrophilic polymer coated quartz crystal microbalance. Biosens. Bioelectron., 2012, 31(1), 439-444.
[http://dx.doi.org/10.1016/j.bios.2011.11.008] [PMID: 22143073]
[70]
Shafiee, H.; Lidstone, E.A.; Jahangir, M.; Inci, F.; Hanhauser, E.; Henrich, T.J.; Kuritzkes, D.R.; Cunningham, B.T.; Demirci, U. Nanostructured optical photonic crystal biosensor for HIV viral load measurement. Sci. Rep., 2014, 4(1), 4116.
[http://dx.doi.org/10.1038/srep04116] [PMID: 24576941]
[71]
Caygill, R.L.; Blair, G.E.; Millner, P.A. A review on viral biosensors to detect human pathogens. Anal. Chim. Acta, 2010, 681(1-2), 8-15.
[http://dx.doi.org/10.1016/j.aca.2010.09.038] [PMID: 21035597]
[72]
Li, J.; Stachowski, M.; Zhang, Z. Application of responsive polymers in implantable medical devices and biosensors. Switchable and responsive surfaces and materials for biomedical applications., 2015, pp. 259-98.
[73]
Bahl, S.; Bagha, A.K.; Rab, S.; Javaid, M.; Haleem, A.; Singh, R.P. Advancements in biosensor technologies for medical field and COVID-19 pandemic. J. Ind. Integr. Manag., 2021, 06(02), 175-191.
[http://dx.doi.org/10.1142/S2424862221500081]
[74]
Tereshchenko, A.; Bechelany, M.; Viter, R.; Khranovskyy, V.; Smyntyna, V.; Starodub, N.; Yakimova, R. Optical biosensors based on ZnO nanostructures: Advantages and perspectives. A review. Sens. Actuators B Chem., 2016, 229, 664-677.
[http://dx.doi.org/10.1016/j.snb.2016.01.099]
[75]
Weihs, F.; Anderson, A.; Trowell, S.; Caron, K. Resonance energy transfer-based biosensors for point-of-need diagnosis-progress and perspectives. Sensors , 2021, 21(2), 660.
[http://dx.doi.org/10.3390/s21020660] [PMID: 33477883]
[76]
Tamiya, E.; Inoue, Y.; Saito, M. Luminol-based electrochemiluminescent biosensors for highly sensitive medical diagnosis and rapid antioxidant detection. Jpn. J. Appl. Phys, 2018, 57(3S2) 03EA05.
[http://dx.doi.org/10.7567/JJAP.57.03EA05]
[77]
Loyez, M.; Larrieu, J-C.; Chevineau, S.; Remmelink, M.; Leduc, D.; Bondue, B.; Lambert, P.; Devière, J.; Wattiez, R.; Caucheteur, C. In situ cancer diagnosis through online plasmonics. Biosens. Bioelectron., 2019, 131, 104-112.
[http://dx.doi.org/10.1016/j.bios.2019.01.062] [PMID: 30826644]
[78]
Herring, N.; Paterson, D.J. ECG diagnosis of acute ischaemia and infarction: Past, present and future. QJM, 2006, 99(4), 219-230.
[http://dx.doi.org/10.1093/qjmed/hcl025] [PMID: 16495300]
[79]
Kavakiotis, I.; Tsave, O.; Salifoglou, A.; Maglaveras, N.; Vlahavas, I.; Chouvarda, I. Machine learning and data mining methods in diabetes research. Comput. Struct. Biotechnol. J., 2017, 15, 104-116.
[http://dx.doi.org/10.1016/j.csbj.2016.12.005] [PMID: 28138367]
[80]
Zhang, F.; Keasling, J. Biosensors and their applications in microbial metabolic engineering. Trends Microbiol., 2011, 19(7), 323-329.
[http://dx.doi.org/10.1016/j.tim.2011.05.003] [PMID: 21664818]
[81]
Pevnick, J.M.; Birkeland, K.; Zimmer, R.; Elad, Y.; Kedan, I. Wearable technology for cardiology: An update and framework for the future. Trends Cardiovasc. Med., 2018, 28(2), 144-150.
[http://dx.doi.org/10.1016/j.tcm.2017.08.003] [PMID: 28818431]
[82]
Turner, A.P. Biosensors: Sense and sensibility. Chem. Soc. Rev., 2013, 42(8), 3184-3196.
[http://dx.doi.org/10.1039/c3cs35528d] [PMID: 23420144]
[83]
Johnson, B.N.; Mutharasan, R. Biosensor-based microRNA detection: Techniques, design, performance, and challenges. Analyst , 2014, 139(7), 1576-1588.
[http://dx.doi.org/10.1039/c3an01677c] [PMID: 24501736]
[84]
Huang, Y.; Xu, J.; Liu, J.; Wang, X.; Chen, B. Disease-related detection with electrochemical biosensors: A review. Sensors , 2017, 17(10), E2375.
[http://dx.doi.org/10.3390/s17102375] [PMID: 29039742]
[85]
Vigneshvar, S.; Sudhakumari, C.C.; Senthilkumaran, B.; Prakash, H. Recent advances in biosensor technology for potential applications - An overview. Front. Bioeng. Biotechnol., 2016, 4, 11-11.
[http://dx.doi.org/10.3389/fbioe.2016.00011] [PMID: 26909346]
[86]
Hamidi-Asl, E.; Palchetti, I.; Hasheminejad, E.; Mascini, M. A review on the electrochemical biosensors for determination of microRNAs. Talanta, 2013, 115, 74-83.
[http://dx.doi.org/10.1016/j.talanta.2013.03.061] [PMID: 24054564]
[87]
Hossain, G.S.; Saini, M.; Miyake, R.; Ling, H.; Chang, M.W. Genetic biosensor design for natural product biosynthesis in microorganisms. Trends Biotechnol., 2020, 38(7), 797-810.
[http://dx.doi.org/10.1016/j.tibtech.2020.03.013] [PMID: 32359951]
[88]
Brazaca, L.C.; Sampaio, I.; Zucolotto, V.; Janegitz, B.C. Applications of biosensors in Alzheimer’s disease diagnosis. Talanta, 2020, 210, 120644.
[http://dx.doi.org/10.1016/j.talanta.2019.120644] [PMID: 31987214]
[89]
Karki, H.P.; Jang, Y.; Jung, J.; Oh, J. Advances in the development paradigm of biosample-based biosensors for early ultrasensitive detec-tion of Alzheimer’s disease. J. Nanobiotechnol, 2021, 19(1), 72.
[http://dx.doi.org/10.1186/s12951-021-00814-7] [PMID: 33750392]
[90]
Azimzadeh, M.; Nasirizadeh, N.; Rahaie, M.; Naderi-Manesh, H. Early detection of Alzheimer’s disease using a biosensor based on electrochemically-reduced graphene oxide and gold nanowires for the quantification of serum microRNA-137. RSC Advances, 2017, 7(88), 55709-55719.
[http://dx.doi.org/10.1039/C7RA09767K]
[91]
Wang, S.; Poon, G.M.; Wilson, W.D. Quantitative investigation of protein-nucleic acid interactions by biosensor surface plasmon reso-nance. Methods Mol. Biol., 2015, 1334, 313-332.
[http://dx.doi.org/10.1007/978-1-4939-2877-4_20] [PMID: 26404159]
[92]
Zhang, Y.; Ren, B.; Zhang, D.; Liu, Y.; Zhang, M.; Zhao, C.; Zheng, J. Design principles and fundamental understanding of biosensors for amyloid-β detection. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(29), 6179-6196.
[http://dx.doi.org/10.1039/D0TB00344A] [PMID: 32355946]
[93]
Li, S.S.; Lin, C.W.; Wei, K.C.; Huang, C.Y.; Hsu, P.H.; Liu, H.L.; Lu, Y.J.; Lin, S.C.; Yang, H.W.; Ma, C.C.M. Non-invasive screening for early Alzheimer’s disease diagnosis by a sensitively immunomagnetic biosensor. Sci. Rep., 2016, 6(1), 25155.
[http://dx.doi.org/10.1038/srep25155] [PMID: 27112198]
[94]
Antiochia, R. Developments in biosensors for CoV detection and future trends. Biosens. Bioelectron., 2020, 173, 112777.
[http://dx.doi.org/10.1016/j.bios.2020.112777] [PMID: 33189015]
[95]
Seo, G.; Lee, G.; Kim, M.J.; Baek, S.H.; Choi, M.; Ku, K.B.; Lee, C.S.; Jun, S.; Park, D.; Kim, H.G.; Kim, S.J.; Lee, J.O.; Kim, B.T.; Park, E.C.; Kim, S.I. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano, 2020, 14(4), 5135-5142.
[http://dx.doi.org/10.1021/acsnano.0c02823] [PMID: 32293168]
[96]
Qiu, G.; Gai, Z.; Tao, Y.; Schmitt, J.; Kullak-Ublick, G.A.; Wang, J. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano, 2020, 14(5), 5268-5277.
[http://dx.doi.org/10.1021/acsnano.0c02439] [PMID: 32281785]
[97]
Kim, H.Y.; Lee, J.H.; Kim, M.J.; Park, S.C.; Choi, M.; Lee, W.; Ku, K.B.; Kim, B.T.; Changkyun Park, E.; Kim, H.G.; Kim, S.I. Development of a SARS-CoV-2-specific biosensor for antigen detection using scFv-Fc fusion proteins. Biosens. Bioelectron., 2021, 175, 112868.
[http://dx.doi.org/10.1016/j.bios.2020.112868] [PMID: 33281048]
[98]
Pundir, C.S.; Chauhan, N. Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review. Anal. Biochem., 2012, 429(1), 19-31.
[http://dx.doi.org/10.1016/j.ab.2012.06.025] [PMID: 22759777]
[99]
Wang, B.; Takahashi, S.; Du, X.; Anzai, J. Electrochemical biosensors based on ferroceneboronic Acid and its derivatives: A review. Biosensors , 2014, 4(3), 243-256.
[http://dx.doi.org/10.3390/bios4030243] [PMID: 25587421]
[100]
Marrazza, G. Piezoelectric biosensors for organophosphate and carbamate pesticides: A review. Biosensors , 2014, 4(3), 301-317.
[http://dx.doi.org/10.3390/bios4030301] [PMID: 25587424]
[101]
Erden, P.E.; Kılıç, E. A review of enzymatic uric acid biosensors based on amperometric detection. Talanta, 2013, 107, 312-323.
[http://dx.doi.org/10.1016/j.talanta.2013.01.043] [PMID: 23598228]
[102]
Kim, J.; Imani, S.; de Araujo, W.R.; Warchall, J.; Valdés-Ramírez, G.; Paixão, T.R.L.C.; Mercier, P.P.; Wang, J. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron., 2015, 74, 1061-1068.
[http://dx.doi.org/10.1016/j.bios.2015.07.039] [PMID: 26276541]
[103]
Harris, J.M.; Reyes, C.; Lopez, G.P. Common causes of glucose oxidase instability in in vivo biosensing: A brief review. J. Diabetes Sci. Technol., 2013, 7(4), 1030-1038.
[http://dx.doi.org/10.1177/193229681300700428] [PMID: 23911187]
[104]
Ogi, H. Wireless-electrodeless quartz-crystal-microbalance biosensors for studying interactions among biomolecules: A review. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2013, 89(9), 401-417.
[http://dx.doi.org/10.2183/pjab.89.401] [PMID: 24213205]
[105]
Khimji, I.; Kelly, E.Y.; Helwa, Y.; Hoang, M.; Liu, J. Visual optical biosensors based on DNA-functionalized polyacrylamide hydrogels. Methods, 2013, 64(3), 292-298.
[http://dx.doi.org/10.1016/j.ymeth.2013.08.021] [PMID: 23978515]
[106]
Peng, F.; Su, Y.; Zhong, Y.; Fan, C.; Lee, S.T.; He, Y. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc. Chem. Res., 2014, 47(2), 612-623.
[http://dx.doi.org/10.1021/ar400221g] [PMID: 24397270]
[107]
Shen, M.Y.; Li, B.R.; Li, Y.K. Silicon nanowire field-effecttransistor based biosensors: From sensitive to ultra-sensitive. Biosens. Bioelectron., 2014, 60, 101-111.
[http://dx.doi.org/10.1016/j.bios.2014.03.057] [PMID: 24787124]
[108]
Schneider, E.; Clark, D.S. Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosens. Bioelectron., 2013, 39(1), 1-13.
[http://dx.doi.org/10.1016/j.bios.2012.05.043] [PMID: 22809523]
[109]
Kunzelmann, S.; Solscheid, C.; Webb, M.R. Fluorescent biosensors: Design and application to motor proteins. Experientia Suppl., 2014, 105, 25-47.
[http://dx.doi.org/10.1007/978-3-0348-0856-9_2] [PMID: 25095989]
[110]
Oldach, L.; Zhang, J. Genetically encoded fluorescent biosensors for live-cell visualization of protein phosphorylation. Chem. Biol., 2014, 21(2), 186-197.
[http://dx.doi.org/10.1016/j.chembiol.2013.12.012] [PMID: 24485761]
[111]
Randriamampita, C.; Lellouch, A.C. Imaging early signaling events in T lymphocytes with fluorescent biosensors. Biotechnol. J., 2014, 9(2), 203-212.
[http://dx.doi.org/10.1002/biot.201300195] [PMID: 24166755]
[112]
Li, M.; Li, R.; Li, C.M.; Wu, N. Electrochemical and optical biosensors based on nanomaterials and nanostructures: A review. Front. Biosci., 2011, 3(4), 1308-1331.
[http://dx.doi.org/10.2741/228] [PMID: 21622273]
[113]
Zhou, Y.; Chiu, C-W.; Liang, H. Interfacial structures and properties of organic materials for biosensors: An overview. Sensors , 2012, 12(11), 15036-15062.
[http://dx.doi.org/10.3390/s121115036] [PMID: 23202199]
[114]
Guo, X. Single-molecule electrical biosensors based on singlewalled carbon nanotubes. Adv. Mater., 2013, 25(25), 3397-3408.
[http://dx.doi.org/10.1002/adma.201301219] [PMID: 23696446]
[115]
Hutter, E.; Maysinger, D. Gold-nanoparticle-based biosensors for detection of enzyme activity. Trends Pharmacol. Sci., 2013, 34(9), 497-507.
[http://dx.doi.org/10.1016/j.tips.2013.07.002] [PMID: 23911158]
[116]
Lamprecht, C.; Hinterdorfer, P.; Ebner, A. Applications of biosensing atomic force microscopy in monitoring drug and nanoparticle delivery. Expert Opin. Drug Deliv., 2014, 11(8), 1237-1253.
[http://dx.doi.org/10.1517/17425247.2014.917078] [PMID: 24809228]
[117]
Sang, S.; Wang, Y.; Feng, Q.; Wei, Y.; Ji, J.; Zhang, W. Progress of new label-free techniques for biosensors: A review. Crit. Rev. Biotechnol., 2016, 36(3), 465-481.
[PMID: 25608959]
[118]
Kwon, S.J.; Bard, A.J. DNA analysis by application of Pt nanoparticle electrochemical amplification with single label response. J. Am. Chem. Soc., 2012, 134(26), 10777-10779.
[http://dx.doi.org/10.1021/ja304074f] [PMID: 22702801]
[119]
Valentini, F.; Galache Fernàndez, L.; Tamburri, E.; Palleschi, G. Single Walled Carbon Nanotubes/polypyrrole-GOx composite films to modify gold microelectrodes for glucose biosensors: Study of the extended linearity. Biosens. Bioelectron., 2013, 43, 75-78.
[http://dx.doi.org/10.1016/j.bios.2012.11.019] [PMID: 23277343]
[120]
Olenik, S.; Lee, H.S.; Güder, F. The future of near-field communication-based wireless sensing. Nat. Rev. Mater., 2021, 6(4), 286-288.
[http://dx.doi.org/10.1038/s41578-021-00299-8] [PMID: 33680503]
[121]
Kucherenko, I.S.; Soldatkin, O.O.; Kucherenko, D.Y.; Soldatkina, O.V.; Dzyadevych, S.V. Advances in nanomaterial application in enzyme-based electrochemical biosensors: A review. Nanoscale Adv., 2019, 1(12), 4560-4577.
[http://dx.doi.org/10.1039/C9NA00491B]
[122]
Hasan, A.; Nurunnabi, M.; Morshed, M.; Paul, A.; Polini, A.; Kuila, T.; Al Hariri, M.; Lee, Y.K.; Jaffa, A.A. Recent advances in application of biosensors in tissue engineering. BioMed Res. Int., 2014, 2014, 307519.
[http://dx.doi.org/10.1155/2014/307519] [PMID: 25165697]
[123]
Ahmad, M.; Pan, C.; Gan, L.; Nawaz, Z.; Zhu, J. Highly sensitive amperometric cholesterol biosensor based on Pt-incorporated fullerene-like ZnO nanospheres. J. Phys. Chem. C, 2010, 114(1), 243-250.
[http://dx.doi.org/10.1021/jp9089497]
[124]
Brooks, S.M.; Alper, H.S. Applications, challenges, and needs for employing synthetic biology beyond the lab. Nat. Commun., 2021, 12(1), 1390.
[http://dx.doi.org/10.1038/s41467-021-21740-0] [PMID: 33654085]
[125]
Karentz, D.; Lutze, L.H. Evaluation ofbiologically harmful ultraviolet radiation in Antarctica with a biological dosimeter designed for aquatic environments. Limnol. Oceanogr., 1990, 35(3), 549-561.
[http://dx.doi.org/10.4319/lo.1990.35.3.0549]
[126]
Ali, M.A.; Solanki, P.R.; Srivastava, S.; Singh, S.; Agrawal, V.V.; John, R.; Malhotra, B.D. Protein functionalized carbon nanotubesbased smart lab-on-a-chip. ACS Appl. Mater. Interfaces, 2015, 7(10), 5837-5846.
[http://dx.doi.org/10.1021/am509002h] [PMID: 25719923]
[127]
Tzianni, E.I.; Hrbac, J.; Christodoulou, D.K.; Prodromidis, M.I. A portable medical diagnostic device utilizing free-standing responsive polymer film-based biosensors and low-cost transducer for point-of-care applications. Sens. Actuators B Chem., 2020, 304, 127356.
[http://dx.doi.org/10.1016/j.snb.2019.127356]
[128]
Asal, M.; Özen, Ö.; Şahinler, M.; Polatoğlu, İ. Recent Developments in Enzyme, DNA and Immuno-Based Biosensors. Sensors , 2018, 18(6), E1924.
[http://dx.doi.org/10.3390/s18061924] [PMID: 29899282]
[129]
Mahato, K.; Purohit, B.; Kumar, A.; Chandra, P. Clinically comparable impedimetric immunosensor for serum alkaline phosphatase detection based on electrochemically engineered Au-nano-Dendroids and graphene oxide nanocomposite. Biosens. Bioelectron., 2020, 148, 111815.
[http://dx.doi.org/10.1016/j.bios.2019.111815] [PMID: 31689595]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy