Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Versatile Applications of Nanotechnology-based Electronic Nose

Author(s): Shwetha M, Agnishwar Girigoswami, Deepika B, Gopikrishna A and Koyeli Girigoswami*

Volume 12, Issue 5, 2022

Published on: 25 August, 2022

Article ID: e090622205779 Pages: 11

DOI: 10.2174/2210681212666220609104504

Price: $65

Abstract

Background: In recent years, electronic noses have emerged as a component of nanotechnology- based technologies to meet various demands in the health sciences.

Objective: To have a detailed idea regarding the various uses of electronic noses in the early detection of diseases, food spoilage, etc., we need to explore multiple studies.

Methods: Electronic noses are the foundation for the development of biosensors, which are primarily used to identify the many volatile organic chemicals that cause various diseases that are released from the lungs. The electronic nose can distinguish between the breath patterns of healthy people and people with diseases such as cancer, cardiovascular disease, diabetes, neurological problems, etc.

Results: In the field of food industry, bacterial contamination and other kinds of food spoilage can be detected at an early stage by identifying the pattern of gases evolved from these food items using the electronic nose.

Conclusion: Thus, there are versatile applications of electronic noses in the early diagnosis of lifethreatening diseases, chemical industry, food industries, etc., which will be discussed in this review.

Keywords: Electronic nose, bionanotechnology, VOC levels, lung cancer, food spoilage, volatile

Graphical Abstract

[1]
Girigoswami, A.; Mitra Ghosh, M.; Pragya, P.; Seenuvasan, R.; Girigoswami, K. Nanotechnology in detection of food toxins–focus on the dairy products. Biointerface Res. Appl. Chem., 2021, 11(6), 14155-14172.
[http://dx.doi.org/10.33263/BRIAC116.1415514172]
[2]
Girigoswami, K.; Girigoswami, A. A review on the role of nanosensors in detecting cellular miRNA expression in colorectal cancer. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(1), 12-26.
[http://dx.doi.org/10.2174/1871530320666200515115723] [PMID: 32410567]
[3]
Metkar, S.K.; Girigoswami, K. Diagnostic biosensors in medicine–a review. Biocatal. Agric. Biotechnol., 2019, 17, 271-283.
[http://dx.doi.org/10.1016/j.bcab.2018.11.029]
[4]
Girigoswami, K.; Akhtar, N. Nanobiosensors and fluorescence based biosensors: An overview. Int. J. Nanodimens., 2019, 10(1), 1-7.
[5]
Thendral, V.; Dharshni, T.; Ramalakshmi, M.; Girigoswami, A.; Girigoswami, K. Cerium oxide nanocluster based nanobiosensor for ROS detection. Biocatal. Agric. Biotechnol., 2019, 19, 101124.
[http://dx.doi.org/10.1016/j.bcab.2019.101124]
[6]
De, S.; Gopikrishna, A.; Keerthana, V.; Girigoswami, A.; Girigoswami, K. An overview of nanoformulated nutraceuticals and their therapeutic approaches. Curr. Nutr. Food Sci., 2021, 17(4), 392-407.
[http://dx.doi.org/10.2174/1573401316999200901120458]
[7]
Ghosh, S.; Girigoswami, K.; Girigoswami, A. Membrane-encapsulated camouflaged nanomedicines in drug delivery. Nanomedicine, 2019, 14(15), 2067-2082.
[http://dx.doi.org/10.2217/nnm-2019-0155] [PMID: 31355709]
[8]
Sharmiladevi, P.; Breghatha, M.; Dhanavardhini, K.; Priya, R.; Girigoswami, K.; Girigoswami, A. Efficient wormlike micelles for the controlled delivery of anticancer drugs. Nanosci. Nanotechnol. Asia, 2021, 11(3), 350-356.
[http://dx.doi.org/10.2174/2210681210999200728115601]
[9]
Ojo, O.A.; Olayide, I.I.; Akalabu, M.C.; Ajiboye, B.O.; Ojo, A.B.; Oyinloye, B.E.; Ramalingam, M. Nanoparticles and their biomedical applications. Biointerface Res. Appl. Chem., 2021, 11(1), 8431-8445.
[http://dx.doi.org/10.33263/BRIAC111.84318445]
[10]
Haribabu, V.; Sharmiladevi, P.; Akhtar, N.; Farook, A.S.; Girigoswami, K.; Girigoswami, A. Label free ultrasmall fluoromagnetic ferrite-clusters for targeted cancer imaging and drug delivery. Curr. Drug Deliv., 2019, 16(3), 233-241.
[http://dx.doi.org/10.2174/1567201816666181119112410] [PMID: 30451110]
[11]
Sharmiladevi, P.; Haribabu, V.; Girigoswami, K.; Sulaiman Farook, A.; Girigoswami, A. Effect of mesoporous nano water reservoir on MR relaxivity. Sci. Rep., 2017, 7(1), 11179.
[http://dx.doi.org/10.1038/s41598-017-11710-2] [PMID: 28894269]
[12]
Sharmiladevi, P.; Akhtar, N.; Haribabu, V.; Girigoswami, K.; Chattopadhyay, S.; Girigoswami, A. Excitation wavelength independent carbon-decorated ferrite nanodots for multimodal diagnosis and stimuli responsive therapy. ACS Appl. Bio Mater., 2019, 2(4), 1634-1642.
[http://dx.doi.org/10.1021/acsabm.9b00039] [PMID: 35026897]
[13]
Haribabu, V.; Girigoswami, K.; Girigoswami, A. Magneto-silver core–shell nanohybrids for theragnosis. Nano-Struct. Nano-Objects, 2021, 25, 100636.
[http://dx.doi.org/10.1016/j.nanoso.2020.100636]
[14]
Girigoswami, A.; Yassine, W.; Sharmiladevi, P.; Haribabu, V.; Girigoswami, K. Camouflaged nanosilver with excitation wavelength dependent high quantum yield for targeted theranostic. Sci. Rep., 2018, 8(1), 16459.
[http://dx.doi.org/10.1038/s41598-018-34843-4] [PMID: 30405190]
[15]
Sharmiladevi, P.; Girigoswami, K.; Haribabu, V.; Girigoswami, A. Nano-enabled theranostics for cancer. Mater. Adv., 2021, 2(9), 2876-2891.
[http://dx.doi.org/10.1039/D1MA00069A]
[16]
Haribabu, V.; Girigoswami, K.; Sharmiladevi, P.; Girigoswami, A. Water-nanomaterial interaction to escalate twin-mode magnetic resonance imaging. ACS Biomater. Sci. Eng., 2020, 6(8), 4377-4389.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00409] [PMID: 33455176]
[17]
Vimaladevi, M.; Divya, K.C.; Girigoswami, A. Liposomal nanoformulations of rhodamine for targeted photodynamic inactivation of multidrug resistant gram negative bacteria in sewage treatment plant. J. Photochem. Photobiol. B, 2016, 162, 146-152.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.06.034] [PMID: 27371913]
[18]
Rhee, C.K. Nanotechnology as a savior in asthma management. Ann. Transl. Med., 2019, 7(20), 517.
[http://dx.doi.org/10.21037/atm.2019.09.98] [PMID: 31807499]
[19]
Röck, F.; Barsan, N.; Weimar, U. Electronic nose: Current status and future trends. Chem. Rev., 2008, 108(2), 705-725.
[http://dx.doi.org/10.1021/cr068121q] [PMID: 18205411]
[20]
Wilson, D. Recent progress in the design and clinical development of electronic-nose technologies. Nanobiosensors in Disease Diagnosis, 2016, 5, 15-27.
[http://dx.doi.org/10.2147/NDD.S66278]
[21]
Tudor Kalit, M; Marković, K; Kalit, S; Vahčić, N; Havranek, J. Application of electronic nose and electronic tongue in the dairy industry. Mljekarstvo: časopis za unaprjeđenje proizvodnje i prerade mlijeka, 2014, 65(4), 228-44.
[http://dx.doi.org/10.15567/mljekarstvo.2014.0402]
[22]
Shende, P.; Vaidya, J.; Kulkarni, Y.A.; Gaud, R.S. Systematic approaches for biodiagnostics using exhaled air. J. Control. Release, 2017, 268, 282-295.
[http://dx.doi.org/10.1016/j.jconrel.2017.10.035] [PMID: 29111149]
[23]
Wongchoosuk, C.; Lutz, M.; Kerdcharoen, T. Detection and classification of human body odor using an electronic nose. Sensors, 2009, 9(9), 7234-7249.
[http://dx.doi.org/10.3390/s90907234] [PMID: 22399995]
[24]
Amoore, J.E. Current status of the steric theory of odor. Ann. N. Y. Acad. Sci., 1964, 116(2), 457-476.
[http://dx.doi.org/10.1111/j.1749-6632.1964.tb45075.x] [PMID: 14220538]
[25]
Gardner, J.W.; Shin, H.W.; Hines, E.L. An electronic nose system to diagnose illness. Sens. Actuators B Chem., 2000, 70(1-3), 19-24.
[http://dx.doi.org/10.1016/S0925-4005(00)00548-7]
[26]
Wilson, A.D.; Baietto, M. Applications and advances in electronicnose technologies. Sensors, 2009, 9(7), 5099-5148.
[http://dx.doi.org/10.3390/s90705099] [PMID: 22346690]
[27]
Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical biosensors - sensor principles and architectures. Sensors, 2008, 8(3), 1400-1458.
[http://dx.doi.org/10.3390/s80314000] [PMID: 27879772]
[28]
Ramanathan, K.; Danielsson, B. Principles and applications of thermal biosensors. Biosens. Bioelectron., 2001, 16(6), 417-423.
[http://dx.doi.org/10.1016/S0956-5663(01)00124-5] [PMID: 11672656]
[29]
Pohanka, M. Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials, 2018, 11(3), 448.
[http://dx.doi.org/10.3390/ma11030448] [PMID: 29562700]
[30]
Fogel, R.; Limson, J.; Seshia, A.A. Acoustic biosensors. Essays Biochem., 2016, 60(1), 101-110.
[http://dx.doi.org/10.1042/EBC20150011] [PMID: 27365040]
[31]
Baldwin, E.A.; Bai, J.; Plotto, A.; Dea, S. Electronic noses and tongues: Applications for the food and pharmaceutical industries. Sensors, 2011, 11(5), 4744-4766.
[http://dx.doi.org/10.3390/s110504744] [PMID: 22163873]
[32]
Arshak, K.; Moore, E.; Lyons, G.M.; Harris, J.; Clifford, S. A review of gas sensors employed in electronic nose applications. Sens. Rev., 2004, 24(2), 181-198.
[http://dx.doi.org/10.1108/02602280410525977]
[33]
Compagnone, D.; Faieta, M.; Pizzoni, D.; Di Natale, C.; Paolesse, R.; Van Caelenberg, T.; Beheydt, B.; Pittia, P. Quartz crystal microbalance gas sensor arrays for the quality control of chocolate. Sens. Actuators B Chem., 2015, 207, 1114-1120.
[http://dx.doi.org/10.1016/j.snb.2014.10.049]
[34]
Meixner, H.; Lampe, U. Metal oxide sensors. Sens. Actuators B Chem., 1996, 33(1-3), 198-202.
[http://dx.doi.org/10.1016/0925-4005(96)80098-0]
[35]
Castro, M.; Kumar, B.; Feller, J.F.; Haddi, Z.; Amari, A.; Bouchikhi, B.E. Novel e-nose for the discrimination of volatile organic biomarkers with an array of carbon nanotubes (CNT) conductive polymer nanocomposites (CPC) sensors. Sens. Actuators B Chem., 2011, 159(1), 213-219.
[http://dx.doi.org/10.1016/j.snb.2011.06.073]
[36]
Gauglitz, G. Direct optical sensors: Principles and selected applications. Anal. Bioanal. Chem., 2005, 381(1), 141-155.
[http://dx.doi.org/10.1007/s00216-004-2895-4] [PMID: 15700161]
[37]
Mohammed, A.; Makia, R.; Ali, M.; Raheem, R.; Yousif, E. Cytotoxic effects of valsartan organotin (IV) complexes on human lung cancer cells. Biointerface Res. Appl. Chem., 2020, 11(1), 1-9.
[http://dx.doi.org/10.33263/BRIAC111.81568164]
[38]
D’Amico, A.; Pennazza, G.; Santonico, M.; Martinelli, E.; Roscioni, C.; Galluccio, G.; Paolesse, R.; Di Natale, C. An investigation on electronic nose diagnosis of lung cancer. Lung Cancer, 2010, 68(2), 170-176.
[http://dx.doi.org/10.1016/j.lungcan.2009.11.003] [PMID: 19959252]
[39]
Crucitti, PF; Longo, F; Rocco, R; Rocco, G The state of the art on lung cancer diagnosis. Breath Analysis, 2019, 121-129.
[http://dx.doi.org/10.1016/B978-0-12-814562-3.00007-2]
[40]
Swanson, B.; Fogg, L.; Julion, W.; Arrieta, M.T. Electronic nose analysis of exhaled breath volatiles to identify lung cancer cases: A systematic review. J. Assoc. Nurses AIDS Care: JANAC, 2020, 31(1), 71-79.
[http://dx.doi.org/10.1097/JNC.0000000000000146] [PMID: 31860595]
[41]
Dragonieri, S.; Annema, J.T.; Schot, R.; van der Schee, M.P.; Spanevello, A.; Carratú, P.; Resta, O.; Rabe, K.F.; Sterk, P.J. An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung Cancer, 2009, 64(2), 166-170.
[http://dx.doi.org/10.1016/j.lungcan.2008.08.008] [PMID: 18834643]
[42]
Dragonieri, S.; Pennazza, G.; Carratu, P.; Resta, O. Electronic nose technology in respiratory diseases. Lung, 2017, 195(2), 157-165.
[http://dx.doi.org/10.1007/s00408-017-9987-3] [PMID: 28238110]
[43]
v A, B.; Subramoniam, M.; Mathew, L. Detection of COPD and Lung Cancer with electronic nose using ensemble learning methods. Clin. Chim. Acta, 2021, 523, 231-238.
[http://dx.doi.org/10.1016/j.cca.2021.10.005] [PMID: 34627826]
[44]
v A, B.; Subramoniam, M.; Mathew, L. Noninvasive detection of COPD and Lung Cancer through breath analysis using MOS Sensor array based e-nose. Expert Rev. Mol. Diagn., 2021, 21(11), 1223-1233.
[http://dx.doi.org/10.1080/14737159.2021.1971079] [PMID: 34415806]
[45]
Bouchikhi, B.; Zaim, O.; El Bari, N.; Lagdali, N.; Benelbarhdadi, I.; Ajana, F.Z. Diagnosing lung and gastric cancers through exhaled breath analysis by using electronic nose technology combined with pattern recognition methods. 2021 IEEE Sensors; IEEE, 2021, pp. 1-4.
[http://dx.doi.org/10.1109/SENSORS47087.2021.9639700]
[46]
Chen, Q.; Chen, Z.; Liu, D.; He, Z.; Wu, J. Constructing an E-nose using metal-ion-induced assembly of graphene oxide for diagnosis of lung cancer via exhaled breath. ACS Appl. Mater. Interfaces, 2020, 12(15), 17713-17724.
[http://dx.doi.org/10.1021/acsami.0c00720] [PMID: 32203649]
[47]
Chen, K.; Liu, L.; Nie, B.; Lu, B.; Fu, L.; He, Z.; Li, W.; Pi, X.; Liu, H. Recognizing lung cancer and stages using a self-developed electronic nose system. Comput. Biol. Med., 2021, 131, 104294.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104294] [PMID: 33647830]
[48]
Lu, B.; Fu, L.; Nie, B.; Peng, Z.; Liu, H. A Novel Framework with High Diagnostic Sensitivity for Lung Cancer Detection by Electronic Nose. Sensors, 2019, 19(23), 5333.
[http://dx.doi.org/10.3390/s19235333]
[49]
Saidi, T.; Moufid, M.; de Jesus Beleño-Saenz, K.; Welearegay, T.G.; El Bari, N.; Jaimes-Mogollon, A.L.; Ionescu, R.; Bourkadi, J.E.; Benamor, J.; El Ftouh, M.; Bouchikhi, B. Non-invasive prediction of lung cancer histological types through exhaled breath analysis by UV-irradiated electronic nose and GC/QTOF/MS. Sens. Actuators B Chem., 2020, 311, 127932.
[http://dx.doi.org/10.1016/j.snb.2020.127932]
[50]
Peng, G.; Tisch, U.; Adams, O.; Hakim, M.; Shehada, N.; Broza, Y.Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Haick, H. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol., 2009, 4(10), 669-673.
[http://dx.doi.org/10.1038/nnano.2009.235] [PMID: 19809459]
[51]
Moon, H.G.; Jung, Y.; Han, S.D.; Shim, Y.S.; Shin, B.; Lee, T.; Kim, J.S.; Lee, S.; Jun, S.C.; Park, H.H.; Kim, C.; Kang, C.Y. Chemiresistive electronic nose toward detection of biomarkers in exhaled breath. ACS Appl. Mater. Interfaces, 2016, 8(32), 20969-20976.
[http://dx.doi.org/10.1021/acsami.6b03256] [PMID: 27456161]
[52]
Xing, R.; Xu, L.; Song, J.; Zhou, C.; Li, Q.; Liu, D.; Wei Song, H. Preparation and gas sensing properties of In2O3/Au nanorods for detection of volatile organic compounds in exhaled breath. Sci. Rep., 2015, 5(1), 10717.
[http://dx.doi.org/10.1038/srep10717] [PMID: 26030482]
[53]
Kumar, B.; Feller, J.F.; Castro, M.; Lu, J. Conductive bio-Polymer nano-Composites (CPC): Chitosan-carbon nanotube transducers assembled via spray layer-by-layer for volatile organic compound sensing. Talanta, 2010, 81(3), 908-915.
[http://dx.doi.org/10.1016/j.talanta.2010.01.036] [PMID: 20298872]
[54]
Tisch, U.; Schlesinger, I.; Ionescu, R.; Nassar, M.; Axelrod, N.; Robertman, D.; Tessler, Y.; Azar, F.; Marmur, A.; Aharon-Peretz, J.; Haick, H. Detection of Alzheimer’s and Parkinson’s disease from exhaled breath using nanomaterial-based sensors. Nanomedicine, 2013, 8(1), 43-56.
[http://dx.doi.org/10.2217/nnm.12.105] [PMID: 23067372]
[55]
Jia, W.; Liang, G.; Wang, Y.; Wang, J. Electronic noses as a powerful tool for assessing meat quality: A mini review. Food Anal. Methods, 2018, 11(10), 2916-2924.
[http://dx.doi.org/10.1007/s12161-018-1283-1]
[56]
Bonah, E.; Huang, X.; Aheto, J.H.; Osae, R. Application of electronic nose as a non-invasive technique for odor fingerprinting and detection of bacterial foodborne pathogens: A review. J. Food Sci. Technol., 2020, 57(6), 1977-1990.
[http://dx.doi.org/10.1007/s13197-019-04143-4] [PMID: 32431324]
[57]
Gobbi, E.; Falasconi, M.; Zambotti, G.; Sberveglieri, V.; Pulvirenti, A.; Sberveglieri, G. Rapid diagnosis of Enterobacteriaceae in vegetable soups by a metal oxide sensor based electronic nose. Sens. Actuators B Chem., 2015, 207, 1104-1113.
[http://dx.doi.org/10.1016/j.snb.2014.10.051]
[58]
Ezhilan, M.; Nesakumar, N.; Jayanth Babu, K.; Srinandan, C.S.; Rayappan, J.B.B. An electronic nose for royal delicious apple quality assessment - A tri-layer approach. Food Res. Int., 2018, 109, 44-51.
[http://dx.doi.org/10.1016/j.foodres.2018.04.009] [PMID: 29803469]
[59]
Gomes, MT Electronic nose in dairy products. In: Electronic noses and tongues in food science; Academic Press, 2016; pp. 21-30.
[http://dx.doi.org/10.1016/B978-0-12-800243-8.00003-2]
[60]
Weng, X.; Luan, X.; Kong, C.; Chang, Z.; Li, Y.; Zhang, S.; Al-Majeed, S.; Xiao, Y. A comprehensive method for assessing meat freshness using fusing electronic nose, computer vision, and artificial tactile technologies. J. Sens., 2020, 2020, 2020.
[http://dx.doi.org/10.1155/2020/8838535]
[61]
Radi, R.; Wahyudi, E.; Adhityamurti, M.D.; Putro, J.P.; Barokah, B.; Rohmah, D.N. Freshness assessment of tilapia fish in traditional market based on an electronic nose. Bull. Electr. Eng. Inform., 2021, 10(5), 2466-2476.
[http://dx.doi.org/10.11591/eei.v10i5.3111]
[62]
Marco, F.L.; Sabino, C.; Tuti, G.S.; Luisetto, I.; Petritoli, E.; Pecora, A.; Maiolo, L.; Đurović-Pejčev, R.; Đorđević, T.; Tomašević, A.; Bursić, V. Electronic nose for pesticides detection: A first realization. In 2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), 2017, pp. 403-407.
[http://dx.doi.org/10.1109/MetroAeroSpace.2017.7999606]
[63]
Eusebio, L.; Capelli, L.; Sironi, S. Electronic nose testing procedure for the definition of minimum performance requirements for environmental odor monitoring. Sensors, 2016, 16(9), 1548.
[http://dx.doi.org/10.3390/s16091548] [PMID: 27657086]
[64]
Avalos, M.; van Wezel, G.P.; Raaijmakers, J.M.; Garbeva, P. Healthy scents: Microbial volatiles as new frontier in antibiotic research? Curr. Opin. Microbiol., 2018, 45, 84-91.
[http://dx.doi.org/10.1016/j.mib.2018.02.011] [PMID: 29544125]
[65]
Ramgir, N.S. Electronic nose based on nanomaterials: Issues, challenges, and prospects. ISRN Nanomater., 2013, 2013, 941581.
[http://dx.doi.org/10.1155/2013/941581]
[66]
Cellini, A.; Blasioli, S.; Biondi, E.; Bertaccini, A.; Braschi, I.; Spinelli, F. Potential applications and limitations of electronic nose devices for plant disease diagnosis. Sensors, 2017, 17(11), 2596.
[http://dx.doi.org/10.3390/s17112596] [PMID: 29137109]
[67]
Farraia, M.V.; Cavaleiro Rufo, J.; Paciência, I.; Mendes, F.; Delgado, L.; Moreira, A. The electronic nose technology in clinical diagnosis: A systematic review. Porto Biomed. J., 2019, 4(4), e42.
[http://dx.doi.org/10.1097/j.pbj.0000000000000042] [PMID: 31930178]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy