Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Asymmetric Synthesis: A Glance at Various Methodologies for Different Frameworks

Author(s): Charanjit Kaur*, Sachin Sharma, Amandeep Thakur and Ram Sharma

Volume 26, Issue 8, 2022

Published on: 06 July, 2022

Page: [771 - 806] Pages: 36

DOI: 10.2174/1385272826666220610162605

Price: $65

conference banner
Abstract

Asymmetric reactions have made a significant advancement over the past few decades and involved the production of enantiomerically pure molecules using enantioselective organocatalysis, chiral auxiliaries/substrates, and reagents via controlling the absolute stereochemistry. The laboratory synthesis using an enantiomerically impure starting material gives a combination of enantiomers that are difficult to separate for chemists in medicine, chromatography, pharmacology, asymmetric synthesis, and studies on structure-function relationships of proteins, life sciences and mechanistic studies. This challenging step of separation can be avoided by using asymmetric synthesis. Using pharmacologically relevant scaffolds/ pharmacophores, the drug design can also be achieved using asymmetric synthesis to synthesize receptor-specific pharmacologically active chiral molecules. This approach can be used to synthesize asymmetric molecules from a wide variety of reactants using specific asymmetric conditions, which is also beneficial for the environment due to less usage and discharge of chemicals into the environment. Therefore, in this review, we have focused on the inclusive collation of diverse mechanisms in this area to encourage auxiliary studies of asymmetric reactions to develop selective, efficient, environment-friendly, and highyielding advanced processes in asymmetric reactions.

Keywords: Asymmetric, enantiomers, chiral, auxiliaries, stereochemistry, organocatalysis.

Graphical Abstract

[1]
Fischer, E. Ber. deutsch. chem. Gesellsch, 1906, 39(453), 2893.
[http://dx.doi.org/10.1002/cber.190603903103]
[2]
Knowles, W.S. Asymmetric hydrogenations (Nobel lecture). Angew. Chem. Int. Ed., 2002, 41(12), 1999-2007.
[PMID: 19746594]
[3]
Gal, J. The discovery of biological enantioselectivity: Louis Pasteur and the fermentation of tartaric acid, 1857--a review and analysis 150 yr later. Chirality, 2008, 20(1), 5-19.
[http://dx.doi.org/10.1002/chir.20494] [PMID: 17999436]
[4]
Gnas, Y.; Glorius, F. Chiral auxiliaries-principles and recent applications. Synthesis, 2006, 2006(12), 1899-1930.
[http://dx.doi.org/10.1055/s-2006-942399]
[5]
Basu Baul, T.S.; Kehie, P.; Duthie, A.; Guchhait, N.; Raviprakash, N.; Mokhamatam, R.B.; Manna, S.K.; Armata, N.; Scopelliti, M.; Wang, R.; Englert, U. Synthesis, pho-tophysical properties and structures of organotin-Schiff bases utilizing aromatic amino acid from the chiral pool and evaluation of the biological perspective of a tri-phenyltin compound. J. Inorg. Biochem., 2017, 168, 76-89.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.12.001] [PMID: 28024187]
[6]
Noyori, R. Asymmetric catalysis: Science and opportunities (Nobel lecture). Angew. Chem. Int. Ed., 2002, 41(12), 2008-2022.
[http://dx.doi.org/10.1002/1521-3773(20020617)41:12<2008:AID-ANIE2008>3.0.CO;2-4] [PMID: 19746595]
[7]
Lis-Balcnin, M.; Ochocka, R.J.; Deans, S.; Asztemborska, M.; Hart, S. Differences in bioactivity between the enantiomers of α-pinene. J. Essent. Oil Res., 1999, 11(3), 393-397.
[http://dx.doi.org/10.1080/10412905.1999.9701162]
[8]
Easson, L.H.; Stedman, E. Studies on the relationship between chemical constitution and physiological action: Molecular dissymmetry and physiological activity. Biochem. J., 1933, 27(4), 1257-1266.
[http://dx.doi.org/10.1042/bj0271257] [PMID: 16745220]
[9]
Li, J.; Amatuni, A.; Renata, H. Recent advances in the chemoenzymatic synthesis of bioactive natural products. Curr. Opin. Chem. Biol., 2020, 55, 111-118.
[http://dx.doi.org/10.1016/j.cbpa.2020.01.005] [PMID: 32086167]
[10]
Ran, C.K.; Chen, X.W.; Gui, Y.Y.; Liu, J.; Song, L.; Ren, K.; Yu, D.G. Recent advances in asymmetric synthesis with CO2. Sci. China Chem., 2020, 63(10), 1-16.
[http://dx.doi.org/10.1007/s11426-020-9788-2]
[11]
Zimmerman, A.N. P-Stereogenic Secondary Phosphine Oxides (Spos) derived from (+)-limonene oxide: Diastereoselective synthesis, structure, and design of platinum catalyst precursors for asymmetric nitrile hydra., PhD Thesis, Dartmouth College,. 2020.
[12]
Kim, H.; Jang, J.; Shin, S. Gold-Catalyzed asymmetric thioallylation of propiolates via charge-induced thio-claisen rearrangement. J. Am. Chem. Soc., 2020, 142(49), 20788-20795.
[http://dx.doi.org/10.1021/jacs.0c09783] [PMID: 33206513]
[13]
Zuo, Z.; Xu, S.; Zhang, L.; Gan, L.; Fang, H.; Liu, G.; Huang, Z. Cobalt-catalyzed asymmetric hydrogenation of vinylsilanes with a phosphine–pyridine–oxazoline ligand: synthesis of optically active organosilanes and silacycles. Organometallics, 2019, 38(20), 3906-3911.
[http://dx.doi.org/10.1021/acs.organomet.9b00067]
[14]
Kadish, D. An asymmetric route to Xantholipin B, prediction of radical reactions with machine learning, and metal-catalyzed carbene insertion into aliphatic N− H bonds, PhD Thesis, University of California: Irvine,. 2021.
[15]
Raee, E.; Li, H.; Sun, X.; Ustriyana, P.; Luo, J.; Chen, J.; Sahai, N.; Liu, T. Strong enantiomeric preference on the macroion-counterion interaction induced by weakly associated chiral counterions. J. Phys. Chem. B, 2020, 124(44), 9958-9966.
[http://dx.doi.org/10.1021/acs.jpcb.0c07424] [PMID: 33085899]
[16]
Shaaban, S.; Davies, C.; Waldmann, H. Applications of chiral cyclopentadienyl (Cpx) metal complexes in asymmetric catalysis. Eur. J. Org. Chem., 2020, 2020(42), 6512-6524.
[http://dx.doi.org/10.1002/ejoc.202000752]
[17]
Zuo, Z.; Kim, R.S.; Watson, D.A. Synthesis of axially chiral 2, 2-bisphosphobiarenes via a nickel-catalyzed asymmetric ullmann coupling: general access to privileged chiral ligands without optical resolution. J. Am. Chem. Soc., 2021, 143(3), 1328-1333.
[http://dx.doi.org/10.1021/jacs.0c12843] [PMID: 33439640]
[18]
Yasukawa, T.; Masuda, R.; Kobayashi, S. Development of heterogeneous catalyst systems for the continuous synthesis of chiral amines via asymmetric hydrogenation. Nat. Catal., 2019, 2(12), 1088-1092.
[http://dx.doi.org/10.1038/s41929-019-0371-y]
[19]
Qiu, X.; Zhang, Y.; Zhu, Y.; Long, C.; Su, L.; Liu, S.; Tang, Z. Applications of nanomaterials in asymmetric photocatalysis: Recent progress, challenges, and opportuni-ties. Adv. Mater., 2021, 33(6), e2001731.
[http://dx.doi.org/10.1002/adma.202001731] [PMID: 32672886]
[20]
Chanu, L.V.; Singh, O.M. Recent progress in the synthesis of azoles and related fivemembered ring heterocycles using silicasupported heterogeneous catalysts. J. Heterocycl. Chem., 2021, 58(12), 2207-2225.
[http://dx.doi.org/10.1002/jhet.4348]
[21]
Shukla, M.; Barick, K.; Salunke, H.; Chandra, S. Chiral salen-Ni (II) based spherical porous silica as platform for asymmetric transfer hydrogenation reaction and synthe-sis of potent drug intermediate montekulast. Mol. Catal., 2021, 502, 111367.
[http://dx.doi.org/10.1016/j.mcat.2020.111367]
[22]
Torregrosa-Chinillach, A.; Sánchez-Laó, A.; Santagostino, E.; Chinchilla, R. Organocatalytic asymmetric conjugate addition of aldehydes to maleimides and nitroalkenes in deep eutectic solvents. Molecules, 2019, 24(22), 4058.
[http://dx.doi.org/10.3390/molecules24224058] [PMID: 31717507]
[23]
Egorov, I.N.; Santra, S.; Kopchuk, D.S.; Kovalev, I.S.; Zyryanov, G.V.; Majee, A.; Ranu, B.C.; Rusinov, V.L.; Chupakhin, O.N. Ball milling: An efficient and green ap-proach for asymmetric organic syntheses. Green Chem., 2020, 22(2), 302-315.
[http://dx.doi.org/10.1039/C9GC03414E]
[24]
Sinner, B.; Graf, B. Ketamine. Modern anesthetics, 2008, 313-333.
[25]
Zhou, S.; Wang, F.; Hsieh, T.C.; Wu, J.M.; Wu, E. Thalidomide-a notorious sedative to a wonder anticancer drug. Curr. Med. Chem., 2013, 20(33), 4102-4108.
[http://dx.doi.org/10.2174/09298673113209990198] [PMID: 23931282]
[26]
Kishimoto, T.; Yoshikawa, Y.; Yoshikawa, K.; Komeda, S. Different effects of cisplatin and transplatin on the higher-order structure of DNA and gene expression. Int. J. Mol. Sci., 2019, 21(1), 34.
[http://dx.doi.org/10.3390/ijms21010034] [PMID: 31861648]
[27]
Baker, R.H.; Linn, L.E. The Passerini reaction; optically active anilides. J. Am. Chem. Soc., 1948, 70(11), 3721-3723.
[http://dx.doi.org/10.1021/ja01191a051] [PMID: 18102929]
[28]
Hatano, M.; Ishihara, K. Recent progress in the catalytic synthesis of tertiary alcohols from ketones with organometallic reagents. Synthesis, 2008, 2008(11), 1647-1675.
[http://dx.doi.org/10.1055/s-2008-1067046]
[29]
Shibasaki, M.; Kanai, M. Asymmetric synthesis of tertiary alcohols and α-tertiary amines via Cu-catalyzed C-C bond formation to ketones and ketimines. Chem. Rev., 2008, 108(8), 2853-2873.
[http://dx.doi.org/10.1021/cr078340r] [PMID: 18570481]
[30]
Suga, S.; Kitamura, M. Asymmetric 1,2-addition of organometallics to carbonyl and imine groups. In: Synthetic Methods III-Catalytic Methods: CC Bond Formation; Elsevier Ltd, 2012; pp. 328-342.
[31]
Rong, J.; Pellegrini, T.; Harutyunyan, S.R. Synthesis of chiral tertiary alcohols by Cu(I) -catalyzed enantioselective addition of organomagnesium reagents to ketones. Chemistry, 2016, 22(11), 3558-3570.
[http://dx.doi.org/10.1002/chem.201503412] [PMID: 26511715]
[32]
Luo, R.; Li, K.; Hu, Y.; Tang, W. Enantioselective rhodiumcatalyzed addition of arylboronic acids to trifluoromethyl ketones. Adv. Synth. Catal., 2013, 355(7), 1297-1302.
[http://dx.doi.org/10.1002/adsc.201201125]
[33]
Valdivia, V.; Fernández, I.; Khiar, N. “Sulfolefin”: A mixed sulfinamido-olefin ligand in enantioselective rhodium-catalyzed addition of arylboronic acids to trifluoro-methyl ketones. Org. Biomol. Chem., 2014, 12(8), 1211-1214.
[http://dx.doi.org/10.1039/C3OB41888J] [PMID: 24442180]
[34]
Borrego, L.G.; Recio, R.; Alcarranza, M.; Khiar, N.; Fernandez, I. An efficient and practical method for the enantioselective synthesis of tertiary Trifluoromethyl car-binols. Adv. Synth. Catal., 2018, 360(6), 1273-1279.
[http://dx.doi.org/10.1002/adsc.201701212]
[35]
Kolb, A.; Zuo, W.; Siewert, J.; Harms, K.; von Zezschwitz, P. Improved synthesis of cyclic tertiary allylic alcohols by asymmetric 1,2-addition of AlMe3 to enones. Chemistry, 2013, 19(48), 16366-16373.
[http://dx.doi.org/10.1002/chem.201303061] [PMID: 24166867]
[36]
Lumbroso, A.; Cooke, M.L.; Breit, B. Catalytic asymmetric synthesis of allylic alcohols and derivatives and their applications in organic synthesis. Angew. Chem. Int. Ed. Engl., 2013, 52(7), 1890-1932.
[http://dx.doi.org/10.1002/anie.201204579] [PMID: 23319206]
[37]
Huang, Y.; Huang, R.Z.; Zhao, Y. Cobalt-catalyzed enantioselective vinylation of activated ketones and imines. J. Am. Chem. Soc., 2016, 138(20), 6571-6576.
[http://dx.doi.org/10.1021/jacs.6b02372] [PMID: 27139596]
[38]
Shintani, R.; Okamoto, K.; Otomaru, Y.; Ueyama, K.; Hayashi, T. Catalytic asymmetric arylative cyclization of alkynals: Phosphine-free rhodium/diene complexes as efficient catalysts. J. Am. Chem. Soc., 2005, 127(1), 54-55.
[http://dx.doi.org/10.1021/ja044021v] [PMID: 15631445]
[39]
Miura, T.; Shimada, M.; Murakami, M. Rhodium-catalyzed addition-cyclization reactions of 5-Yn-1-ones with arylboronic acids. Synlett, 2005, 2005(04), 667-669.
[40]
Song, J.; Shen, Q.; Xu, F.; Lu, X. Cationic Pd(II)-catalyzed enantioselective cyclization of aroylmethyl 2-alkynoates initiated by carbopalladation of alkynes with aryl-boronic acids. Org. Lett., 2007, 9(15), 2947-2950.
[http://dx.doi.org/10.1021/ol0711772] [PMID: 17580892]
[41]
Li, Y.; Xu, M.H. Rhodium-catalyzed asymmetric tandem cyclization for efficient and rapid access to underexplored heterocyclic tertiary allylic alcohols containing a tetrasubstituted olefin. Org. Lett., 2014, 16(10), 2712-2715.
[http://dx.doi.org/10.1021/ol500993h] [PMID: 24772999]
[42]
Frantz, D.E.; Fässler, R.; Tomooka, C.S.; Carreira, E.M. The discovery of novel reactivity in the development of C-C bond-forming reactions: In situ generation of zinc acetylides with Zn(II)/R(3). N. Acc. Chem. Res., 2000, 33(6), 373-381.
[http://dx.doi.org/10.1021/ar990078o] [PMID: 10891055]
[43]
Cozzi, P.G.; Hilgraf, R.; Zimmermann, N. Acetylenes in catalysis: Enantioselective additions to carbonyl groups and imines and applications beyond. Eur. J. Org. Chem., 2004, 2004(20), 4095-4105.
[http://dx.doi.org/10.1002/ejoc.200400246]
[44]
Schwarzer, M.C.; Fujioka, A.; Ishii, T.; Ohmiya, H.; Mori, S.; Sawamura, M. Enantiocontrol by assembled attractive interactions in copper-catalyzed asymmetric direct alkynylation of α-ketoesters with terminal alkynes: OH···O/sp3-CH···O two-point hydrogen bonding combined with dispersive attractions. Chem. Sci. (Camb.), 2018, 9(14), 3484-3493.
[http://dx.doi.org/10.1039/C8SC00527C] [PMID: 29780478]
[45]
Wisniewska, H.M.; Jarvo, E.R. Enantioselective propargylation and allenylation reactions of ketones and imines. J. Org. Chem., 2013, 78(23), 11629-11636.
[http://dx.doi.org/10.1021/jo4019107] [PMID: 24266761]
[46]
Shi, S.L.; Xu, L.W.; Oisaki, K.; Kanai, M.; Shibasaki, M. Identification of modular chiral bisphosphines effective for Cu(i)-catalyzed asymmetric allylation and propar-gylation of ketones. J. Am. Chem. Soc., 2010, 132(19), 6638-6639.
[http://dx.doi.org/10.1021/ja101948s] [PMID: 20420398]
[47]
Gan, X.C.; Zhang, Q.; Jia, X.S.; Yin, L. Asymmetric construction of fluoroalkyl tertiary alcohols through a three-component reaction of (Bpin) 2, 1, 3-enynes, and fluoro-alkyl ketones catalyzed by a copper (I) complex. Org. Lett., 2018, 20(4), 1070-1073.
[http://dx.doi.org/10.1021/acs.orglett.7b04039] [PMID: 29419304]
[48]
Yus, M.; González-Gómez, J.C.; Foubelo, F. Catalytic enantioselective allylation of carbonyl compounds and imines. Chem. Rev., 2011, 111(12), 7774-7854.
[http://dx.doi.org/10.1021/cr1004474] [PMID: 21923136]
[49]
Tsai, E.Y.; Liu, R.Y.; Yang, Y.; Buchwald, S.L. A regio-and enantioselective CuH-catalyzed ketone allylation with terminal allenes. J. Am. Chem. Soc., 2018, 140(6), 2007-2011.
[http://dx.doi.org/10.1021/jacs.7b12271] [PMID: 29376366]
[50]
Clarke, M.L.; France, M.B. The carbonyl ene reaction. Tetrahedron, 2008, 38(64), 9003-9031.
[http://dx.doi.org/10.1016/j.tet.2008.06.075]
[51]
Liu, X.; Zheng, K.; Feng, X. Advancements in catalytic asymmetric intermolecular ene-type reactions. Synthesis, 2014, 46(17), 2241-2257.
[http://dx.doi.org/10.1055/s-0034-1378528]
[52]
Evans, D.A.; Burgey, C.S.; Paras, N.A.; Vojkovsky, T.; Tregay, S.W.C. 2-Symmetric Copper (II) complexes as chiral lewis acids. Enantioselective catalysis of the glyox-ylate Ene reaction. J. Am. Chem. Soc., 1998, 120(23), 5824-5825.
[http://dx.doi.org/10.1021/ja980549m]
[53]
Crespo-Peña, A.; Monge, D.; Martín-Zamora, E.; Alvarez, E.; Fernández, R.; Lassaletta, J.M. Asymmetric formal carbonyl-ene reactions of formaldehyde tert-butyl hydra-zone with α-keto esters: dual activation by bis-urea catalysts. J. Am. Chem. Soc., 2012, 134(31), 12912-12915.
[http://dx.doi.org/10.1021/ja305209w] [PMID: 22823936]
[54]
Monge, D.; Crespo-Peña, A.M.; Martín-Zamora, E.; Álvarez, E.; Fernández, R.; Lassaletta, J.M. Dual organocatalytic activation of isatins and formaldehyde tert-butyl hydrazone: Asymmetric synthesis of functionalized 3-hydroxy-2-oxindoles. Chemistry, 2013, 19(26), 8421-8425.
[http://dx.doi.org/10.1002/chem.201301351] [PMID: 23670976]
[55]
Basavaiah, D.; Venkateswara Rao, K.; Jannapu Reddy, R. The Baylis-Hillman reaction: A novel source of attraction, opportunities, and challenges in synthetic chemis-try. Chem. Soc. Rev., 2007, 36(10), 1581-1588.
[http://dx.doi.org/10.1039/b613741p] [PMID: 17721583]
[56]
Masson, G.; Housseman, C.; Zhu, J. The enantioselective Morita-Baylis-Hillman reaction and its aza counterpart. Angew. Chem. Int. Ed., 2007, 46(25), 4614-4628.
[http://dx.doi.org/10.1002/anie.200604366] [PMID: 17397122]
[57]
Morita, K.I.; Suzuki, Z.; Hirose, H. A tertiary phosphine-catalyzed reaction of acrylic compounds with aldehydes. Bull. Chem. Soc. Jpn., 1968, 41(11), 2815-2815.
[http://dx.doi.org/10.1246/bcsj.41.2815]
[58]
Liu, Y.L.; Wang, B.L.; Cao, J.J.; Chen, L.; Zhang, Y.X.; Wang, C.; Zhou, J. Organocatalytic asymmetric synthesis of substituted 3-hydroxy-2-oxindoles via Morita-Baylis-Hillman reaction. J. Am. Chem. Soc., 2010, 132(43), 15176-15178.
[http://dx.doi.org/10.1021/ja107858z] [PMID: 20939578]
[59]
Chauhan, P.; Chimni, S.S. Organocatalytic enantioselective morita–Baylis–Hillman reaction of maleimides with isatins. Asian J. Org. Chem., 2013, 2(7), 586-592.
[http://dx.doi.org/10.1002/ajoc.201300093]
[60]
He, Q.; Zhan, G.; Du, W.; Chen, Y.C. Application of 7-azaisatins in enantioselective Morita-Baylis-Hillman reaction. Beilstein J. Org. Chem., 2016, 12(1), 309-313.
[http://dx.doi.org/10.3762/bjoc.12.33] [PMID: 26977190]
[61]
Duan, Z.; Zhang, Z.; Qian, P.; Han, J.; Pan, Y. Asymmetric Morita–Baylis–Hillman reaction of isatins with α,β-unsaturated γ- butyrolactam as the nucleophile. RSC Advances, 2013, 3(26), 10127-10130.
[http://dx.doi.org/10.1039/c3ra41115j]
[62]
Poulsen, T.B.; Jørgensen, K.A. Catalytic asymmetric Friedel-Crafts alkylation reactions--copper showed the way. Chem. Rev., 2008, 108(8), 2903-2915.
[http://dx.doi.org/10.1021/cr078372e] [PMID: 18500844]
[63]
You, S.L.; Cai, Q.; Zeng, M. Chiral Brønsted acid catalyzed Friedel-Crafts alkylation reactions. Chem. Soc. Rev., 2009, 38(8), 2190-2201.
[http://dx.doi.org/10.1039/b817310a] [PMID: 19623343]
[64]
Vetica, F.; de Figueiredo, R.M.; Cupioli, E.; Gambacorta, A.; Loreto, M.A.; Miceli, M.; Gasperi, T. First asymmetric organocatalyzed domino Friedel–Crafts/lactonization reaction in the enantioselective synthesis of the GABA B receptor modulator (S)-BHFF. Tetrahedron Lett., 2016, 57(7), 750-753.
[http://dx.doi.org/10.1016/j.tetlet.2016.01.015]
[65]
Montesinos-Magraner, M.; Vila, C.; Blay, G.; Fernández, I.; Muñoz, M.C.; Pedro, J.R. Hydroxy-directed enantioselective hydroxyalkylation in the carbocyclic ring of indoles. Org. Lett., 2017, 19(7), 1546-1549.
[http://dx.doi.org/10.1021/acs.orglett.7b00354] [PMID: 28346791]
[66]
Xiang, B.; Xu, T.F.; Wu, L.; Liu, R.R.; Gao, J.R.; Jia, Y.X. Lewis acid catalyzed friedel-crafts alkylation of alkenes with Trifluoropyruvates. J. Org. Chem., 2016, 81(9), 3929-3935.
[http://dx.doi.org/10.1021/acs.joc.6b00358] [PMID: 27028539]
[67]
Izquierdo, J.; Hutson, G.E.; Cohen, D.T.; Scheidt, K.A. Anwendungen der Katalyse mit Nheterocyclischen Carbenen in Totalsynthesen. Angew. Chem., 2012, 124(47), 11854-11866.
[http://dx.doi.org/10.1002/ange.201203704]
[68]
Takikawa, H.; Hachisu, Y.; Bode, J.W.; Suzuki, K. Catalytic enantioselective crossed aldehyde-ketone benzoin cyclization. Angew. Chem. Int. Ed., 2006, 45(21), 3492-3494.
[http://dx.doi.org/10.1002/anie.200600268] [PMID: 16637094]
[69]
Enders, D.; Henseler, A. A direct intermolecular cross‐benzoin type reaction: N‐Heterocyclic Carbene‐Catalyzed coupling of aromatic aldehydes with trifluoromethyl ketones. Adv. Synth. Catal. 2009, 351(11-12), 1749-1752.
[http://dx.doi.org/10.1002/adsc.200900247]
[70]
Jia, M.Q.; You, S.L. N-Heterocyclic carbene-catalyzed enantioselective intramolecular N-tethered aldehyde–ketone benzoin reactions. ACS Catal., 2013, 3(4), 622-624.
[http://dx.doi.org/10.1021/cs4000014]
[71]
Zhang, G.; Yang, S.; Zhang, X.; Lin, Q.; Das, D.K.; Liu, J.; Fang, X. Dynamic kinetic resolution enabled by intramolecular benzoin reaction: Synthetic applications and mechanistic insights. J. Am. Chem. Soc., 2016, 138(25), 7932-7938.
[http://dx.doi.org/10.1021/jacs.6b02929] [PMID: 27270409]
[72]
Enders, D.; Grossmann, A.; Fronert, J.; Raabe, G. N-heterocyclic carbene catalysed asymmetric cross-benzoin reactions of heteroaromatic aldehydes with trifluoromethyl ketones. Chem. Commun. (Camb.), 2010, 46(34), 6282-6284.
[http://dx.doi.org/10.1039/c0cc02013c] [PMID: 20694237]
[73]
Rose, C.A.; Gundala, S.; Fagan, C.L.; Franz, J.F.; Connon, S.J.; Zeitler, K. NHC-catalysed, chemoselective crossed-acyloin reactions. Chem. Sci. (Camb.), 2012, 3(3), 735-740.
[http://dx.doi.org/10.1039/C2SC00622G]
[74]
Thai, K.; Langdon, S.M.; Bilodeau, F.; Gravel, M. Highly chemo- and enantioselective cross-benzoin reaction of aliphatic aldehydes and ketoesters. Org. Lett., 2013, 15(9), 2214-2217.
[http://dx.doi.org/10.1021/ol400769t] [PMID: 23607338]
[75]
Brunel, J.M.; Holmes, I.P. Chemically catalyzed asymmetric cyanohydrin syntheses. Angew. Chem. Int. Ed., 2004, 43(21), 2752-2778.
[http://dx.doi.org/10.1002/anie.200300604] [PMID: 15150747]
[76]
North, M.; Usanov, D.L.; Young, C. Lewis acid catalyzed asymmetric cyanohydrin synthesis. Chem. Rev., 2008, 108(12), 5146-5226.
[http://dx.doi.org/10.1021/cr800255k] [PMID: 19067648]
[77]
Yu, Q.W.; Wu, L.P.; Kang, T.C.; Xie, J.; Sha, F.; Wu, X.Y. Enantioselective cyanosilylation of α, α‐dialkoxy ketones by using PhosphineThiourea Dualreagent cataly-sis. Eur. J. Org. Chem., 2018, 2018(29), 3992-3996.
[http://dx.doi.org/10.1002/ejoc.201800459]
[78]
Hoffmann-Röder, A.; Krause, N. Synthesis and properties of allenic natural products and pharmaceuticals. Angew. Chem. Int. Ed., 2004, 43(10), 1196-1216.
[http://dx.doi.org/10.1002/anie.200300628] [PMID: 14991780]
[79]
Rivera-Fuentes, P.; Diederich, F. Allenes in molecular materials. Angew. Chem. Int. Ed. Engl., 2012, 51(12), 2818-2828.
[http://dx.doi.org/10.1002/anie.201108001] [PMID: 22308109]
[80]
Ma, S. Palladium-catalyzed two-or three-component cyclization of functionalized allenes. In: Palladium in Organic Synthesis; Springer, 2005; pp. 183-210.
[http://dx.doi.org/10.1007/b104131]
[81]
Brandsma, L.; Nedolya, N.A. Allenic compounds and isothiocyanates as key building units in the synthesis of heterocycles. Synthesis, 2004, 2004(05), 735-745.
[http://dx.doi.org/10.1055/s-2004-816005]
[82]
Yu, J.; Chen, W.J.; Gong, L.Z. Kinetic resolution of racemic 2,3-allenoates by organocatalytic asymmetric 1,3-dipolar cycloaddition. Org. Lett., 2010, 12(18), 4050-4053.
[http://dx.doi.org/10.1021/ol101544c] [PMID: 20715835]
[83]
Manzuna Sapu, C.; Bäckvall, J.E.; Deska, J. Enantioselective enzymatic desymmetrization of prochiral allenic diols. Angew. Chem. Int. Ed. Engl., 2011, 50(41), 9731-9734.
[http://dx.doi.org/10.1002/anie.201103227] [PMID: 21948616]
[84]
Zelder, C.; Krause, N. Enantioselective synthesis and circular dichroism of endocyclic allenes. Eur. J. Org. Chem., 2004, 2004(19), 3968-3971.
[http://dx.doi.org/10.1002/ejoc.200400408]
[85]
Sherry, B.D.; Toste, F.D. Gold(I)-catalyzed propargyl Claisen rearrangement. J. Am. Chem. Soc., 2004, 126(49), 15978-15979.
[http://dx.doi.org/10.1021/ja044602k] [PMID: 15584728]
[86]
Hashmi, A.S.K. Synthesis of Allenes by Isomerization Reactions; Modern Allene Chemistry, 2004, p. 1.
[87]
Matsumoto, Y.; Naito, M.; Uozumi, Y.; Hayashi, T. Axially chiral allenylboranes: catalytic asymmetric synthesis by palladium-catalysed hydroboration of but-1-en-3-ynes and their reaction with an aldehyde. J. Chem. Soc. Chem. Commun., 1993, (19), 1468-1469.
[http://dx.doi.org/10.1039/c39930001468]
[88]
Han, J.W.; Tokunaga, N.; Hayashi, T. Palladium-catalyzed asymmetric hydrosilylation of 4-substituted 1-buten-3-ynes. Catalytic asymmetric synthesis of axially chiral allenylsilanes. J. Am. Chem. Soc., 2001, 123(51), 12915-12916.
[http://dx.doi.org/10.1021/ja017138h] [PMID: 11749556]
[89]
Hayashi, T.; Tokunaga, N.; Inoue, K. Rhodium-catalyzed asymmetric 1,6-addition of aryltitanates to enynones giving axially chiral allenes. Org. Lett., 2004, 6(2), 305-307.
[http://dx.doi.org/10.1021/ol036309f] [PMID: 14723554]
[90]
Qian, H.; Yu, X.; Zhang, J.; Sun, J. Organocatalytic enantioselective synthesis of 2,3-allenoates by intermolecular addition of nitroalkanes to activated enynes. J. Am. Chem. Soc., 2013, 135(48), 18020-18023.
[http://dx.doi.org/10.1021/ja409080v] [PMID: 24224493]
[91]
Crouch, I.T.; Neff, R.K.; Frantz, D.E. Pd-catalyzed asymmetric β-hydride elimination en route to chiral allenes. J. Am. Chem. Soc., 2013, 135(13), 4970-4973.
[http://dx.doi.org/10.1021/ja401606e] [PMID: 23488914]
[92]
Imada, Y.; Nishida, M.; Kutsuwa, K.; Murahashi, S.; Naota, T. Palladium-catalyzed asymmetric amination and imidation of 2,3-allenyl phosphates. Org. Lett., 2005, 7(26), 5837-5839.
[http://dx.doi.org/10.1021/ol0523502] [PMID: 16354079]
[93]
Wang, G.; Liu, X.; Chen, Y.; Yang, J.; Li, J.; Lin, L.; Feng, X. Diastereoselective and enantioselective alleno-aldol reaction of allenoates with isatins to synthesis of carbinol allenoates catalyzed by gold. ACS Catal., 2016, 6(4), 2482-2486.
[http://dx.doi.org/10.1021/acscatal.6b00294]
[94]
Liu, H.; Leow, D.; Huang, K.W.; Tan, C.H. Enantioselective synthesis of chiral allenoates by guanidine-catalyzed isomerization of 3-alkynoates. J. Am. Chem. Soc., 2009, 131(21), 7212-7213.
[http://dx.doi.org/10.1021/ja901528b] [PMID: 19422238]
[95]
Tap, A.; Blond, A.; Wakchaure, V.N.; List, B. Chiral allenes via alkynylogous Mukaiyama aldol reaction. Angew. Chem. Int. Ed. Engl., 2016, 55(31), 8962-8965.
[http://dx.doi.org/10.1002/anie.201603649] [PMID: 27275598]
[96]
Li, Z.; Boyarskikh, V.; Hansen, J.H.; Autschbach, J.; Musaev, D.G.; Davies, H.M. Scope and mechanistic analysis of the enantioselective synthesis of allenes by rhodi-um-catalyzed tandem ylide formation/[2,3]-sigmatropic rearrangement between donor/acceptor carbenoids and propargylic alcohols. J. Am. Chem. Soc., 2012, 134(37), 15497-15504.
[http://dx.doi.org/10.1021/ja3061529] [PMID: 22924394]
[97]
Liu, Y.; Hu, H.; Zheng, H.; Xia, Y.; Liu, X.; Lin, L.; Feng, X. Nickel (II)catalyzed asymmetric propargyl and allyl claisen rearrangements to allenyland allylsubstituted ketoesters. Angew. Chem., 2014, 126(43), 11763-11766.
[http://dx.doi.org/10.1002/ange.201404643]
[98]
Mundal, D.A.; Lutz, K.E.; Thomson, R.J. A direct synthesis of allenes by a traceless Petasis reaction. J. Am. Chem. Soc., 2012, 134(13), 5782-5785.
[http://dx.doi.org/10.1021/ja301489n] [PMID: 22452672]
[99]
Diagne, A.B.; Li, S.; Perkowski, G.A.; Mrksich, M.; Thomson, R.J. Samdi mass spectrometry-enabled high-throughput optimization of a traceless Petasis reaction. ACS Comb. Sci., 2015, 17(11), 658-662.
[http://dx.doi.org/10.1021/acscombsci.5b00131] [PMID: 26521847]
[100]
Chu, W.D.; Zhang, L.; Zhang, Z.; Zhou, Q.; Mo, F.; Zhang, Y.; Wang, J. Enantioselective synthesis of trisubstituted allenes via Cu (I)-catalyzed coupling of diazoalkanes with terminal alkynes. J. Am. Chem. Soc., 2016, 138(44), 14558-14561.
[http://dx.doi.org/10.1021/jacs.6b09674] [PMID: 27788320]
[101]
Poh, J.S.; Makai, S.; von Keutz, T.; Tran, D.N.; Battilocchio, C.; Pasau, P.; Ley, S.V. Rapid asymmetric synthesis of disubstituted allenes by coupling of flow-generated diazo compounds and propargylated amines. Angew. Chem. Int. Ed. Engl., 2017, 56(7), 1864-1868.
[http://dx.doi.org/10.1002/anie.201611067] [PMID: 28075518]
[102]
Amara, Z.; Caron, J.; Joseph, D. Recent contributions from the asymmetric aza-Michael reaction to alkaloids total synthesis. Nat. Prod. Rep., 2013, 30(9), 1211-1225.
[http://dx.doi.org/10.1039/c3np20121j] [PMID: 23896828]
[103]
Zhai, X.D.; Yang, Z.D.; Luo, Z.; Xu, H.T. Asymmetric catalyzed intramolecular aza-Michael reaction mediated by quinine-derived primary amines. Chin. Chem. Lett., 2017, 28(8), 1793-1797.
[http://dx.doi.org/10.1016/j.cclet.2017.04.017]
[104]
Enkisch, C.; Schneider, C. Sequential mannichAzaMichael reactions for the stereodivergent synthesis of highly substituted pyrrolidines; Wiley Online Library, 2009.
[http://dx.doi.org/10.1002/ejoc.200900787]
[105]
Arenas, I.; Ferrali, A. RodríguezEscrich, C.; Bravo, F.; Pericàs, M.A. cis4Alkoxydialkyland cis4Alkoxydiarylprolinol Organocatalysts: High Throughput Experi-mentation (HTE)based and Design of Experiments (DoE)Guided development of a highly enantioselective azamichael addition of cyclic imides to α , β-unsaturated aldehydes. Adv. Synth. Catal., 2017, 359(14), 2414-2424.
[http://dx.doi.org/10.1002/adsc.201700120]
[106]
Jiang, H.; Nielsen, J.B.; Nielsen, M.; Jørgensen, K.A. Organocatalysed asymmetric β-amination and multicomponent syn-selective diamination of α,β- unsaturated alde-hydes. Chemistry, 2007, 13(32), 9068-9075.
[http://dx.doi.org/10.1002/chem.200700696] [PMID: 17694530]
[107]
Alcaine, A.; Marqués-López, E.; Herrera, R.P. Synthesis of interesting β-nitrohydrazides through a thiourea organocatalysed aza-Michael addition. RSC Advances, 2014, 4(19), 9856-9865.
[http://dx.doi.org/10.1039/C3RA47925K]
[108]
Vesely, J.; Ibrahem, I.; Rios, R.; Zhao, G.L.; Xu, Y.; Córdova, A. Enantioselective organocatalytic conjugate addition of amines to α, β-unsaturated aldehydes: One-pot asymmetric synthesis of β-amino acids and 1, 3-diamines. Tetrahedron Lett., 2007, 48(12), 2193-2198.
[http://dx.doi.org/10.1016/j.tetlet.2007.01.093]
[109]
Lu, X.; Deng, L. Asymmetric aza-Michael reactions of α,β-unsaturated ketones with bifunctional organic catalysts. Angew. Chem. Int. Ed. Engl., 2008, 47(40), 7710-7713.
[http://dx.doi.org/10.1002/anie.200802785] [PMID: 18756559]
[110]
Lakhdar, S.; Baidya, M.; Mayr, H. Kinetics and mechanism of organocatalytic aza-Michael additions: Direct observation of enamine intermediates. Chem. Commun. (Camb.), 2012, 48(37), 4504-4506.
[http://dx.doi.org/10.1039/c2cc31224g] [PMID: 22453687]
[111]
Bandini, M.; Bottoni, A.; Eichholzer, A.; Miscione, G.P.; Stenta, M. Asymmetric phase-transfer-catalyzed intramolecular N-alkylation of indoles and pyrroles: A com-bined experimental and theoretical investigation. Chemistry, 2010, 16(41), 12462-12473.
[http://dx.doi.org/10.1002/chem.201000560] [PMID: 20839181]
[112]
Li, Y.; Zhang, H.; Wei, R.; Miao, Z. Chemoand diastereoselective construction of indenopyrazolines via a Cascade azaMichael/Aldol annulation of huisgen zwitterions with 2Arylideneindane1, 3diones. Adv. Synth. Catal., 2017, 359(23), 4158-4164.
[http://dx.doi.org/10.1002/adsc.201701013]
[113]
Scettri, A.; Massa, A.; Palombi, L.; Villano, R.; Acocella, M.R. Organocatalytic asymmetric aza-Michael addition of aniline to chalcones under solvent-free conditions. Tetrahedron Asymmetry, 2008, 19(18), 2149-2152.
[http://dx.doi.org/10.1016/j.tetasy.2008.09.006]
[114]
Priebbenow, D.L.; Stewart, S.G.; Pfeffer, F.M. A general approach to N-heterocyclic scaffolds using domino Heck-aza-Michael reactions. Org. Biomol. Chem., 2011, 9(5), 1508-1515.
[http://dx.doi.org/10.1039/c0ob00835d] [PMID: 21225059]
[115]
Magano, J.; Bowles, D.; Conway, B.; Nanninga, T.N.; Winkle, D.D. Diastereoselective, large-scale synthesis of β -amino acids via asymmetric aza-Michael addition as α2δ ligands for the treatment of generalized anxiety disorder and insomnia. Tetrahedron Lett., 2009, 50(46), 6325-6328.
[http://dx.doi.org/10.1016/j.tetlet.2009.08.119]
[116]
Vicario, J.; Aparicio, D.; Palacios, F. Conjugate addition of amines to an α,β-unsaturated imine derived from α-aminophosphonate. Synthesis of γ-amino- α-amino-dehydroaminophosphonates. J. Org. Chem., 2009, 74(1), 452-455.
[http://dx.doi.org/10.1021/jo8022022] [PMID: 19053594]
[117]
Galkina, M.A.; Bodrin, G.V.; Goryunov, E.I.; Goryunova, I.B.; Sherstneva, A.S.; Urmambetova, J.S.; Kolotyrkina, N.G.; Il’in, M.M.; Brel, V.K.; Kochetkov, K.A. Regi-oselective aza-Michael addition of azoles to 4-(diphenylphosphoryl) but-3-en-2-one. Mendeleev Commun., 2016, 1(26), 75-76.
[http://dx.doi.org/10.1016/j.mencom.2016.01.029]
[118]
Le Guen, C.; Tran Do, M.L.; Chardon, A.; Lebargy, C.; Lohier, J.F.; Pfund, E.; Lequeux, T. Access to fluoropyrrolidines by intramolecular aza-Michael addition reaction. J. Org. Chem., 2016, 81(15), 6714-6720.
[http://dx.doi.org/10.1021/acs.joc.6b01363] [PMID: 27429373]
[119]
Ghisu, L.; Melis, N.; Secci, F.; Frongia, A. Stereoselective aza-Michael addition of anilines to 1-nitro cyclohexene by intramolecular protonation. Tetrahedron Lett., 2015, 56(46), 6409-6412.
[http://dx.doi.org/10.1016/j.tetlet.2015.09.138]
[120]
Ghasemi, M.H.; Kowsari, E.; Shafiee, A. Aza-Michael-type addition reaction catalysed by a supported ionic liquid phase incorporating an anionic heteropoly acid. Tetrahedron Lett., 2016, 57(10), 1150-1153.
[http://dx.doi.org/10.1016/j.tetlet.2016.01.107]
[121]
Jouha, J.; Buttard, F.; Lorion, M.; Berthonneau, C.; Khouili, M.; Hiebel, M.A.; Guillaumet, G.; Brière, J.F.; Suzenet, F. Domino Aza-Michael-ih-Diels-Alder reaction to various 3-Vinyl-1,2,4-triazines: Access to polysubstituted tetrahydro-1,6-naphthyridines. Org. Lett., 2017, 19(18), 4770-4773.
[http://dx.doi.org/10.1021/acs.orglett.7b02132] [PMID: 28857570]
[122]
Çelik, İ.; Yıldız, F. Synthesis of 4-hydroxyquinoline-2, 3-dicarboxylates using N-(2-aminobenzoyl) benzotriazoles. Tetrahedron, 2017, 73(27-28), 3878-3882.
[http://dx.doi.org/10.1016/j.tet.2017.05.058]
[123]
Liao, J.Y.; Yap, W.J.; Wu, J.; Wong, M.W.; Zhao, Y. Three-component reactions of isocyanoacetates, amines and 3-formylchromones initiated by an unexpected aza-Michael addition. Chem. Commun. (Camb.), 2017, 53(65), 9067-9070.
[http://dx.doi.org/10.1039/C7CC03468G] [PMID: 28627545]
[124]
He, Y.; Li, Z.; Tian, G.; Song, L.; Van Meervelt, L.; Van der Eycken, E.V. Gold-catalyzed diastereoselective domino dearomatization/ipso-cyclization/aza-Michael se-quence: A facile access to diverse fused azaspiro tetracyclic scaffolds. Chem. Commun. (Camb.), 2017, 53(48), 6413-6416.
[http://dx.doi.org/10.1039/C7CC03152A] [PMID: 28569296]
[125]
Sibi, M.P.; Liu, M. Enantioselective conjugate addition of hydroxylamines to pyrazolidinone acrylamides. Org. Lett., 2001, 3(26), 4181-4184.
[http://dx.doi.org/10.1021/ol016807t] [PMID: 11784172]
[126]
Sibi, M.P.; Prabagaran, N.; Ghorpade, S.G.; Jasperse, C.P. Enantioselective synthesis of α,β-disubstituted-β-amino acids. J. Am. Chem. Soc., 2003, 125(39), 11796-11797.
[http://dx.doi.org/10.1021/ja0372309] [PMID: 14505383]
[127]
Takemoto, Y. Development of chiral thiourea catalysts and its application to asymmetric catalytic reactions. Chem. Pharm. Bull. (Tokyo), 2010, 58(5), 593-601.
[http://dx.doi.org/10.1248/cpb.58.593] [PMID: 20460782]
[128]
Tsakos, M.; Kokotos, C.G. Primary and secondary amine-(thio) ureas and squaramides and their applications in asymmetric organocatalysis. Tetrahedron, 2013, 48(69), 10199-10222.
[http://dx.doi.org/10.1016/j.tet.2013.09.080]
[129]
Feng, Z.; Xu, Q.L.; Dai, L.X. Enantioselective synthesis of 2-aryl-2, 3-dihydro-4-quinolones by chiral Bronsted acid catalyzed intramolecular aza-Michael addition reaction. Heterocycles, 2010, 80(2), 765-771.
[http://dx.doi.org/10.3987/COM-09-S(S)66]
[130]
Lee, S.J.; Youn, S.H.; Cho, C.W. Organocatalytic enantioselective formal synthesis of bromopyrrole alkaloids via aza-Michael addition. Org. Biomol. Chem., 2011, 9(22), 7734-7741.
[http://dx.doi.org/10.1039/c1ob06078c] [PMID: 21952717]
[131]
Lee, S.J.; Ahn, J.G.; Cho, C.W. Cinchona-based primary amine-catalyzed enantioselective aza-Michael reactions of pyrroles with α, β-unsaturated aldehydes. Tetrahedron Asymmetry, 2014, 25(20-21), 1383-1388.
[http://dx.doi.org/10.1016/j.tetasy.2014.09.002]
[132]
Cheong, P.H.Y.; Legault, C.Y.; Um, J.M.; Çelebi-Ölçüm, N.; Houk, K.N. Quantum mechanical investigations of organocatalysis: Mechanisms, reactivities, and selectivi-ties. Chem. Rev., 2011, 111(8), 5042-5137.
[http://dx.doi.org/10.1021/cr100212h] [PMID: 21707120]
[133]
Lee, H.J.; Cho, C.W. Asymmetric synthesis of chiral pyrrolizineBased Triheterocycles by organocatalytic cascade AzaMichael–Aldol reactions. Eur. J. Org. Chem., 2014, 2014(2), 387-394.
[http://dx.doi.org/10.1002/ejoc.201301260]
[134]
Fustero, S.; Monteagudo, S.; Sánchez-Roselló, M.; Flores, S.; Barrio, P.; del Pozo, C. N-sulfinyl amines as a nitrogen source in the asymmetric intramolecular aza-Michael reaction: Total synthesis of (-)-pinidinol. Chemistry, 2010, 16(32), 9835-9845.
[http://dx.doi.org/10.1002/chem.201000615] [PMID: 20544753]
[135]
Li, H.; Zu, L.; Xie, H.; Wang, J.; Wang, W. Highly enantio-and diastereoselective organocatalytic cascade aza-Michael–Michael reactions: a direct method for the synthe-sis of trisubstituted chiral pyrrolidines. Chem. Commun. (Camb.), 2008, (43), 5636-5638.
[http://dx.doi.org/10.1039/b812464g]
[136]
Bradshaw, B.; Parra, C.; Bonjoch, J. Organocatalyzed asymmetric synthesis of morphans. Org. Lett., 2013, 15(10), 2458-2461.
[http://dx.doi.org/10.1021/ol400926p] [PMID: 23627688]
[137]
Enders, D.; Wang, C.; Raabe, G. Enantioselective synthesis of 3H-pyrrolo [1, 2-a] indole-2-carbaldehydes via an organocatalytic domino aza-Michael/aldol condensa-tion reaction. Synthesis, 2009, 2009(24), 4119-4124.
[http://dx.doi.org/10.1055/s-0029-1217069]
[138]
Hong, L.; Sun, W.; Liu, C.; Wang, L.; Wang, R. Asymmetric organocatalytic N-alkylation of indole-2-carbaldehydes with α,β-unsaturated aldehydes: One-pot synthesis of chiral pyrrolo[1,2-a]indole-2-carbaldehydes. Chemistry, 2010, 16(2), 440-444.
[http://dx.doi.org/10.1002/chem.200902638] [PMID: 19938023]
[139]
Wolkenberg, S.E.; Boger, D.L. Mechanisms of in situ activation for DNA-targeting antitumor agents. Chem. Rev., 2002, 102(7), 2477-2495.
[http://dx.doi.org/10.1021/cr010046q] [PMID: 12105933]
[140]
Galm, U.; Hager, M.H.; Van Lanen, S.G.; Ju, J.; Thorson, J.S.; Shen, B. Antitumor antibiotics: bleomycin, enediynes, and mitomycin. Chem. Rev., 2005, 105(2), 739-758.
[http://dx.doi.org/10.1021/cr030117g] [PMID: 15700963]
[141]
Wilson, R.M.; Danishefsky, S.J. Applications of total synthesis toward the discovery of clinically useful anticancer agents. Chem. Soc. Rev., 2007, 36(8), 1207-1226.
[http://dx.doi.org/10.1039/b611967k] [PMID: 17619682]
[142]
Vepsäläinen, J.J.; Auriola, S.; Tukiainen, M.; Ropponen, N.; Callaway, J.C. Isolation and characterization of yuremamine, a new phytoindole. Planta Med., 2005, 71(11), 1053-1057.
[http://dx.doi.org/10.1055/s-2005-873131] [PMID: 16320208]
[143]
Miyaji, R.; Asano, K.; Matsubara, S. Asymmetric indoline synthesis via intramolecular aza-Michael addition mediated by bifunctional organocatalysts. Org. Lett., 2013, 15(14), 3658-3661.
[http://dx.doi.org/10.1021/ol401538b] [PMID: 23844669]
[144]
Zhang, X.; Song, X.; Li, H.; Zhang, S.; Chen, X.; Yu, X.; Wang, W. An organocatalytic cascade approach toward polysubstituted quinolines and chiral 1,4-dihydroquinolines-unanticipated effect of N-protecting groups. Angew. Chem. Int. Ed. Engl., 2012, 51(29), 7282-7286.
[http://dx.doi.org/10.1002/anie.201202161] [PMID: 22696453]
[145]
Dai, L.; Hou, Y.; Zhang, L.; Chen, Z.; Zeng, X.; Zhong, G. Construction of tetrahydropyranoquinoline derivatives via an asymmetric organocatalytic aza-Michael-IED/HAD cascade reaction. Org. Biomol. Chem., 2017, 15(45), 9630-9637.
[http://dx.doi.org/10.1039/C7OB02231J] [PMID: 29115338]
[146]
Roy, T.K.; Parhi, B.; Ghorai, P. Cinchonamine squaramide catalyzed asymmetric aza-michael reaction: Dihydroisoquinolines and tetrahydropyridines. Angew. Chem. Int. Ed. Engl., 2018, 57(30), 9397-9401.
[http://dx.doi.org/10.1002/anie.201805020] [PMID: 29882619]
[147]
Maltsev, O.V. Kucherenko, A.S.; Chimishkyan, A.L.; Zlotin, S.G. α, α -Diarylprolinol-derived chiral ionic liquids: Recoverable organocatalysts for the domino reaction between α, β - enals and N-protected hydroxylamines. Tetrahedron Asymmetry, 2010, 21(21-22), 2659-2670.
[http://dx.doi.org/10.1016/j.tetasy.2010.10.020]
[148]
Li, P.; Fang, F.; Chen, J.; Wang, J. Organocatalytic asymmetric aza-Michael addition of pyrazole to chalcone. Tetrahedron Asymmetry, 2014, 25(1), 98-101.
[http://dx.doi.org/10.1016/j.tetasy.2013.11.012]
[149]
Fernandez, M.; Reyes, E.; Vicario, J.L.; Badia, D.; Carrillo, L. Organocatalytic enantioselective synthesis of pyrazolidines, pyrazolines and pyrazolidinones. Adv. Synth. Catal., 2012, 354(2-3), 371-376.
[http://dx.doi.org/10.1002/adsc.201100722]
[150]
Giardinetti, M.; Marrot, J.; Moreau, X.; Coeffard, V.; Greck, C. Asymmetric synthesis of fused polycyclic indazoles through aminocatalyzed aza-Michael addi-tion/intramolecular cyclization. J. Org. Chem., 2016, 81(15), 6855-6861.
[http://dx.doi.org/10.1021/acs.joc.6b01201] [PMID: 27380551]
[151]
Saenz, J.; Mitchell, M.; Bahmanyar, S.; Stankovic, N.; Perry, M.; Craig-Woods, B.; Kline, B.; Yu, S.; Albizati, K. Process development and scale-up of AG035029. Org. Process Res. Dev., 2007, 11(1), 30-38.
[http://dx.doi.org/10.1021/op0601621]
[152]
Ashizawa, T.; Shimizu, M.; Gomi, K.; Okabe, M. Antitumor activity of KW-2170, a novel pyrazoloacridone derivative. Anticancer Drugs, 1998, 9(3), 263-271.
[http://dx.doi.org/10.1097/00001813-199803000-00009] [PMID: 9625437]
[153]
Fernández, M.; Vicario, J.L.; Reyes, E.; Carrillo, L.; Badía, D. Organocatalytic enantioselective synthesis of 2,3-dihydropyridazines. Chem. Commun. (Camb.), 2012, 48(15), 2092-2094.
[http://dx.doi.org/10.1039/c2cc17370k] [PMID: 22245768]
[154]
Cohen, F.; Overman, L.E. Enantioselective total synthesis of batzelladine F: Structural revision and stereochemical definition. J. Am. Chem. Soc., 2001, 123(43), 10782-10783.
[http://dx.doi.org/10.1021/ja017067m] [PMID: 11674029]
[155]
Fleming, J.J.; Du Bois, J. A synthesis of (+)-saxitoxin. J. Am. Chem. Soc., 2006, 128(12), 3926-3927.
[http://dx.doi.org/10.1021/ja0608545] [PMID: 16551097]
[156]
He, Z.Q.; Zhou, Q.; Wu, L.; Chen, Y.C. Asymmetric organocatalytic tandem reaction to chiral pyrimidinone derivatives using urea as dinitrogen source. Adv. Synth. Catal.,, 2010, 352(11‐12), 1904-1908.
[http://dx.doi.org/10.1002/adsc.201000291]
[157]
Verghese, P.S.; Schleiss, M.R. Letermovir treatment of human cytomegalovirus infection antiinfective agent. Drugs Future, 2013, 38(5), 291-298.
[http://dx.doi.org/10.1358/dof.2013.038.05.1946425] [PMID: 24163496]
[158]
Humphrey, G.R.; Dalby, S.M.; Andreani, T.; Xiang, B.; Luzung, M.R.; Song, Z.J.; Shevlin, M.; Christensen, M.; Belyk, K.M.; Tschaen, D.M. Asymmetric synthesis of letermovir using a novel phase-transfer-catalyzed aza-Michael reaction. Org. Process Res. Dev., 2016, 20(6), 1097-1103.
[http://dx.doi.org/10.1021/acs.oprd.6b00076]
[159]
Li, H.; Zhao, J.; Zeng, L.; Hu, W. Organocatalytic asymmetric domino aza-Michael-Mannich reaction: Synthesis of tetrahydroimidazopyrimidine derivatives. J. Org. Chem., 2011, 76(19), 8064-8069.
[http://dx.doi.org/10.1021/jo201301p] [PMID: 21830809]
[160]
Wu, H.; Tian, Z.; Zhang, L.; Huang, Y.; Wang, Y. Organocatalytic enantioselective AzaMichael addition of purine bases to α, β‐unsaturated ketones. Adv. Synth. Catal., 2012, 354(16), 2977-2984.
[http://dx.doi.org/10.1002/adsc.201200488]
[161]
Dave, V.; Warnhoff, E. The reactions of diazoacetic esters with alkenes, alkynes, heterocyclic and aromatic compounds. Org. React., 2004, 18, 217-401.
[162]
Marchand, A.P.; Brockway, N.M. Carbalkoxycarbenes. Chem. Rev., 1974, 74(4), 431-469.
[http://dx.doi.org/10.1021/cr60290a002]
[163]
Regitz, M. Diazo compounds: Properties and synthesis; Elsevier, 2012.
[164]
Doyle, M.P. Catalytic methods for metal carbene transformations. Chem. Rev., 1986, 86(5), 919-939.
[http://dx.doi.org/10.1021/cr00075a013]
[165]
Maas, G. Transition-metal catalyzed decomposition of aliphatic diazo compounds—new results and applications in organic synthesis; Organic Synthesis, Reactions and Mechanisms, 1987, pp. 75-253.
[http://dx.doi.org/10.1007/3-540-16904-0_15]
[166]
Ye, T.; McKervey, M.A. Organic synthesis with. alpha.-diazo carbonyl compounds. Chem. Rev., 1994, 94(4), 1091-1160.
[http://dx.doi.org/10.1021/cr00028a010]
[167]
Padwa, A.; Austin, D.J. Ligand effects on the chemoselectivity of transition metal catalyzed reactions of α ‐Diazo carbonyl compounds. Angew. Chem. Int. Ed. Engl., 1994, 33(18), 1797-1815.
[http://dx.doi.org/10.1002/anie.199417971]
[168]
Doyle, M.P.; Bagheri, V.; Wandless, T.J.; Harn, N.K.; Brinker, D.A.; Eagle, C.T.; Loh, K.L. Exceptionally high trans (anti) stereoselectivity in catalytic cyclopropanation reactions. J. Am. Chem. Soc., 1990, 112(5), 1906-1912.
[http://dx.doi.org/10.1021/ja00161a040]
[169]
Doyle, M.P.; Westrum, L.J.; Wolthuis, W.N.; See, M.M.; Boone, W.P.; Bagheri, V.; Pearson, M.M. Electronic and steric control in carbon-hydrogen insertion reactions of diazoacetoacetates catalyzed by dirhodium (II) carboxylates and carboxamides. J. Am. Chem. Soc., 1993, 115(3), 958-964.
[http://dx.doi.org/10.1021/ja00056a021]
[170]
Doyle, M.P.; Shanklin, M.S. Highly regioselective and stereoselective silylformylation of alkynes under mild conditions promoted by dirhodium (II) perfluorobutyrate. Organometallics, 1994, 13(4), 1081-1088.
[http://dx.doi.org/10.1021/om00016a012]
[171]
Alonso, M.E.; Fernández, R. Effect of catalyst on zwitterionic intermediacy in additions of dimethyl diazomalonate to vinyl ethers. Tetrahedron, 1989, 45(11), 3313-3320.
[http://dx.doi.org/10.1016/S0040-4020(01)81010-3]
[172]
Callot, H.J.; Albrecht-Gary, A.M.; Al Joubbeh, M.; Metz, B.; Metz, F. Crystallographic study and ligand substitution reactions of dirhodium (II) tris-and tetrakis (tritol-ylbenzoate). Inorg. Chem., 1989, 28(19), 3633-3640.
[http://dx.doi.org/10.1021/ic00318a005]
[173]
Hashimoto, S.I.; Watanabe, N.; Ikegami, S. Dirhodium (II) tetra (triphenylacetate): A highly efficient catalyst for the site-selective intramolecular CH insertion reactions of α-diazo β-keto esters. Tetrahedron Lett., 1992, 33(19), 2709-2712.
[http://dx.doi.org/10.1016/S0040-4039(00)79063-0]
[174]
Padwa, A.; Krumpe, K.E.; Kassir, J.M. Rhodium carbenoid mediated cyclizations of o-alkynyl-substituted. alpha.-diazoacetophenones. J. Org. Chem., 1992, 57(18), 4940-4948.
[http://dx.doi.org/10.1021/jo00044a032]
[175]
Bergbreiter, D.E.; Morvant, M.; Chen, B. Catalytic cyclopropanation with transition metal salts of soluble polyethylene carboxylates. Tetrahedron Lett., 1991, 32(24), 2731-2734.
[http://dx.doi.org/10.1016/0040-4039(91)85070-L]
[176]
Burke, S.D.; Grieco, P.A. Intramolecular reactions of diazocarbonyl compounds. Org. React., 2004, 26, 361-475.
[177]
Doyle, M.P.; McKervey, M.A.; Ye, T. Modern catalytic methods for organic synthesis with diazo compounds; Wiley, 1998.
[178]
Davies, H.M.; Hansen, T. Asymmetric intermolecular carbenoid C H insertions catalyzed by rhodium (ii)(S)-N-(p-dodecylphenyl) sulfonylprolinate. J. Am. Chem. Soc., 1997, 119(38), 9075-9076.
[http://dx.doi.org/10.1021/ja971915p]
[179]
Weinreb, S.; Trost, B.; Fleming, I. Comprehensive organic synthesis; Trost, B.M; Fleming, I., Ed.; , 1991, p. 5.
[180]
Adams, J.; Spero, D.M. Rhodium (II) catalyzed reactions of diazo-carbonyl compounds. Tetrahedron, 1991, 47(10-11), 1765-1808.
[http://dx.doi.org/10.1016/S0040-4020(01)96094-6]
[181]
Wang, P.; Adams, J. Model studies of the stereoelectronic effect in Rh (II) mediated carbenoid CH insertion reactions. J. Am. Chem. Soc., 1994, 116(8), 3296-3305.
[http://dx.doi.org/10.1021/ja00087a016]
[182]
McKervey, M.A.; Ye, T.M. Asymmetric synthesis of substituted chromanones via C–H insertion reactions of α-diazoketones catalysed by homochiral rhodium (II) carboxylates. J. Chem. Soc. Chem. Commun., 1992, (11), 823-824.
[http://dx.doi.org/10.1039/C39920000823]
[183]
Ye, T.; García, C.F.; McKervey, M.A. Chemoselectivity and stereoselectivity of cyclisation of α-diazocarbonyls leading to oxygen and sulfur heterocycles catalysed by chiral rhodium and copper catalysts. J. Chem. Soc., Perkin Trans. 1, 1995, (11), 1373-1379.
[http://dx.doi.org/10.1039/P19950001373]
[184]
Maryanoff, B.E. Reaction of dimethyl diazomalonate and ethyl 2-diazoacetoacetate with N-methylpyrrole. J. Org. Chem., 1982, 47(15), 3000-3002.
[http://dx.doi.org/10.1021/jo00136a038]
[185]
Doyle, M.P.; Protopopova, M.N.; Winchester, W.R.; Daniel, K.L. Enantiocontrol and regiocontrol in lactam syntheses by intramolecular carbon-hydrogen insertion reactions of diazoacetamides catalyzed by chiral rhodium (II) carboxamides. Tetrahedron Lett., 1992, 33(51), 7819-7822.
[http://dx.doi.org/10.1016/S0040-4039(00)74752-6]
[186]
Doyle, M.P.; Kalinin, A.V. Highly enantioselective route to β -Lactams via intramolecular ch insertion reactions of diazoacetylazacycloalkanes catalyzed by chiral dir-hodium (II) carboxamidates. Synlett, 1995, 1995(10), 1075-1076.
[http://dx.doi.org/10.1055/s-1995-5176]
[187]
Ward, R. The synthesis of lignans and neolignans. Chem. Soc. Rev., 1982, 11(2), 75-125.
[http://dx.doi.org/10.1039/cs9821100075]
[188]
Doyle, M.P.; Protopopova, M.N.; Zhou, Q.L.; Bode, J.W.; Simonsen, S.H.; Lynch, V. Optimization of enantiocontrol for carbon-hydrogen insertion with chiral dirhodi-um (II) carboxamidates. Synthesis of natural dibenzylbutyrolactone lignans from 3-aryl-1-propyl diazoacetates in high optical purity. J. Org. Chem., 1995, 60(21), 6654-6655.
[http://dx.doi.org/10.1021/jo00126a002]
[189]
Bode, J.W.; Doyle, M.P.; Protopopova, M.N.; Zhou, Q.L. Intramolecular regioselective insertion into unactivated prochiral carbon hydrogen bonds with diazoacetates of primary alcohols catalyzed by chiral dirhodium (II) carboxamidates. Highly enantioselective total synthesis of natural lignan lactones. J. Org. Chem., 1996, 61(26), 9146-9155.
[http://dx.doi.org/10.1021/jo961607u]
[190]
Doyle, M.P.; Dyatkin, A.B.; Tedrow, J.S. Synthesis of 2-deoxyxylolactone from glycerol derivatives via highly enantioselective carbon-hydrogen insertion reactions. Tetrahedron Lett., 1994, 35(23), 3853-3856.
[http://dx.doi.org/10.1016/S0040-4039(00)76684-6]
[191]
Doyle, M.P.; Tedrow, J.S.; Dyatkin, A.B.; Spaans, C.J.; Ene, D.G. Enantioselective Syntheses of 2-Deoxyxylono-1,4-lactone and 2-Deoxyribono-1,4-lactone from 1,3-Dioxan-5-yl Diazoacetates. J. Org. Chem., 1999, 64(24), 8907-8915.
[http://dx.doi.org/10.1021/jo991211t] [PMID: 11674797]
[192]
Doyle, M.P.; Dyatkin, A.B.; Roos, G.H.; Canas, F.; Pierson, D.A.; van Basten, A.; Mueller, P.; Polleux, P. Diastereocontrol for highly enantioselective carbon-hydrogen insertion reactions of cycloalkyl diazoacetates. J. Am. Chem. Soc., 1994, 116(10), 4507-4508.
[http://dx.doi.org/10.1021/ja00089a062]
[193]
Müller, P.; Polleux, P. Enantioselective formation of bicyclic lactones by RhodiumCatalyzed intramolecular CHinsertion reactions. Helv. Chim. Acta, 1994, 77(3), 645-654.
[http://dx.doi.org/10.1002/hlca.19940770307]
[194]
Doyle, M.P.; Kalinin, A.V.; Ene, D.G. Chiral catalyst controlled diastereoselection and regioselection in intramolecular carbon hydrogen insertion reactions of diazo-acetates. J. Am. Chem. Soc., 1996, 118(37), 8837-8846.
[http://dx.doi.org/10.1021/ja961682m]
[195]
Doyle, M.; Kalinin, A. Enantiomer differentiation in intramolecular carbon—hydrogen insertion reactions of racemic secondary alkyl diazoacetates catalyzed by chiral dirhodium (ii) carboxamidates. Russ. Chem. Bull., 1995, 44(9), 1729-1734.
[http://dx.doi.org/10.1007/BF01151300]
[196]
Buck, R.T.; Doyle, M.P.; Drysdale, M.J.; Ferris, L.; Forbes, D.C.; Haigh, D.; Moody, C.J.; Pearson, N.D.; Zhou, Q.L. Asymmetric rhodium carbenoid insertion into the Si-H bond. Tetrahedron Lett., 1996, 37(42), 7631-7634.
[http://dx.doi.org/10.1016/0040-4039(96)01679-6]
[197]
Davies, H.M.; Hansen, T.; Rutberg, J.; Bruzinski, P.R. Rhodium (II)(S)-N-(arylsulfonyl) prolinate catalyzed asymmetric insertions of vinyl-and phenylcarbenoids into the Sią H bond. Tetrahedron Lett., 1997, 38(10), 1741-1744.
[http://dx.doi.org/10.1016/S0040-4039(97)00205-0]
[198]
Bagheri, V.; Doyle, M.P.; Taunton, J.; Claxton, E.E. A new and general synthesis of. alpha.-silyl carbonyl compounds by silicon-hydrogen insertion from transition metal-catalyzed reactions of diazo esters and diazo ketones. J. Org. Chem., 1988, 53(26), 6158-6160.
[http://dx.doi.org/10.1021/jo00261a045]
[199]
Landais, Y.; Planchenault, D. Preparation of optically active α-silylcarbonyl compounds using asymmetric alkylation of α-silylacetic esters and asymmetric metal-carbene insertion into the Si; H bond. Tetrahedron, 1997, 53(8), 2855-2870.
[http://dx.doi.org/10.1016/S0040-4020(97)00002-1]
[200]
Bulugahapitiya, P.; Landais, Y.; Parra-Rapado, L.; Planchenault, D.; Weber, V. A stereospecific access to allylic systems using rhodium (II) vinyl carbenoid insertion into Si H, O H, and N H bonds. J. Org. Chem., 1997, 62(6), 1630-1641.
[http://dx.doi.org/10.1021/jo961952j]
[201]
Pfaltz, A. Chiral semicorrins and related nitrogen heterocycles as ligands in asymmetric catalysis. Acc. Chem. Res., 1993, 26(6), 339-345.
[http://dx.doi.org/10.1021/ar00030a007]
[202]
Doyle, M.P.; Peterson, C.S.; Parker, D.L. Jr Formation of Macrocyclic Lactones by Enantioselective Intramolecular Cyclopropanation of Diazoacetates Catalyzed by Chiral CuI and RhII Compounds. Angew. Chem. Int. Ed. Engl., 1996, 35(12), 1334-1336.
[http://dx.doi.org/10.1002/anie.199613341]
[203]
Petiniot, N.; Anciaux, A.; Noels, A.; Hubert, A.J.; Teyssié, P. Rhodium catalysed cyclopropenation of acetylenes. Tetrahedron Lett., 1978, 19(14), 1239-1242.
[http://dx.doi.org/10.1016/S0040-4039(01)94511-3]
[204]
Shapiro, E.A.; Kalinin, A.V.; Ugrak, B.I.; Nefedov, O.M. Regioselective Rh2(OAc)4-promoted reactions of methyl diazoacetate with terminal triple bond enynes. J. Chem. Soc., Perkin Trans. 2, 1994, (4), 709-713.
[http://dx.doi.org/10.1039/p29940000709]
[205]
Doyle, M.P.; Protopopova, M.; Muller, P.; Ene, D.; Shapiro, E.A. Effective uses of dirhodium (II) tetrakis[methyl 2-oxopyrrolidine-5 (R or S)-carboxylate] for highly enantioselective intermolecular cyclopropenation reactions. J. Am. Chem. Soc., 1994, 116(19), 8492-8498.
[http://dx.doi.org/10.1021/ja00098a009]
[206]
Li, A.H.; Dai, L.X.; Aggarwal, V.K. Asymmetric ylide reactions: Epoxidation, cyclopropanation, aziridination, olefination, and rearrangement. Chem. Rev., 1997, 97(6), 2341-2372.
[http://dx.doi.org/10.1021/cr960411r] [PMID: 11848902]
[207]
Padwa, A.; Hornbuckle, S.F. Ylide formation from the reaction of carbenes and carbenoids with heteroatom lone pairs. Chem. Rev., 1991, 91(3), 263-309.
[http://dx.doi.org/10.1021/cr00003a001]
[208]
Padwa, A.; Weingarten, M.D. Cascade processes of metallo carbenoids. Chem. Rev., 1996, 96(1), 223-270.
[http://dx.doi.org/10.1021/cr950022h] [PMID: 11848752]
[209]
Pine, S.H. The basepromoted rearrangements of quaternary ammonium salts. Org. React., 2004, 18, 403-464.
[210]
Nozaki, H.; Takaya, H.; Moriuti, S.; Noyori, R. Homogeneous catalysis in the decomposition of diazo compounds by copper chelates: Asymmetric carbenoid reactions. Tetrahedron, 1968, 24(9), 3655-3669.
[http://dx.doi.org/10.1016/S0040-4020(01)91998-2]
[211]
Ito, K.; Yoshitake, M.; Katsuki, T. Chiral bipyrindine and biquinoline ligands: Their asymmetric synthesis and application to the synthesis of trans-whisky lactone. Tetrahedron, 1996, 52(11), 3905-3920.
[http://dx.doi.org/10.1016/S0040-4020(96)00058-0]
[212]
Ito, K.; Yoshitake, M.; Katsuki, T. Enantioselective synthesis of trans-whisky lactone by using newly developed asymmetric ring expansion reaction of oxetane as a key step. Chem. Lett., 1995, 24(11), 1027-1028.
[http://dx.doi.org/10.1246/cl.1995.1027]
[213]
Ito, K.; Katsuki, T. Asymmetric carbene c–o insertion reaction using optically active bipyridine-copper complex as a catalyst. Ring expansion of oxetanes to tetrahydro-furans. Chem. Lett., 1994, 23(10), 1857-1860.
[http://dx.doi.org/10.1246/cl.1994.1857]
[214]
Hansen, K.B.; Finney, N.S.; Jacobsen, E.N. Carbenoid transfer to imines: A new asymmetric catalytic synthesis of aziridines. Angew. Chem. Int. Ed. Engl., 1995, 34(6), 676-678.
[http://dx.doi.org/10.1002/anie.199506761]
[215]
Doyle, M.P.; Forbes, D.C.; Protopopova, M.N.; Stanley, S.A.; Vasbinder, M.M.; Xavier, K.R. Stereocontrol in intermolecular dirhodium (II)-catalyzed carbonyl ylide formation and reactions. Dioxolanes and dihydrofurans. J. Org. Chem., 1997, 62(21), 7210-7215.
[http://dx.doi.org/10.1021/jo970641l] [PMID: 11671830]
[216]
Doyle, M.P.; Forbes, D.C. Recent advances in asymmetric catalytic metal carbene transformations. Chem. Rev., 1998, 98(2), 911-936.
[http://dx.doi.org/10.1021/cr940066a] [PMID: 11848918]
[217]
Trost, B.M.; Hammen, R.F. New synthetic methods. Transfer of chirality from sulfur to carbon. J. Am. Chem. Soc., 1973, 95(3), 962-964.
[http://dx.doi.org/10.1021/ja00784a076]
[218]
Breau, L.; Durst, T. Preparation of optically active epoxides via sulfur ylides. Origin of the chiral induction. Tetrahedron Asymmetry, 1991, 2(5), 367-370.
[http://dx.doi.org/10.1016/S0957-4166(00)82121-7]
[219]
Solladié-Cavallo, A.; Adib, A.; Schmitt, M.; Fischer, J.; DeCian, A. Axial structure of oxathiane benzyl sulfonium perchlorate. Tetrahedron Asymmetry, 1992, 3(12), 1597-1602.
[http://dx.doi.org/10.1016/S0957-4166(00)86065-6]
[220]
Aggarwal, V.K.; Abdel-Rahman, H.; Jones, R.V.; Lee, H.Y.; Reid, B.D. Novel catalytic cycle for the synthesis of epoxides from aldehydes and sulfur ylides mediated by catalytic quantities of sulfides and Rh2(OAc)4. J. Am. Chem. Soc., 1994, 116(13), 5973-5974.
[http://dx.doi.org/10.1021/ja00092a060]
[221]
Miller, D.J.; Moody, C.J. Synthetic applications of the OH insertion reactions of carbenes and carbenoids derived from diazocarbonyl and related diazo compounds. Tetrahedron, 1995, 51(40), 10811-10843.
[http://dx.doi.org/10.1016/0040-4020(95)00648-R]
[222]
Ferris, L.; Haigh, D.; Moody, C.J. New chiral rhodium (II) carboxylates and their use as catalysts in carbenoid transformations. Tetrahedron Lett., 1996, 37(1), 107-110.
[http://dx.doi.org/10.1016/0040-4039(95)02085-3]
[223]
Brunner, H.; Wutz, K.; Doyle, M. Enantioselective S-H and C-H insertions with optically active Rh (II) and Cu (II) catalysts. Asymmetric catalysis, 58. Monatsh. Chem., 1990, 121(10), 755-764.
[http://dx.doi.org/10.1007/BF00808368]
[224]
Starks, C.M. Phase-transfer catalysis. I. Heterogeneous reactions involving anion transfer by quaternary ammonium and phosphonium salts. J. Am. Chem. Soc., 1971, 93(1), 195-199.
[http://dx.doi.org/10.1021/ja00730a033]
[225]
Makosza, M. Reactions of organic anions. XI. Catalytic alkylation of indene. Tetrahedron Lett., 1966, 7(38), 4621-4624.
[http://dx.doi.org/10.1016/S0040-4039(00)70088-8]
[226]
Mąkosza, M. Electrophilic and nucleophilic aromatic substitution: Analogous and complementary processes. Russ. Chem. Bull., 1996, 45(3), 491-504.
[http://dx.doi.org/10.1007/BF01435770]
[227]
Schrader, S.; Dehmlow, E.V. Hydrogen peroxide and air as inexpensive oxidants in phase-transfer catalysis. A review. Org. Prep. Proced. Int., 2000, 32(2), 123-152.
[http://dx.doi.org/10.1080/00304940009356279]
[228]
Starks, C.M.; Liotta, C.L.; Halpern, M.E. Phase-Transfer Catalysis: Fundamentals I;. 1994.
[http://dx.doi.org/10.1007/978-94-011-0687-0_2]
[229]
Makosza, M. Two-phase reactions in the chemistry of carbanions and halocarbenes—a useful tool in organic synthesis. Org. Synth., 1975, 439-462.
[230]
Yang, H.M.; Wu, H.S. Interfacial mechanism and kinetics of phase-transfer catalysis. Catal. Rev., Sci. Eng., 2003, 45(3-4), 463-540.
[http://dx.doi.org/10.1081/CR-120025540]
[231]
O’Donnell, M.J. The preparation of optically active amino acids from the benzophenone imines of glycine derivatives. ChemInform, 2001, 32(38)
[http://dx.doi.org/10.1002/chin.200138280]
[232]
Lygo, B.; Andrews, B.I. Asymmetric phase-transfer catalysis utilizing chiral quaternary ammonium salts: Asymmetric alkylation of glycine imines. Acc. Chem. Res., 2004, 37(8), 518-525.
[http://dx.doi.org/10.1021/ar030058t] [PMID: 15311950]
[233]
O’Donnell, M.J.; Bennett, W.D.; Wu, S. The stereoselective synthesis of. alpha.-amino acids by phase-transfer catalysis. J. Am. Chem. Soc., 1989, 111(6), 2353-2355.
[http://dx.doi.org/10.1021/ja00188a089]
[234]
Esikova, I.A.; Nahreini, T.S.; O’Donnell, M.J. A new interfacial mechanism for asymmetric alkylation by phase-transfer catalysis; ACS Publications, 1997.
[235]
Lygo, B.; Wainwright, P.G. Asymmetric phase-transfer mediated epoxidation of α, β-unsaturated ketones using catalysts derived from Cinchona alkaloids. Tetrahedron Lett., 1998, 39(12), 1599-1602.
[http://dx.doi.org/10.1016/S0040-4039(97)10779-1]
[236]
Lygo, B.; Wainwright, P. Phase-transfer catalysed asymmetric epoxidation of enones using N-anthracenylmethyl-substituted Cinchona alkaloids. Tetrahedron, 1999, 55(20), 6289-6300.
[http://dx.doi.org/10.1016/S0040-4020(99)00205-7]
[237]
Bhattacharya, A.; Dolling, U.H.; Grabowski, E.J.; Karady, S.; Ryan, K.M.; Weinstock, L.M. Enantioselective robinson annelations via phasetransfer catalysis. Angew. Chem. Int. Ed. Engl., 1986, 25(5), 476-477.
[http://dx.doi.org/10.1002/anie.198604761]
[238]
Ooi, T.; Miki, T.; Taniguchi, M.; Shiraishi, M.; Takeuchi, M.; Maruoka, K. Highly enantioselective construction of quaternary stereocenters on β-keto esters by phase-transfer catalytic asymmetric alkylation and Michael reaction. Angew. Chem. Int. Ed., 2003, 42(32), 3796-3798.
[http://dx.doi.org/10.1002/anie.200351469] [PMID: 12923847]
[239]
Arai, S.; Hasegawa, K.; Nishida, A. One-pot synthesis of α -diazo-β-hydroxyesters under phase-transfer catalysis and application to the catalytic asymmetric aldol reac-tion. Tetrahedron Lett., 2004, 45(5), 1023-1026.
[http://dx.doi.org/10.1016/j.tetlet.2003.11.083]
[240]
Arai, S.; Ishida, T.; Shioiri, T. Asymmetric synthesis of α, β-epoxysulfones under phase-transfer catalyzed Darzens reaction. Tetrahedron Lett., 1998, 39(45), 8299-8302.
[http://dx.doi.org/10.1016/S0040-4039(98)01811-5]
[241]
Arai, S.; Shioiri, T. Asymmetric Darzens reaction utilizing chloromethyl phenyl sulfone under phase-transfer catalyzed conditions. Tetrahedron, 2002, 58(7), 1407-1413.
[http://dx.doi.org/10.1016/S0040-4020(01)01244-3]
[242]
Ooi, T.; Takahashi, M.; Doda, K.; Maruoka, K. Asymmetric induction in the Neber rearrangement of simple ketoxime sulfonates under phase-transfer conditions: experi-mental evidence for the participation of an anionic pathway. J. Am. Chem. Soc., 2002, 124(26), 7640-7641.
[http://dx.doi.org/10.1021/ja0118791] [PMID: 12083901]
[243]
Arai, S.; Hamaguchi, S.; Shioiri, T. Catalytic asymmetric Horner-Wadsworth-Emmons reaction under phase-transfer-catalyzed conditions. Tetrahedron Lett., 1998, 39(19), 2997-3000.
[http://dx.doi.org/10.1016/S0040-4039(98)00442-0]
[244]
Arai, S.; Nakayama, K.; Ishida, T.; Shioiri, T. Asymmetric cyclopropanation reaction under phase-transfer catalyzed conditions. Tetrahedron Lett., 1999, 40(22), 4215-4218.
[http://dx.doi.org/10.1016/S0040-4039(99)00679-6]
[245]
Arai, S.; Tsuge, H.; Shioiri, T. Asymmetric epoxidation of α, β-unsaturated ketones under phase-transfer catalyzed conditions. Tetrahedron Lett., 1998, 39(41), 7563-7566.
[http://dx.doi.org/10.1016/S0040-4039(98)01646-3]
[246]
Aires-de-Sousa, J.; Lobo, A.M.; Prabhakar, S. A new enantioselective synthesis of N-arylaziridines by phase-transfer catalysis. Tetrahedron Lett., 1996, 37(18), 3183-3186.
[http://dx.doi.org/10.1016/0040-4039(96)00490-X]
[247]
Masui, M.; Ando, A.; Shioiri, T. New methods and reagents in organic synthesis. 75. asymmetric synthesis of α-hydroxy ketones using chiral phase transfer catalysts. Tetrahedron Lett., 1988, 29(23), 2835-2838.
[http://dx.doi.org/10.1016/0040-4039(88)85224-9]
[248]
Dehmlow, E.V.; Wagner, S.; Müller, A. Enantioselective PTC: Varying the cinchona alkaloid motive. Tetrahedron, 1999, 55(20), 6335-6346.
[http://dx.doi.org/10.1016/S0040-4020(99)00210-0]
[249]
de Vries, E.F.; Ploeg, L.; Colao, M.; Brussee, J.; van der Gen, A. Enantioselective oxidation of aromatic ketones by molecular oxygen, catalyzed by chiral monoaza-crown ethers. Tetrahedron Asymmetry, 1995, 6(5), 1123-1132.
[http://dx.doi.org/10.1016/0957-4166(95)00138-F]
[250]
Bhunnoo, R.A.; Hu, Y.; Lainé, D.I.; Brown, R.C. An asymmetric phase-transfer dihydroxylation reaction. Angew. Chem. Int. Ed., 2002, 41(18), 3479-3480.
[http://dx.doi.org/10.1002/1521-3773(20020916)41:18<3479:AID-ANIE3479>3.0.CO;2-O] [PMID: 12298071]
[251]
Hofstetter, C.; Wilkinson, P.S.; Pochapsky, T.C. NMR structure determination of ion pairs derived from quinine: A model for templating in asymmetric phase-transfer reductions by BH(4)(-) with implications for rational design of phase-transfer catalysts. J. Org. Chem., 1999, 64(24), 8794-8800.
[http://dx.doi.org/10.1021/jo990530h] [PMID: 11674781]
[252]
Kim, D.Y.; Park, E.J. Catalytic enantioselective fluorination of β-keto esters by phase-transfer catalysis using chiral quaternary ammonium salts. Org. Lett., 2002, 4(4), 545-547.
[http://dx.doi.org/10.1021/ol010281v] [PMID: 11843587]
[253]
Wladislaw, B.; Marzorati, L.; Biaggio, F.C.; Vargas, R.R.; Bjorklund, M.B.; Zukerman-Schpector, J. Sulfenylation of β-keto sulfoxides. III. Diastereoselectivity induced by a chiral phase transfer catalyst. Tetrahedron, 1999, 55(41), 12023-12030.
[http://dx.doi.org/10.1016/S0040-4020(99)00705-X]
[254]
Boutagy, J.; Thomas, R. Olefin synthesis with organic phosphonate carbanions. Chem. Rev., 1974, 74(1), 87-99.
[http://dx.doi.org/10.1021/cr60287a005]
[255]
Nahm, S.; Weinreb, S.M. N-Methoxy-N-methylamides as effective acylating agents. Tetrahedron Lett., 1981, 22(39), 3815-3818.
[http://dx.doi.org/10.1016/S0040-4039(01)91316-4]
[256]
Blaney, P.; Grigg, R.; Rankovic, Z.; Thornton-Pett, M.; Xu, J. Fused and bridged bi-and tri-cyclic lactams via sequential metallo-azomethine ylide cycloaddition–lactamisation. Tetrahedron, 2002, 58(9), 1719-1737.
[http://dx.doi.org/10.1016/S0040-4020(02)00029-7]
[257]
Mazurkiewicz, R. Kuik, A.; Grymel, M.; Październiok-Holewa, A. α-Amino acid derivatives with a Cα-P bond in organic synthesis. ARKIVOC, 2007, 6(6), 193-216.
[http://dx.doi.org/10.3998/ark.5550190.0008.614]
[258]
Burk, M.J. Modular phospholane ligands in asymmetric catalysis. Acc. Chem. Res., 2000, 33(6), 363-372.
[http://dx.doi.org/10.1021/ar990085c] [PMID: 10891054]
[259]
Burk, M.J.; Feaster, J.E.; Nugent, W.A.; Harlow, R.L. Preparation and use of C2-symmetric bis (phospholanes): Production of. Alpha.-amino acid derivatives via highly enantioselective hydrogenation reactions. J. Am. Chem. Soc., 1993, 115(22), 10125-10138.
[http://dx.doi.org/10.1021/ja00075a031]
[260]
Yoshifuji, S.; Tanaka, K.I.; Nitta, Y. Chemical Conversion of L-α, ω -Diamino Acids to L-ω-Carbamoyl-α-amino Acids by Ruthenium Tetroxide Oxidation. Chem. Pharm. Bull. (Tokyo), 1987, 35(7), 2994-3001.
[http://dx.doi.org/10.1248/cpb.35.2994]
[261]
Gonsalvi, L.; Arends, I.W.; Sheldon, R.A. Highly efficient use of NaOCl in the Ru-catalysed oxidation of aliphatic ethers to esters. Chem. Commun. (Camb.), 2002, (3), 202-203.
[http://dx.doi.org/10.1039/b109390h] [PMID: 12120367]
[262]
Hunt, S. The non-protein amino acids. In: Chemistry and biochemistry of the amino acids; Springer, 1985; pp. 55-138.
[http://dx.doi.org/10.1007/978-94-009-4832-7_4]
[263]
Bayda, S.; Cassen, A.; Daran, J.C.; Audin, C.; Poli, R.; Manoury, E.; Deydier, E. Synthesis and characterization of new chiral P, O ferrocenyl ligands and catalytic applica-tion to asymmetric Suzuki–Miyaura coupling. J. Organomet. Chem., 2014, 772, 258-264.
[http://dx.doi.org/10.1016/j.jorganchem.2014.09.027]
[264]
Yin, J.; Buchwald, S.L. A catalytic asymmetric Suzuki coupling for the synthesis of axially chiral biaryl compounds. J. Am. Chem. Soc., 2000, 122(48), 12051-12052.
[http://dx.doi.org/10.1021/ja005622z]
[265]
Cammidge, A.N.; Crépy, K.V. The first asymmetric Suzuki cross-coupling reaction. Chem. Commun. (Camb.), 2000, (18), 1723-1724.
[http://dx.doi.org/10.1039/b004513f]
[266]
Sawai, K.; Tatumi, R.; Nakahodo, T.; Fujihara, H. Asymmetric suzuki-miyaura coupling reactions catalyzed by chiral palladium nanoparticles at room temperature. Angew. Chem. Int. Ed. Engl., 2008, 47(36), 6917-6919.
[http://dx.doi.org/10.1002/anie.200802174] [PMID: 18671314]
[267]
Bermejo, A.; Ros, A.; Fernández, R.; Lassaletta, J.M.C. C2-symmetric bis-hydrazones as ligands in the asymmetric Suzuki-Miyaura cross-coupling. J. Am. Chem. Soc., 2008, 130(47), 15798-15799.
[http://dx.doi.org/10.1021/ja8074693] [PMID: 18980320]
[268]
Debono, N.; Labande, A.; Manoury, E.; Daran, J.C.; Poli, R. Palladium complexes of planar chiral ferrocenyl phosphine-NHC ligands: New catalysts for the asymmetric suzuki miyaura reaction. Organometallics, 2010, 29(8), 1879-1882.
[http://dx.doi.org/10.1021/om100125k]
[269]
Loxq, P.; Debono, N.; Gülcemal, S.; Daran, J.C.; Manoury, E.; Poli, R.; Çetinkaya, B.; Labande, A. Palladium (ii) complexes with planar chiral ferrocenyl phosphane–(benz) imidazol-2-ylidene ligands. New J. Chem., 2014, 38(1), 338-347.
[http://dx.doi.org/10.1039/C3NJ00863K]
[270]
Uozumi, Y.; Matsuura, Y.; Arakawa, T.; Yamada, Y.M. Asymmetric suzuki-miyaura coupling in water with a chiral palladium catalyst supported on an amphiphilic resin. Angew. Chem. Int. Ed. Engl., 2009, 48(15), 2708-2710.
[http://dx.doi.org/10.1002/anie.200900469] [PMID: 19283811]
[271]
Mao, Z.; Jia, Y.; Li, W.; Wang, R. Water-compatible iminium activation: highly enantioselective organocatalytic Michael addition of malonates to α,β-unsaturated enones. J. Org. Chem., 2010, 75(21), 7428-7430.
[http://dx.doi.org/10.1021/jo101188m] [PMID: 20936828]
[272]
Tomooka, K.; Nakazaki, A.; Nakai, T. A novel aryl migration from silicon to carbon: An efficient approach to asymmetric synthesis of α-aryl β-hydroxy cyclic amines and silanols. J. Am. Chem. Soc., 2000, 122(2), 408-409.
[http://dx.doi.org/10.1021/ja993295t]
[273]
Zu, L.; Xie, H.; Li, H.; Wang, J.; Wang, W. Highly enantioselective aldol reactions catalyzed by a recyclable fluorous (S) pyrrolidine sulfonamide on water. Org. Lett., 2008, 10(6), 1211-1214.
[http://dx.doi.org/10.1021/ol800074z] [PMID: 18271596]
[274]
Hansen, K.B.; Hsiao, Y.; Xu, F.; Rivera, N.; Clausen, A.; Kubryk, M.; Krska, S.; Rosner, T.; Simmons, B.; Balsells, J.; Ikemoto, N.; Sun, Y.; Spindler, F.; Malan, C.; Grabowski, E.J.; Armstrong, J.D., III Highly efficient asymmetric synthesis of sitagliptin. J. Am. Chem. Soc., 2009, 131(25), 8798-8804.
[http://dx.doi.org/10.1021/ja902462q] [PMID: 19507853]
[275]
Jeon, S.J.; Li, H.; Walsh, P.J. A green chemistry approach to a more efficient asymmetric catalyst: Solvent-free and highly concentrated alkyl additions to ketones. J. Am. Chem. Soc., 2005, 127(47), 16416-16425.
[http://dx.doi.org/10.1021/ja052200m] [PMID: 16305227]
[276]
Pinaka, A.; Vougioukalakis, G.C.; Dimotikali, D.; Yannakopoulou, E.; Chankvetadze, B.; Papadopoulos, K. Green asymmetric synthesis: β -amino alcohol-catalyzed direct asymmetric aldol reactions in aqueous micelles. Chirality, 2013, 25(2), 119-125.
[http://dx.doi.org/10.1002/chir.22120] [PMID: 23192785]
[277]
Calcaterra, A.; D’Acquarica, I. The market of chiral drugs: Chiral switches versus de novo enantiomerically pure compounds. J. Pharm. Biomed. Anal., 2018, 147, 323-340.
[http://dx.doi.org/10.1016/j.jpba.2017.07.008] [PMID: 28942107]
[279]
Jayakumar, R.; Vadivel, R.; Ananthi, N. Role of chirality in drugs. Organic & Medicinal Chemistry International Journal., 2018, 5(3), 71-77.
[280]
Ružena, Č.; Jindra, V.; Renáta, H. Chirality of β2-agonists. An overview of pharmacological activity, stereoselective analysis, and synthesis. Open Chem., 2020, 18(1), 628-647.
[http://dx.doi.org/10.1515/chem-2020-0056]
[281]
Churchill, G.C.; Strupp, M.; Galione, A.; Platt, F.M. Unexpected differences in the pharmacokinetics of N-acetyl-DL-leucine enantiomers after oral dosing and their clinical relevance. PLoS One, 2020, 15(2), e0229585.
[http://dx.doi.org/10.1371/journal.pone.0229585] [PMID: 32108176]
[282]
Zhu, Y.; Li, H.; Lin, K.; Wang, B.; Zhou, W. A novel and efficient asymmetric synthesis of anti-HIV drug maraviroc. Synth. Commun., 2019, 49(13), 1721-1728.
[http://dx.doi.org/10.1080/00397911.2019.1607875]
[283]
Chandra Babu, K.; Buchi Reddy, R.; Mukkanti, K.; Suresh, K.; Madhusudhan, G.; Nigam, S. Enantioselective synthesis of antiepileptic agent,()levetiracetam, through evans asymmetric strategy. J. Chem., 2013.
[284]
Wang, M.; Zhang, L.; Huo, X.; Zhang, Z.; Yuan, Q.; Li, P.; Chen, J.; Zou, Y.; Wu, Z.; Zhang, W. Catalytic asymmetric synthesis of the anti-COVID-19 drug remdesivir. Angew. Chem. Int. Ed. Engl., 2020, 59(47), 20814-20819.
[http://dx.doi.org/10.1002/anie.202011527] [PMID: 32870563]
[285]
Zhu, Y.; Liu, Z.; Li, H.; Ye, D.; Zhou, W. A novel and practical asymmetric synthesis of dapoxetine hydrochloride. Beilstein J. Org. Chem., 2015, 11(1), 2641-2645.
[http://dx.doi.org/10.3762/bjoc.11.283] [PMID: 26734109]
[286]
Robin, S.; Zhu, J.; Galons, H.; Chuong, P.H.; Claude, J.R.; Tomas, A.; Viossat, B. A convenient asymmetric synthesis of thalidomide. Tetrahedron Asymmetry, 1995, 6(6), 1249-1252.
[http://dx.doi.org/10.1016/0957-4166(95)00155-I]
[287]
Xie, X.; Xiang, L.; Peng, C.; Han, B. Catalytic asymmetric synthesis of spiropyrazolones and their application in medicinal chemistry. Chem. Rec., 2019, 19(11), 2209-2235.
[http://dx.doi.org/10.1002/tcr.201800199] [PMID: 30821425]
[288]
Zaed, A.M.; Grafton, M.W.; Ahmad, S.; Sutherland, A. Asymmetric synthesis of cis-aminocyclopentenols, building blocks for medicinal chemistry. J. Org. Chem., 2014, 79(3), 1511-1515.
[http://dx.doi.org/10.1021/jo402712r] [PMID: 24386912]
[289]
Steppeler, F.; Iwan, D. Wojaczyńska, E.; Wojaczyński, J. Chiral thioureas-preparation and significance in asymmetric synthesis and medicinal chemistry. Molecules, 2020, 25(2), 401.
[http://dx.doi.org/10.3390/molecules25020401] [PMID: 31963671]
[290]
Ghosal, P.; Shaw, A.K. An efficient total synthesis of the anticancer agent (+)-spisulosine (ES-285) from Garner’s aldehyde. Tetrahedron Lett., 2010, 51(31), 4140-4142.
[http://dx.doi.org/10.1016/j.tetlet.2010.05.146]
[291]
Liu, F.; Yu, W.; Ou, W.; Wang, X.; Ruan, L.; Li, Y.; Peng, X.; Tao, X.; Pan, X. The asymmetric synthesis of Sitagliptin, a selective dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J. Chem. Res., 2010, 34(4), 230-232.
[http://dx.doi.org/10.3184/030823410X12709912414009]
[292]
Bhutani, P.; Joshi, G.; Raja, N.; Bachhav, N.; Rajanna, P.K.; Bhutani, H.; Paul, A.T.; Kumar, R. FDA approved drugs from 2015–June 2020: A perspective. J. Med. Chem., 2021, 64(5), 2339-2381.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01786] [PMID: 33617716]
[293]
Yuan, S.; Luo, Y.Q.; Zuo, J.H.; Liu, H.; Li, F.; Yu, B. New drug approvals for 2020: Synthesis and clinical applications. Eur. J. Med. Chem., 2021, 215, 113284.
[http://dx.doi.org/10.1016/j.ejmech.2021.113284] [PMID: 33611190]
[294]
Banik, B.K.; Samajdar, S.; Becker, F.F. Asymmetric synthesis of anticancer β-lactams via Staudinger reaction. Mol. Med. Rep., 2010, 3(2), 319-321.
[http://dx.doi.org/10.3892/mmr_000000259] [PMID: 21472241]
[295]
Mukaiyama, T.; Shiina, I.; Iwadare, H.; Saitoh, M.; Nishimura, T.; Ohkawa, N.; Sakoh, H.; Nishimura, K.; Tani, Y.I.; Hasegawa, M.; Yamada, K.; Saitoh, K. Asymmetric total synthesis of taxol\R. Chemistry, 1999, 5(1), 121-161.
[http://dx.doi.org/10.1002/(SICI)1521-3765(19990104)5:1<121:AID-CHEM121>3.0.CO;2-O]
[296]
Comins, D.L.; Baevsky, M.F.; Hong, H. A 10-step, asymmetric synthesis of (S)-camptothecin. J. Am. Chem. Soc., 1992, 114(27), 10971-10972.
[http://dx.doi.org/10.1021/ja00053a049]
[297]
Hajra, S.; Garai, S.; Hazra, S. Catalytic enantioselective synthesis of ()-podophyllotoxin. Org. Lett., 2017, 19(24), 6530-6533.
[http://dx.doi.org/10.1021/acs.orglett.7b03236] [PMID: 29210277]
[298]
Wang, N.; Liu, J.; Wang, C.; Bai, L.; Jiang, X. Asymmetric total syntheses of ()-jerantinines A, C, and E,()-16-methoxytabersonine,()-vindoline, and (+)-vinblastine. Org. Lett., 2018, 20(1), 292-295.
[http://dx.doi.org/10.1021/acs.orglett.7b03694] [PMID: 29272137]
[299]
Ghosh, A.K.; Hsu, C.S. Enantioselective total synthesis of (+)-EBC-23, a potent anticancer agent from the australian rainforest. J. Org. Chem., 2021, 86(9), 6351-6360.
[http://dx.doi.org/10.1021/acs.joc.1c00172] [PMID: 33872504]
[300]
Cui, X.Y.; Zhao, Y.L.; Chen, Y.M.; Dong, S.Z.; Zhou, F.; Wu, H.H.; Zhou, J. Au-Catalyzed formal allylation of Diazo(thio)oxindoles: Application to tandem asymmetric synthesis of quaternary stereocenters. Org. Lett., 2021, 23(12), 4864-4869.
[http://dx.doi.org/10.1021/acs.orglett.1c01399] [PMID: 34080874]
[301]
Liang, X.; Li, L.; Wei, K.; Yang, Y.R. Gram-scale, seven-step total synthesis of (-)-colchicine. Org. Lett., 2021, 23(7), 2731-2735.
[http://dx.doi.org/10.1021/acs.orglett.1c00638] [PMID: 33733781]
[302]
Cui, D.Y.; Kong, H.T.; Yang, Y.; Cai, J.; Shen, B.Y.; Yan, D.C.; Zhang, X.J.; Qu, Y.L.; Bai, M.M.; Zhang, E. Asymmetric synthesis of linezolid thiazolidine-2-thione derivatives via CS2 mediated decarboxylation cyclization. Tetrahedron Lett., 2020, 61(19), 151847.
[http://dx.doi.org/10.1016/j.tetlet.2020.151847]
[303]
Cheng, M.J.; Zhong, L.P.; Gu, C.C.; Zhu, X.J.; Chen, B.; Liu, J.S.; Wang, L.; Ye, W.C.; Li, C.C. Asymmetric total synthesis of bufospirostenin A. J. Am. Chem. Soc., 2020, 142(29), 12602-12607.
[http://dx.doi.org/10.1021/jacs.0c05479] [PMID: 32658467]
[304]
Chen, K.; Xie, T.; Shen, Y.; He, H.; Zhao, X.; Gao, S.; Calixanthomycin, A.; Calixanthomycin, A. Asymmetric total synthesis and structural determination. Org. Lett., 2021, 23(5), 1769-1774.
[http://dx.doi.org/10.1021/acs.orglett.1c00193] [PMID: 33605734]
[305]
Barakat, A.; Islam, M.S.; Ghawas, H.M.; Al-Majid, A.M.; El-Senduny, F.F.; Badria, F.A.; Elshaier, Y.A.M.M.; Ghabbour, H.A. Design and synthesis of new substituted spirooxindoles as potential inhibitors of the MDM2-p53 interaction. Bioorg. Chem., 2019, 86, 598-608.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.053] [PMID: 30802707]
[306]
Hartmann, P.; Lazzarotto, M.; Steiner, L.; Cigan, E.; Poschenrieder, S.; Sagmeister, P.; Fuchs, M. TRIP-catalyzed asymmetric synthesis of (+)-Yatein, (-)-α-Conidendrin, (+)-Isostegane, and. (+)-Neoisostegane. J. Org. Chem., 2019, 84(9), 5831-5837.
[http://dx.doi.org/10.1021/acs.joc.9b00065] [PMID: 30920215]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy