Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Synthesis of Heterocyclic Compounds Based on Isatins

Author(s): Zahra Sadeghian and Mohammad Bayat*

Volume 26, Issue 8, 2022

Published on: 27 May, 2022

Page: [756 - 770] Pages: 15

DOI: 10.2174/1385272826666220430145522

Price: $65

Abstract

Isatin (1H-indole-2,3-diones) and its derivatives are a unique structure of heterocyclic molecules with great synthetic versatility and enormous biological activities of interest. Isatins have been broadly used as building blocks for the formation of a wide range of Nheterocycles. These applicable compounds undergo various reactions to form new heterocyclic compounds. The focus of this review is to summarize the recent literature and key reactions published about Pfitzinger, ring-opening, and ring expansion reactions of isatin and its derivatives during the period from 2018 to 2020. We believe this gives some insight and helps to bring about new ideas for further research.

Keywords: Isatin, 1H-Indole-2, 3-diones, Pfitzinger reaction, ring-opening, ring expansion, heterocyclic compounds.

Graphical Abstract

[1]
Johansson, H.; Jørgensen, T.B.; Gloriam, D.E.; Bräuner-Osborne, H.; Pedersen, D.S. 3-Substituted 2-phenyl-indoles: Privileged structures for medicinal chemistry. RSC Advances, 2013, 3(3), 945-960.
[http://dx.doi.org/10.1039/C2RA21902F]
[2]
Medvedev, A.; Buneeva, O.; Gnedenko, O.; Ershov, P.; Ivanov, A. Isatin, an endogenous nonpeptide biofactor: A review of its molecular targets, mechanisms of actions, and their biomedical implications. Biofactors, 2018, 44(2), 95-108.
[http://dx.doi.org/10.1002/biof.1408] [PMID: 29336068]
[3]
Zeng, R.; Dong, G. Rh-Catalyzed decarbonylative coupling with alkynes via C-C activation of isatins. J. Am. Chem. Soc., 2015, 137(4), 1408-1411.
[http://dx.doi.org/10.1021/ja512306a] [PMID: 25569352]
[4]
Zhao, H.W.; Yang, Z.; Meng, W.; Tian, T.; Li, B.; Song, X.Q.; Chen, X.Q.; Pang, H.L. Diastereo- and enantioselective synthesis of chiral pyrrolidine-fused spirooxindoles via organocatalytic [3+2] 1,3-dipolar cycloaddition of azomethine ylides with maleimides. Adv. Synth. Catal., 2015, 357(11), 2492-2502.
[http://dx.doi.org/10.1002/adsc.201500162]
[5]
Borad, M.A.; Bhoi, M.N.; Prajapati, N.P.; Patel, H.D. Review of synthesis of multispiro heterocyclic compounds from isatin. Synth. Commun., 2014, 44(8), 1043-1057.
[http://dx.doi.org/10.1080/00397911.2013.858361]
[6]
Langdon, S.R.; Brown, N.; Blagg, J. Scaffold diversity of exemplified medicinal chemistry space. J. Chem. Inf. Model., 2011, 51(9), 2174-2185.
[http://dx.doi.org/10.1021/ci2001428] [PMID: 21877753]
[7]
Halfen, J.A. Recent advances in metal-mediated carbon-nitrogen bond formation reactions: Aziridination and amidation. Curr. Org. Chem., 2005, 9(7), 657-669.
[http://dx.doi.org/10.2174/1385272053765024]
[8]
Wang, L.; Priebbenow, D.L.; Dong, W.; Bolm, C. N-Arylations of sulfoximines with 2-arylpyridines by copper-mediated dual N-H/C-H activation. Org. Lett., 2014, 16(10), 2661-2663.
[http://dx.doi.org/10.1021/ol500963p] [PMID: 24786106]
[9]
Shvekhgeimer, M.G.A. The Pfitzinger reaction. Chem. Heterocycl. Compd., 2004, 40(3), 257-294.
[http://dx.doi.org/10.1023/B:COHC.0000028623.41308.e5]
[10]
Sau, P.; Rakshit, A.; Modi, A.; Behera, A.; Patel, B.K. Three sequential C–N bond formations: Tert-butyl nitrite as a N1 synthon in a three component reaction leading to Imidazo[1,2-a]quinolines and Imidazo[2,1-a]isoquinolines. J. Org. Chem., 2018, 83(2), 1056-1064.
[http://dx.doi.org/10.1021/acs.joc.7b02815] [PMID: 29260562]
[11]
Elghamry, I.; Al-Faiyz, Y. A simple one-pot synthesis of quinoline-4-carboxylic acids by the Pfitzinger reaction of isatin with enaminones in water. Tetrahedron Lett., 2016, 57(1), 110-112.
[http://dx.doi.org/10.1016/j.tetlet.2015.11.070]
[12]
Bissantz, C.; Kuhn, B.; Stahl, M. A medicinal chemist’s guide to molecular interactions. J. Med. Chem., 2010, 53(14), 5061-5084.
[http://dx.doi.org/10.1021/jm100112j] [PMID: 20345171]
[13]
Wang, H.; Li, L.; Lin, W.; Xu, P.; Huang, Z.; Shi, D. An efficient synthesis of pyrrolo[2,3,4-kl]acridin-1-one derivatives catalyzed by L-proline. Org. Lett., 2012, 14(17), 4598-4601.
[http://dx.doi.org/10.1021/ol302058g] [PMID: 22920713]
[14]
Shukla, P.K.; Singh, M.P.; Patel, R. A review on recent advances in chemistry, synthesis and biological applications of isatin derivatives. J. Appl. Pharm. Sci., 2018, 1(2), 16-22.
[15]
Sridhar, S.K.; Britoraj, S.; Rajasekhar, S.; Sundaraseelan, J. Review of chemical, pharmacological, biological activities of isatin and its derivatives – part-1 (1877 to 2002). J. Sci. Technol., 2020, 5(3), 225-247.
[16]
Guo, H. Isatin derivatives and their anti-bacterial activities. Eur. J. Med. Chem., 2019, 164, 678-688.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.017] [PMID: 30654239]
[17]
Moradi, R.; Mohammadi Ziarani, G.; Lashgari, N. Recent applications of isatin in the synthesis of organic compounds. ARKIVOC, 2017, i(1), 148-201.
[http://dx.doi.org/10.24820/ark.5550190.p009.980]
[18]
Liu, Y.C.; Zhang, R.; Wua, Q.Y. Recent developments in the synthesis and applications of isatins. Org. Prep. Proced. Int., 2014, 46(4), 317-362.
[http://dx.doi.org/10.1080/00304948.2014.922378]
[19]
Nath, R.; Pathania, S.; Grover, G.; Akhtar, M.J. Isatin containing heterocycles for different biological activities: Analysis of structure activity relationship. J. Mol. Struct., 2020, 1222, 128900.
[http://dx.doi.org/10.1016/j.molstruc.2020.128900]
[20]
Sangshetti, J.N.; Zambare, A.S. Pfitzinger reaction in the synthesis of bioactive compounds-a review. Mini Rev. Org. Chem., 2014, 11, 2.
[http://dx.doi.org/10.2174/1570193X113106660020]
[21]
Xuan, D.D. Recent progress in the synthesis of quinolines. Curr. Org. Synth., 2019, 16(38), 671-708.
[http://dx.doi.org/10.2174/1570179416666190719112423]
[22]
Pinto, S.; Ligia, S.; Vasconcelos, T.R. Eco-friendly methodologies for the synthesis of quinoline nucleus. Mini Rev. Org. Chem., 2019, 16(7), 602-608.
[23]
Rukhsana, T.; Ashfaq, M.; Hiroyuki, O. Recent advances in transition metal free synthetic protocols for quinoline derivatives. Curr. Org. Chem., 2020, 24(38), 1815-1852.
[24]
Weyesa, A.; Mulugeta, E. Recent advances in the synthesis of biologically and pharmaceutically active quinoline and its analogues: A review. RSC Advances, 2020, 10(35), 20784-20793.
[http://dx.doi.org/10.1039/D0RA03763J]
[25]
Mekheimer, R.A.; Al-Sheikh, M.A.; Medrasi, H.Y.; Sadek, K.U. Advancements in the synthesis of fused tetracyclic quinoline derivatives. RSC Advances, 2020, 10(34), 19867-19935.
[http://dx.doi.org/10.1039/D0RA02786C]
[26]
Prajapati, S.M.; Patel, K.D.; Vekariya, R.H.; Panchal, S.N.; Patel, H.D. Recent advances in the synthesis of quinolines: A review. RSC Advances, 2014, 4(47), 24463-24476.
[http://dx.doi.org/10.1039/C4RA01814A]
[27]
Patel, K.D.; Vekariya, R.H.; Prajapati, N.P.; Patel, D.B. Recent advances in synthesis of quinoline-4-carboxylic acid and their biological evaluation: A review. J. Chem. Pharm. Res., 2017, 9(2), 216-230.
[28]
Shinde, V.V.; Jeong, D.; Joo, S.W.; Cho, E.; Jung, S. Mono-6-deoxy-6-aminopropylamino-β-cyclodextrin as a supramolecular catalyst for the synthesis of indolyl 1H-pyrrole via one-pot four component reaction in water. Catal. Commun., 2018, 103, 83-87.
[http://dx.doi.org/10.1016/j.catcom.2017.10.001]
[29]
Ren, Y.; Yang, B.; Liao, X. Merging supramolecular catalysis and aminocatalysis: Amino-appended β-cyclodextrins (ACDs) as efficient and recyclable supramolecular catalysts for the synthesis of tetraketones. RSC Advances, 2016, 6(26), 22034-22042.
[http://dx.doi.org/10.1039/C6RA01002D]
[30]
Ren, Y.; Yang, B.; Liao, X. The amino side chains do matter: Chemoselectivity in the one-pot three-component synthesis of 2-amino-4H-chromenes by supramolecular catalysis with amino-appended β-cyclodextrins (ACDs) in water. Catal. Sci. Technol., 2016, 6(12), 4283-4293.
[http://dx.doi.org/10.1039/C5CY01888A]
[31]
Wender, H.; Migowski, P.; Feil, A.F.; Teixeria, S.R. Sputtering deposition of nanoparticles onto liquid substrates: Recent advances and future trends. J. Dupont. Coord. Chem. Rev., 2013, 257(17-18), 2468-2483.
[http://dx.doi.org/10.1016/j.ccr.2013.01.013]
[32]
Wu, J.; Zhang, H.; Ding, X.; Ding, X.; Tan, X.; Shen, H.C.; Chen, J.; Song, L.; Cao, W. Efficient synthesis of perfluoroalkylated quinolines via a metal-free cascade mi-chael addition/intramolecular rearrangement cyclization process. Tetrahedron, 2020, 76(43), 131518.
[http://dx.doi.org/10.1016/j.tet.2020.131518]
[33]
Shinde, V.V.; Jeong, D.; Jung, S. An amino-chain modified β-cyclodextrin: A Supramolecular Ligand for Pd (OAc) 2 acceleration in suzuki–miyaura coupling reactions in water. Catalysts, 2019, 9(2), 111.
[http://dx.doi.org/10.3390/catal9020111]
[34]
Zhou, P.; Hu, B.; Wang, Y.; Zhang, Q.; Li, X.; Yan, S.; Yu, F. Convenient synthesis of quinoline-4-carboxylate derivatives through the bi(otf)3-catalyzed domino cycliza-tion/esterification reaction of isatins with enaminones in alcohols. Eur. J. Org. Chem., 2018, 33(33), 4527-4535.
[http://dx.doi.org/10.1002/ejoc.201800734]
[35]
Zhou, P.; Hu, B.; Zhao, S.; Zhang, Q.; Wang, Y.; Li, X.; Yu, F. An improved Pfitzinger reaction for the direct synthesis of quinoline-4-carboxylic esters/acids mediated by TMSCl. Tetrahedron Lett., 2018, 59(32), 3116-3119.
[http://dx.doi.org/10.1016/j.tetlet.2018.07.006]
[36]
Shinde, V.V.; Jeong, D.; Jung, S. Supramolecular aminocatalysis via inclusion complex: Amino-doped β-cyclodextrin as an efficient supramolecular catalyst for the synthesis of chromeno pyrimido[1,2-b]indazol in water. J. Ind. Eng. Chem., 2018, 68, 6-13.
[http://dx.doi.org/10.1016/j.jiec.2018.08.010]
[37]
Rostami-Charati, F.; Ghasemi, N. Synthesis of quinolines in water using nano KF/Clinoptilolite: An effective heterogeneous nanocatalyst base. Iran. J. Org., 2019, 11, 2555-2559.
[38]
Ray, S.; Brown, M.; Bhaumik, A.; Dutta, A.; Mukhopadhyay, C. A new MCM-41 supported HPF6 catalyst for the library synthesis of highly substituted 1,4-dihydropyridines and oxidation to pyridines: Report of one-dimensional packing towards LMSOMs and studies on their photophysical properties. Green Chem., 2013, 15(7), 1910-1924.
[http://dx.doi.org/10.1039/c3gc40441b]
[39]
Mal, K.; Chatterjee, S.; Bhaumik, A.; Mukhopadhyay, C. Mesoporous mcm-41 silica supported pyridine nanoparticle: A highly efficient, recyclable catalyst for expedi-tious synthesis of quinoline derivatives through domino approach. ChemistrySelect, 2019, 4(5), 1776-1784.
[http://dx.doi.org/10.1002/slct.201803708]
[40]
Afkham, A.; Mokhtari, J.; Haghighi, A.J.; Yavari, I. An unexpected synthesis of 2, 3, 4trisubstituted quinolines from iminoisatin and acetylenic esters catalyzed by pyridine as an organocatalyst. ChemistrySelect, 2018, 3(31), 9159-9161.
[http://dx.doi.org/10.1002/slct.201801785]
[41]
Filali Baba, Y.; Sert, Y.; Kandri Rodi, Y.; Hayani, S.; Mague, J.T.; Prim, D.; Marrot, J.; Ouazzani Chahdi, F.; Sebbar, N.K.; Essassi, E.M. Synthesis, crystal structure, spectroscopic characterization, Hirshfeld surface analysis, molecular docking studies and DFT calculations, and antioxidant activity of 2-oxo-1,2-dihydroquinoline-4-carboxylate derivatives. J. Mol. Struct., 2019, 1188, 255-268.
[http://dx.doi.org/10.1016/j.molstruc.2019.03.103]
[42]
Filali Baba, Y.; Misbahi, H. 2-oxo-1,2-dihydroquinoline-4-carboxylic acid derivatives as potent modulators of ABCB1-related drug resistance of mouse T-lymphoma cells, Chem. Data. Collect., 2020, 29, 100501.
[43]
Paterna, R.; Padanha, R.; Russo, R.; Frade, R.; Faustino, H.; Gois, P.M.P. Synthesis of 4-substituted-3-Hydroxyquinolin-2 (1H)-ones with anticancer activity. Tetrahedron, 2020, 76(51), 130983.
[http://dx.doi.org/10.1016/j.tet.2020.130983]
[44]
Kim, Y.; Shinde, V.V.; Jeong, D.; Jung, S. Utilization of water-soluble aminoethylamino–β-cyclodextrin in the Pfitzinger reaction—catalyzed to the synthesis of di-versely functionalized quinaldine. Polymers (Basel), 2020, 12(2), 393.
[http://dx.doi.org/10.3390/polym12020393] [PMID: 32050480]
[45]
Shinotsuka, R.; Oba, T.; Mitome, T.; Masuya, T.; Ito, S.; Murakami, Y.; Kagenishi, T.; Kodama, Y.; Matsuda, M.; Yoshida, T.; Wakamori, M.; Ohkura, M.; Nakai, J. Syn-thesis of quinolyl-pyrrole derivatives as novel environment-sensitive fluorescent probes. J. Photochem. Photobiol. Chem., 2019, 382, 111900.
[http://dx.doi.org/10.1016/j.jphotochem.2019.111900]
[46]
Musharrafieh, R.; Zhang, J.; Tuohy, P.; Kitamura, N.; Bellampalli, S.S.; Hu, Y.; Khanna, R.; Wang, J. Discovery of quinoline analogues as potent antivirals against entero-virus D68 (EV-D68). J. Med. Chem., 2019, 62(8), 4074-4090.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00115] [PMID: 30912944]
[47]
Khan, N.A.; Khan, I.; Abid, S.M.A.; Zaib, S.; Ibrar, A.; Andleeb, H.; Hameed, S.; Iqbal, J. Quinolinic carboxylic acid derivatives as potential multi-target compounds for neurodegeneration: Monoamine oxidase and cholinesterase inhibition. Med. Chem., 2018, 14(1), 74-85.
[http://dx.doi.org/10.2174/1573406413666170525125231] [PMID: 28545383]
[48]
Chaudhary, S.; Mukherjee, M.; Paul, T.K.; Bishnoi, S.; Taraphder, S.; Milton, M.D. Novel phenothiazine-5-oxide based push-pull molecules: Synthesis and fine-tuning of electronic, optical and thermal properties. ChemistrySelect, 2018, 3(18), 5073-5081.
[http://dx.doi.org/10.1002/slct.201800131]
[49]
Zhang, S.; Liu, S.; Zhang, Q.; Deng, Y. Solvent-dependent photoresponsive conductivity of azobenzene-appended ionic liquids. Chem. Commun. (Camb.), 2011, 47(23), 6641-6643.
[http://dx.doi.org/10.1039/c1cc11924a] [PMID: 21566803]
[50]
Xue, Z.; Qin, L.; Jiang, J.; Mu, T.; Gao, G. Thermal, electrochemical and radiolytic stabilities of ionic liquids. Phys. Chem. Chem. Phys., 2018, 20(13), 8382-8402.
[http://dx.doi.org/10.1039/C7CP07483B] [PMID: 29503990]
[51]
Neves, C.M.S.S.; Kurnia, K.A.; Coutinho, J.A.P.; Marrucho, I.M.; Lopes, J.N.; Freire, M.G.; Rebelo, L.P. Systematic study of the thermophysical properties of imidazoli-um-based ionic liquids with cyano-functionalized anions. J. Phys. Chem. B, 2013, 117(35), 10271-10283.
[http://dx.doi.org/10.1021/jp405913b] [PMID: 23941052]
[52]
Zhuge, Y.; Xu, D.; Zheng, C.; Pu, S. An ionic liquid-modified diarylethene: Synthesis, properties and sensing cyanide ions. Anal. Chim. Acta, 2019, 1079, 153-163.
[http://dx.doi.org/10.1016/j.aca.2019.06.039] [PMID: 31387706]
[53]
Abdelwahid, M.A.S.; Elsaman, T.; Mohamed, M.S. Synthesis, characterization, and antileishmanial activity of certain quinoline-4-carboxylic acids, J. Chem 2019 2019.
[http://dx.doi.org/10.1155/2019/2859637]
[54]
Kotlova, A.I.; Kolokolov, F.A. Synthesis and luminescent properties of Eu3+, Gd3+, and Tb3+ complexes with quinoline-4-carboxylic acids. Russ. J. Genet., 2019, 89, 1901-1908.
[55]
Yi, X.G.; Fang, X.N.; Wang, Y.F.; Guo, J.; Li, J. Synthesis, characterization, properties, and theoretical calculation of an inorganic–organic hybrid mononuclear copper(ii) complex containing 3-hydroxy-2-methyl-quinoline-4-carboxylate. J. Chem. Crystallogr., 2020, 50(4), 348-356.
[http://dx.doi.org/10.1007/s10870-019-00808-2]
[56]
Abo-Salem, H.M.; Nassrallah, A.; Soliman, A.A.F.; Ebied, M.S.; Elawady, M.E.; Abdelhamid, S.A.; El-Sawy, E.R.; Al-Sheikh, Y.A.; Aboul-Soud, M.A.M. Synthesis and bioactivity assessment of novel spiro pyrazole-oxindole congeners exhibiting potent and selective in vitro anticancer effects. Molecules, 2020, 25(5), 1124.
[http://dx.doi.org/10.3390/molecules25051124] [PMID: 32138244]
[57]
Lee, J.F.; Chang, T.Y.; Liu, Z.F.; Lee, N.Z.; Yeh, Y.H.; Chen, Y.S.; Chen, T.C.; Chou, H.S.; Li, T.K.; Lee, S.B.; Lin, M.H. Design, synthesis, and biological evaluation of heterotetracyclic quinolinone derivatives as anticancer agents targeting topoisomerases. Eur. J. Med. Chem., 2020, 190, 112074.
[http://dx.doi.org/10.1016/j.ejmech.2020.112074] [PMID: 32045788]
[58]
Maklakova, S.Y.; Chuprov, A.D.; Mazhuga, M.P.; Beloglazkina, E.K.; Zyk, N.V.; Majouga, A.G. Synthesis of ethynyl-3-hydroxyquinoline-4-carboxylic acids. Russ. Chem. Bull., 2019, 68(7), 1460-1461.
[http://dx.doi.org/10.1007/s11172-019-2579-z]
[59]
El-Husseiny, W.M.; El-Sayed, M.A.A.; Abdel-Aziz, N.I.; El-Azab, A.S.; Ahmed, E.R.; Abdel-Aziz, A.A. Synthesis, antitumour and antioxidant activities of novel α,β-unsaturated ketones and related heterocyclic analogues: EGFR inhibition and molecular modelling study. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 507-518.
[http://dx.doi.org/10.1080/14756366.2018.1434519] [PMID: 29455554]
[60]
Yang, Y.T.; Du, S.; Wang, S.; Jia, X.; Wang, X.; Zhang, X. Synthesis of new steroidal quinolines with antitumor properties. Steroids, 2019, 151, 108465.
[http://dx.doi.org/10.1016/j.steroids.2019.108465] [PMID: 31351940]
[61]
Moussaoui, O.; Hadrami, E.M.E. Synthesis of a new series of quinoline-carboxamides based on methylated aminoesters: NMR characterization and antimicrobial activi-ty. J. Chem., 2019, 9, 326-336.
[62]
Ramaraju, A.; Chouhan, N.K.; Ravi, O.; Sridhar, B.; Bathula, S.R. Cu-catalyzed coupling of O-acyl oximes with isatins: Domino rearrangement strategy for direct access to quinoline-4- carboxamides by C–N bond cleavage. Eur. J. Org. Chem., 2018, 2018(23), 2963-2971.
[http://dx.doi.org/10.1002/ejoc.201800501]
[63]
Tiwari, K.N.; Choubey, R.; Shukla, S.; Gautam, P. An efficient and direct synthesis of substituted 2-phenylquinoline-4-carboxamides from 3-substituted-3-hydroxyindolin-2-ones. ARKIVOC, 2018, iii(3), 165-173.
[http://dx.doi.org/10.24820/ark.5550190.p009.760]
[64]
Hamdy, R.; Elseginy, S.A.; Ziedan, N.I.; Jones, A.T.; Westwell, A.D. New quinoline-based heterocycles as anticancer agents targeting Bcl-2. Molecules, 2019, 24(7), 1274.
[http://dx.doi.org/10.3390/molecules24071274] [PMID: 30986908]
[65]
Gao, Q.; Liu, Z.; Wang, Y.; Wu, X.; Zhang, J.; Wu, A. I2triggered reductive generation of ncentered iminyl radicals: An isatintoquinoline strategy for the introduc-tion of primary amides. Adv. Synth. Catal., 2018, 360(7), 1364-1369.
[http://dx.doi.org/10.1002/adsc.201701610]
[66]
Wang, B.Q.; Zhang, C.H.; Tian, X.X.; Lin, J.; Yan, S.J. Cascade reaction of isatins with 1, 1-enediamines: Synthesis of multisubstituted quinoline-4-carboxamides. Org. Lett., 2018, 20(3), 660-663.
[http://dx.doi.org/10.1021/acs.orglett.7b03803] [PMID: 29323495]
[67]
Das, R.N.; Chevret, E.; Desplat, V.; Rubio, S.; Mergny, J.L.; Guillon, J. Design, synthesis and biological evaluation of new substituted diquinolinyl-pyridine ligands as anticancer agents by targeting G-Quadruplex. Molecules, 2017, 23(1), 81.
[http://dx.doi.org/10.3390/molecules23010081] [PMID: 29301210]
[68]
Selvakumar, K.; Vaithiyanathan, V.; Shanmugam, P. An efficient stereoselective synthesis of 3-spirocyclopentene- and 3-spiropyrazole-2-oxindoles via 1,3-dipolar cycloaddition reaction. Chem. Commun. (Camb.), 2010, 46(16), 2826-2828.
[http://dx.doi.org/10.1039/b924066g] [PMID: 20369196]
[69]
Keesari, N.R.; Mudavath, S. Microwave accelerated azomethine ylide cycloaddition with Baylis–Hillman adducts. Synth. Commun., 2020, 50, 973-979.
[http://dx.doi.org/10.1080/00397911.2020.1725975]
[70]
Ramu, G.; Ambala, S.; Nanubolu, J.B.; Babu, B.N. Regioselective ring expansion followed by H-shift of 3-ylidene oxindoles: A convenient synthesis of N-substituted/un-substituted pyrrolo[2,3-c] quinolines and marinoquinolines. RSC Advances, 2019, 9(60), 35068-35072.
[http://dx.doi.org/10.1039/C9RA07831B]
[71]
Lv, S.; Sun, Y.; Xu, Y.; Yang, S.; Wang, L. Lewis base catalyzed ring-expansion of isatin with 2, 2, 2-trifluorodiazoethane (CF3CHN2): An efficient route to 3-hydroxy-4-(trifluoromethyl) quinolinones. Chin. Chem. Lett., 2020, 31(6), 1568-1571.
[http://dx.doi.org/10.1016/j.cclet.2019.11.027]
[72]
Jamali, M.F.; Gupta, E.; Kumar, A.; Kant, R.; Mohanan, K. Agcatalyzed trifluoromethylative ring expansion of isatins and isatin ketimines with trifluorodiazoethane. Chem. Asian J., 2020, 15(6), 757-761.
[http://dx.doi.org/10.1002/asia.201901799] [PMID: 32017397]
[73]
Tangella, Y.; Manasa, K.L.; Krishna, N.H.; Sridhar, B.; Kamal, A.; Nagendra Babu, B. Regioselective ring expansion of isatins with in situ generated α-aryldiazomethanes: Direct access to viridicatin alkaloids. Org. Lett., 2018, 20(12), 3639-3642.
[http://dx.doi.org/10.1021/acs.orglett.8b01417] [PMID: 29874092]
[74]
Jiang, S.F.; Xu, C.; Zhou, Z.W.; Zhang, Q.; Wen, X.H.; Jia, F.C.; Wu, A.X. Switchable Access to 3-Carboxylate-4-quinolones and 1-Vinyl-3-carboxylate-4-quinolones via Oxidative Cyclization of Isatins and Alkynes. Org. Lett., 2018, 20(14), 4231-4234.
[http://dx.doi.org/10.1021/acs.orglett.8b01645] [PMID: 29953242]
[75]
Yang, C.Y.; Hung, Y.L.; Tang, K.W.; Wang, S.C.; Tseng, C.H.; Tzeng, C.C.; Liu, P.L.; Li, C.Y.; Chen, Y.L. Discovery of 2-substituted 3-arylquinoline derivatives as poten-tial anti-Inflammatory agents through inhibition of LPS-induced inflammatory responses in macrophages. Molecules, 2019, 24(6), 1162.
[http://dx.doi.org/10.3390/molecules24061162] [PMID: 30909606]
[76]
Zhou, W.; Yang, Y.; Liu, Y.; Deng, G.J. Copper-catalyzed C–C bond cleavage and intramolecular cyclization: An approach toward acridones. Green Chem., 2013, 15(1), 76-80.
[http://dx.doi.org/10.1039/C2GC36502B]
[77]
Yu, J.; Yang, H.; Jiang, Y.; Fu, H. Copper-catalyzed aerobic oxidative C-H and C-C functionalization of 1-[2-(arylamino)aryl]ethanones leading to acridone derivatives. Chemistry, 2013, 19(13), 4271-4277.
[http://dx.doi.org/10.1002/chem.201204169] [PMID: 23401330]
[78]
Mohammadi-Khanaposhtani, M.; Shabani, M.; Faizi, M.; Aghaei, I.; Jahani, R.; Sharafi, Z.; Shamsaei Zafarghandi, N.; Mahdavi, M.; Akbarzadeh, T.; Emami, S.; Shafiee, A.; Foroumadi, A. Design, synthesis, pharmacological evaluation, and docking study of new acridone-based 1,2,4-oxadiazoles as potential anticonvulsant agents. Eur. J. Med. Chem., 2016, 112, 91-98.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.054] [PMID: 26890115]
[79]
Zhang, D.; Jiang, X.; Yang, H.; Martinez, A.; Feng, M.; Dong, Z.; Gao, G. Acridine-based macrocyclic fluorescent sensors: Self-assembly behavior characterized by crystal structures and a tunable bathochromic-shift in emission induced by H2PO4(-)via adjusting the ring size and rigidity. Org. Biomol. Chem., 2013, 11(20), 3375-3381.
[http://dx.doi.org/10.1039/c3ob27500k] [PMID: 23563223]
[80]
Parveen, M.; Aslam, A.; Nami, S.A.A.; Malla, A.M.; Alam, M.; Lee, D.U.; Rehman, S.; Silva, P.S.; Silva, M.R. Potent acetylcholinesterase inhibitors: Synthesis, biological assay and docking study of nitro acridone derivatives. J. Photochem. Photobiol. B, 2016, 161, 304-311.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.05.028] [PMID: 27295412]
[81]
Sharma, B.K.; Shaikh, A.M.; Agarwal, N.; Kamble, R.M. Synthesis, photophysical and electrochemical studies of acridone-amine based donor–acceptors for hole transport materials. RSC Advances, 2016, 6(21), 17129-17137.
[http://dx.doi.org/10.1039/C5RA25115J]
[82]
Pang, X.; Lou, Z.; Li, M.; Wen, L.; Chen, C. Tandem Arylation/Friedel–Crafts reactions of O-acylanilines with diaryliodonium salts: A modular synthesis of acridine derivatives. Eur. J. Org. Chem., 2015, 15(15), 3361-3369.
[http://dx.doi.org/10.1002/ejoc.201500161]
[83]
Ye, X.; Plessow, P.N.; Brinks, M.K.; Schelwies, M.; Schaub, T.; Rominger, F.; Paciello, R.; Limbach, M.; Hofmann, P. Alcohol amination with ammonia catalyzed by an acridine-based ruthenium pincer complex: A mechanistic study. J. Am. Chem. Soc., 2014, 136(16), 5923-5929.
[http://dx.doi.org/10.1021/ja409368a] [PMID: 24684701]
[84]
Graham, L.A.; Suryadi, J.; West, T.K.; Kucera, G.L.; Bierbach, U. Synthesis, aqueous reactivity, and biological evaluation of carboxylic acid ester-functionalized plati-num-acridine hybrid anticancer agents. J. Med. Chem., 2012, 55(17), 7817-7827.
[http://dx.doi.org/10.1021/jm300879k] [PMID: 22871158]
[85]
Wu, H.; Ma, N.; Song, M.; Zhang, G. Dimethyl sulfoxide-aided copper (0)-catalyzed intramolecular decarbonylative rearrangement of N-aryl isatins leading to acridones. Chin. Chem. Lett., 2020, 31(6), 1580-1583.
[http://dx.doi.org/10.1016/j.cclet.2019.10.043]
[86]
Wu, H.; Zhang, Z.; Liu, Q.; Liu, T.; Ma, N.; Zhang, G. Syntheses of acridones via copper(ii)-mediated relay reactions from O-aminoacetophenones and arylboronic acids. Org. Lett., 2018, 20(10), 2897-2901.
[http://dx.doi.org/10.1021/acs.orglett.8b00957] [PMID: 29697264]
[87]
Melyshenkova, V.V.; Kuznetsov, D.N.; Ruchkina, A.G.; Kobrakov, K.I. Synthesis of new acridine-9-carboxylic acid derivatives. Russ. Chem. Bull., 2018, 67(5), 878-883.
[http://dx.doi.org/10.1007/s11172-018-2152-1]
[88]
Wang, L.C.; Du, S.; Chen, Z.; Wu, X.F. FeCl3-mediated synthesis of 2-(trifluoromethyl)quinazolin-4(3h)-ones from isatins and trifluoroacetimidoyl chlorides. Org. Lett., 2020, 22(14), 5567-5571.
[http://dx.doi.org/10.1021/acs.orglett.0c01927] [PMID: 32610908]
[89]
Wang, D.; Xiao, F.; Zhang, F.; Huang, H. Coppercatalyzed aerobic oxidative ring expansion of isatins: A facile entry to isoquinolinofused quinazolinones. Chin. J. Chem., 2020, 38.
[90]
Amara, R.; Awad, H.; Chaker, D.; Bentabed-Ababsa, G.; Lassagne, F.; Erb, W.; Chevallier, F.; Roisnel, T.; Dorcet, V.; Fajloun, Z.; Vidal, J.; Mongin, F. Conversion of isatins to tryptanthrins, heterocycles endowed with a myriad of bioactivities. Eur. J. Org. Chem., 2019, 2019(31-32), 5302-5312.
[http://dx.doi.org/10.1002/ejoc.201900352]
[91]
Nikoofar, K.; Peyrovebaghi, S.S. 1-Butyl-2-methylpipyridinium iodide ([BMPPY]I): Novel ionic liquid for the synthesis of 6-hydroxy-6-(1H-indol-3-yl)indolo[2,1-b]quinazolin-12(6H)-ones under green solvent-free conditions. Res. Chem. Intermed., 2019, 45(9), 4287-4298.
[http://dx.doi.org/10.1007/s11164-019-03831-2]
[92]
Santoro, S.; Kozhushkov, S.I.; Ackermann, L.; Vaccaro, L. Heterogeneous catalytic approaches in C–H activation reactions. Green Chem., 2016, 18(12), 3471-3493.
[http://dx.doi.org/10.1039/C6GC00385K]
[93]
Kadam, S.T.; Thirupathi, P.; Kim, S.S. Amberlyst-15: A efficient and reusable catalyst for the Friedel–Crafts reactions of activated arenes and heteroarenes with α-amido sulfones. Tetrahedron, 2009, 65(50), 10383-10389.
[http://dx.doi.org/10.1016/j.tet.2009.10.044]
[94]
Yekariya, R.L. A review of ionic liquids: Applications towards catalytic organic transformations. J. Mol. Liq., 2017, 227, 44-60.
[http://dx.doi.org/10.1016/j.molliq.2016.11.123]
[95]
Niu, Q.; Xi, J.; Li, L.; Li, L.; Pan, C.; Rong, L. Isatins 3-C annulation vs ring-opening: Two different pathways for synthesis of spiro compounds via multicomponent reactions. Tetrahedron Lett., 2019, 60(43), 151181.
[http://dx.doi.org/10.1016/j.tetlet.2019.151181]
[96]
Mamedov, V.A.; Khafizova, E.A.; Syakaev, V.V. Sequential rearrangements of ethyl 2-(3-chloro-2-oxoindolin-3- yl)acetates and 1H,1′H-spiro[quinoline- 4,2′-quinoxaline]-2,3′ (3H,4′H)- diones for the efficient synthesis of 4- (benzimidazol-2-yl)quinolin-2(1H)-ones, New mater. compd. appl 2018, 2, 42-70.
[97]
Ren, J.W.; Zhao, Q.L.; Xiao, J.A.; Xia, P.J.; Xiang, H.Y.; Chen, X.Q.; Yang, H. A one-pot ring-opening/ring-closure sequence for the synthesis of polycyclic spirooxin-doles. Chemistry, 2019, 25(18), 4673-4677.
[http://dx.doi.org/10.1002/chem.201900409] [PMID: 30840339]
[98]
Ashraf, A.; Shafiq, Z.; Mahmood, K.; Yaqub, M.; Rauf, W. Regioselective, one-pot, multi-component, green synthesis of substituted benzo [c] pyrazolo [2, 7] naphthy-ridines. RSC Advances, 2020, 10(10), 5938-5950.
[http://dx.doi.org/10.1039/C9RA09148C]
[99]
Wang, Y.W.; Zheng, L.; Jia, F.C.; Chen, Y.F.; Wu, X. Oxidative ring-opening of isatins for the synthesis of 2-aminobenzamides and 2-aminobenzoates. Tetrahedron, 2019, 75(11), 1497-1503.
[http://dx.doi.org/10.1016/j.tet.2019.01.067]
[100]
Wang, H.; Xu, Z.; Deng, G.J.; Huang, H. Selective formation of 2‐(2‐aminophenyl) benzothiazoles via coppercatalyzed aerobic C C bond cleavage of isatins. Adv. Synth. Catal., 2020, 362(8), 1663-1668.
[http://dx.doi.org/10.1002/adsc.201901670]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy