Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Self-emulsifying Drug Delivery System for Oral Anticancer Therapy: Constraints and Recent Development

Author(s): Mrugank Pandya, Bappaditya Chatterjee* and Srikar Ganti

Volume 28, Issue 31, 2022

Published on: 07 September, 2022

Page: [2538 - 2553] Pages: 16

DOI: 10.2174/03666220606143443

Price: $65

Abstract

Oral anticancer therapy faces several drawbacks: low aqueous solubility, poor and irregular absorption from gastrointestinal sites, high first-pass metabolism, food-influenced absorption, non-targeted delivery, severe systemic and local adverse effects, etc. Enhancement of oral bioavailability could reduce the drug load and associated adverse effects. Self-emulsifying drug delivery systems (SEDDS) can enhance in-vivo solubility and drug absorption from the gastrointestinal tract, bypass liver metabolism by lymphatic absorption and inhibit efflux transport. All these phenomena ultimately result in improved oral bioavailability. Anticancer drug delivery using the SEDDS has shown promising results for bioavailability and pharmacodynamic response. A handful of research studies have produced evidence of the successful loading of anticancer agents in SEDDS-based formulations. Various potent and established chemotherapeutic agents such as docetaxel, paclitaxel, etoposide, 5 Fluorouracil, doxorubicin etc., have been successfully formulated and evaluated. Improved bioavailability and reduction of dose might be possible by SEDDS. It could be effective for low-dose drugs. But, excessive surfactant- cosurfactant concentration, lacking predictive in-vitro models and adequate IVIVC, and unavailability of toxicity data are certain challenges for future researchers. No clinical trials have been recorded with anticancer drug-loaded SEDDS. Overcoming the challenges and further progression to clinical studies are required to avail the benefits of anticancer SEDDS.

Keywords: Self-emulsifying, SEDDS, SNEDDS, anticancer, bioavailability, oral delivery.

[1]
Rohrer J, Zupančič O, Hetényi G, Kurpiers M, Bernkop-Schnürch A. Design and evaluation of SEDDS exhibiting high emulsifying properties. J Drug Deliv Sci Technol 2018; 44: 366-72.
[http://dx.doi.org/10.1016/j.jddst.2018.01.013]
[2]
Chatterjee B, Almurisi HS, Dukhan AM, Mandal UK, Sengupta P. Controversies with self-emulsifying drug delivery system from pharmacokinetic point of view. Drug Deliv 2016; 23(9): 3639-52.
[http://dx.doi.org/10.1080/10717544.2016.1214990] [PMID: 27685505]
[3]
Patil SL, Nigade PM, Tiwari SS. Self emulsifying drug delivery system (SEDDS): A Review. Int J Pharm Biol Sci 2012; 2(2): 42-52.
[4]
Kohli K, Chopra S, Dhar D, Arora S, Khar RK. Self-emulsifying drug delivery systems: An approach to enhance oral bioavailability. Drug Discov Today 2010; 15(21-22): 958-65.
[http://dx.doi.org/10.1016/j.drudis.2010.08.007] [PMID: 20727418]
[5]
Kommuru TR, Gurley B, Khan MA, Reddy IK. Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: Formulation development and bioavailability assessment. Int J Pharm 2001; 212(2): 233-46.
[http://dx.doi.org/10.1016/S0378-5173(00)00614-1] [PMID: 11165081]
[6]
Fakruddin MD. Biosurfactant: production and application. J Pet Environ Biotechnol 2012; 3(4): 124.
[http://dx.doi.org/10.4172/2157-7463.1000124]
[7]
Dinshaw IJ, Ahmad N, Salim N. Nanoemulsions: A review on the conceptualization of treatment for psoriasis using a ‘green’ surfactant with low-energy emulsification method. Pharmaceutics 2021; 13(7): 1024.
[8]
Kuruvila FS, Mathew F, Kuppuswamy S. Solid self nanoemulsifying drug delivery system (Snedds) devolopment, applications and future perspective : A review. Indo Am J Pharm Sci 2017; 4(03): 651-69.
[9]
Rani S, Rana R, Saraogi GK, Kumar V, Gupta U. Self-Emulsifying oral lipid drug delivery systems: Advances and challenges. AAPS PharmSciTech 2019; 20(3): 129.
[http://dx.doi.org/10.1208/s12249-019-1335-x] [PMID: 30815765]
[10]
Ge L, You X, Zhang Y, et al. Development of self-emulsifying nanoplatform as anti-diabetic sulfonylurea carrier for oral diabetes therapy. J Biomed Nanotechnol 2017; 13(8): 931-45.
[http://dx.doi.org/10.1166/jbn.2017.2385]
[11]
Zaichik S, Steinbring C, Menzel C, et al. Development of self-emulsifying drug delivery systems (SEDDS) for ciprofloxacin with improved mucus permeating properties. Int J Pharm 2018; 547(1-2): 282-90.
[http://dx.doi.org/10.1016/j.ijpharm.2018.06.005] [PMID: 29883790]
[12]
Jangipuria F, Londhe V. Solubility enhancement of Lurasidone hydrochloride by preparing SMEDDS. Int J Pharm Pharm Sci 2015; 7(11): 283-8.
[13]
Kazi M, Al-Amri KA, Alanazi FK. The role of lipid-based drug delivery systems for enhancing solubility of highly selective antiviral agent acyclovir. Pharm Dev Technol 2017; 22(3): 312-21.
[http://dx.doi.org/10.3109/10837450.2015.1089899] [PMID: 26458371]
[14]
Banerjee S, Sengupta PS, Mukherjee AK. A detailed theoretical DFT study of the hydrolysis mechanism of orally active anticancer drug ZD0473. Chem Phys Lett 2010; 487(1–3): 108-15.
[http://dx.doi.org/10.1016/j.cplett.2010.01.001]
[15]
Wheate NJ, Walker S, Craig GE, Oun R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans 2010; 39(35): 8113-27.
[http://dx.doi.org/10.1039/c0dt00292e] [PMID: 20593091]
[16]
Minagar A, Alexander JS, Sahraian MA, Zivadinov R. Alemtuzumab and multiple sclerosis: Therapeutic application. Expert Opin Biol Ther 2010; 10(3): 421-9.
[http://dx.doi.org/10.1517/14712591003586806] [PMID: 20095876]
[17]
Cranfill PJ, Sell BR, Baird MA, et al. Quantitative assessment of fluorescent proteins. Nat Methods 2016; 13(7): 557-62.
[http://dx.doi.org/10.1038/nmeth.3891] [PMID: 27240257]
[18]
Westphal M, Ylä-Herttuala S, Martin J, et al. Adenovirus-mediated gene therapy with sitimagene ceradenovec followed by intravenous ganciclovir for patients with operable high-grade glioma (ASPECT): A randomised, open-label, phase 3 trial. Lancet Oncol 2013; 14(9): 823-33.
[http://dx.doi.org/10.1016/S1470-2045(13)70274-2] [PMID: 23850491]
[19]
Shahshahan MA, Beckley MN, Jazirehi AR. Potential usage of proteasome inhibitor bortezomib (Velcade, PS-341) in the treatment of metastatic melanoma: Basic and clinical aspects. Am J Cancer Res 2011; 1: 913-24.
[20]
Morales A, Eidinger D, Bruce AW. Intracavitary bacillus calmette-guerin in the treatment of superficial bladder tumors. J Urol 2017; 197(2S): S142-5.
[http://dx.doi.org/10.1016/j.juro.2016.10.101] [PMID: 28012770]
[21]
Birudukota N, Mudgal MM, Shanbhag V. Discovery and development of azasteroids as anticancer agents. Steroids 2019; 152: 108505.
[http://dx.doi.org/10.1016/j.steroids.2019.108505] [PMID: 31568765]
[22]
Zimmer L, Goldinger SM, Hofmann L, et al. Neurological, respiratory, musculoskeletal, cardiac and ocular side-effects of anti-PD-1 therapy. Eur J Cancer 2016; 60: 210-25.
[http://dx.doi.org/10.1016/j.ejca.2016.02.024] [PMID: 27084345]
[23]
Neves H, Kwok HF. Recent advances in the field of anti-cancer immunotherapy. BBA Clin 2015; 3: 280-8.
[http://dx.doi.org/10.1016/j.bbacli.2015.04.001] [PMID: 26673349]
[24]
Thanki K, Gangwal RP, Sangamwar AT, Jain S. Oral delivery of anticancer drugs: Challenges and opportunities. J Control Release 2013; 170(1): 15-40.
[http://dx.doi.org/10.1016/j.jconrel.2013.04.020] [PMID: 23648832]
[25]
AboulFotouh K, Allam A, El-Badry M. Self-emulsifying drug delivery systems: Easy to prepare multifunctional vectors for efficient oral delivery. In: Current and Future Aspects Nanomedicines. 2020.
[http://dx.doi.org/10.5772/intechopen.88412]
[26]
Kuo YC, Cheng SJ. Brain targeted delivery of carmustine using solid lipid nanoparticles modified with tamoxifen and lactoferrin for antitumor proliferation. Int J Pharm 2016; 499(1-2): 10-9.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.054]
[27]
Abu Lila AS, Ishida T, Kiwada H. Targeting anticancer drugs to tumor vasculature using cationic liposomes. Pharm Res 2010; 27(7): 1171-83.
[http://dx.doi.org/10.1007/s11095-010-0110-1] [PMID: 20333455]
[28]
Ünal H, Öztürk N, Bilensoy E. Formulation development, stability and anticancer efficacy of core-shell cyclodextrin nanocapsules for oral chemotherapy with camptothecin. Beilstein J Org Chem 2015; 11: 204-12.
[http://dx.doi.org/10.3762/bjoc.11.22] [PMID: 25815071]
[29]
Truong DH, Tran TH, Ramasamy T, et al. Development of solid self-emulsifying formulation for improving the oral bioavailability of erlotinib. AAPS PharmSciTech 2016; 17(2): 466-73.
[http://dx.doi.org/10.1208/s12249-015-0370-5]
[30]
Kumar A, Sharma S, Kamble R. Self emulsifying drug delivery system (SEDDS): Future aspects. Int J Pharm Pharm Sci 2010; 2(4): 7-13.
[31]
Schlichtig K, Dürr P, Dörje F, Fromm MF. Neworal anti-cancer drugs and medications safety. Dtsch Arztebl Int 2019; 116(46): 775-82.
[http://dx.doi.org/10.3238/arztebl.2019.0775] [PMID: 31920193]
[32]
Barclay C. Key points.1st Ed. In: Practitioner. Routledge In: 2018; 262: p. 25.
[http://dx.doi.org/10.4324/9780203994559-14]
[33]
Thomas SA, John T, Criner E, Nguyen TM. Challenges to oral chemotherapy adherence. US Pharm 2019; 44(6): HS-9-HS-12.
[34]
Tran P, Pyo YC, Kim DH, Lee SE, Kim JK, Park JS. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics 2019; 11(3): 1-26.
[http://dx.doi.org/10.3390/pharmaceutics11030132] [PMID: 30893899]
[35]
Markovic M, Zur M, Ragatsky I, Cvijić S, Dahan A. Bcs class iv oral drugs and absorption windows: Regional-dependent intestinal permeability of furosemide. Pharmaceutics 2020; 12(12): 1-16.
[http://dx.doi.org/10.3390/pharmaceutics12121175] [PMID: 33276565]
[36]
Sandhu PS, Beg S, Mehta F, Singh B, Trivedi P. Novel dietary lipid-based self-nanoemulsifying drug delivery systems of paclitaxel with p-gp inhibitor: Implications on cytotoxicity and biopharmaceutical performance. Expert Opin Drug Deliv 2015; 12(11): 1809-22.
[http://dx.doi.org/10.1517/17425247.2015.1060219] [PMID: 26144859]
[37]
Pollard J, Rajabi-Siahboomi A, Badhan RKS, Mohammed AR, Perrie Y. High-throughput screening of excipients with a biological effect: A kinetic study on the effects of surfactants on efflux-mediated transport. J Pharm Pharmacol 2019; 71(6): 889-97.
[http://dx.doi.org/10.1111/jphp.13072] [PMID: 30784086]
[38]
Al-Ali AAA, Nielsen RB, Steffansen B, Holm R, Nielsen CU. Nonionic surfactants modulate the transport activity of ATP-binding cassette (ABC) transporters and solute carriers (SLC): Relevance to oral drug absorption. Int J Pharm 2019; 566: 410-33.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.033] [PMID: 31125713]
[39]
Hanke U, May K, Rozehnal V, Nagel S, Siegmund W, Weitschies W. Commonly used nonionic surfactants interact differently with the human efflux transporters ABCB1 (p-glycoprotein) and ABCC2 (MRP2). Eur J Pharm Biopharm 2010; 76(2): 260-8.
[http://dx.doi.org/10.1016/j.ejpb.2010.06.008] [PMID: 20600890]
[40]
Bansal T, Akhtar N, Jaggi M, Khar RK, Talegaonkar S. Novel formulation approaches for optimising delivery of anticancer drugs based on P-glycoprotein modulation. Drug Discov Today 2009; 14(21-22): 1067-74.
[http://dx.doi.org/10.1016/j.drudis.2009.07.010] [PMID: 19647803]
[41]
Von Hoff DD, Ervin T, Arena FP, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 2013; 369(18): 1691-703.
[http://dx.doi.org/10.1056/NEJMoa1304369] [PMID: 24131140]
[42]
Gallo JM, Li S, Guo P, Reed K, Ma J. The effect of P-glycoprotein on paclitaxel brain and brain tumor distribution in mice. Cancer Res 2003; 63(16): 5114-7.
[PMID: 12941842]
[43]
Song RF, Li XJ, Cheng XL, et al. Paclitaxel-loaded trimethyl chitosan-based polymeric nanoparticle for the effective treatment of gastroenteric tumors. Oncol Rep 2014; 32(4): 1481-8.
[http://dx.doi.org/10.3892/or.2014.3344] [PMID: 25051142]
[44]
Cui Y, Xu Q, Chow PKH, Wang D, Wang CH. Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment. Biomaterials 2013; 34(33): 8511-20.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.075] [PMID: 23932498]
[45]
Atyabi F, Sobhani M, Adeli R. Increased paclitaxel cytotoxicity against cancer cell lines using a novel functionalized carbon nanotube. Int J Nanomedicine 2011; 6: 705-19.
[http://dx.doi.org/10.2147/IJN.S17336]
[46]
Jing X, Deng L, Gao B, et al. A novel polyethylene glycol mediated lipid nanoemulsion as drug delivery carrier for paclitaxel. Nanomedicine 2014; 10(2): 371-80.
[http://dx.doi.org/10.1016/j.nano.2013.07.018] [PMID: 23969104]
[47]
Ma P, Mumper RJ. Paclitaxel nano-delivery systems: A comprehensive review. J Nanomed Nanotechnol 2013; 4(2): 1000164.
[http://dx.doi.org/10.4172/2157-7439.1000164] [PMID: 24163786]
[48]
Ding D, Sun B, Cui W, et al. Integration of phospholipid-drug complex into self-nanoemulsifying drug delivery system to facilitate oral delivery of paclitaxel. Asian J Pharm Sci 2019; 14(5): 552-8.
[http://dx.doi.org/10.1016/j.ajps.2018.10.003] [PMID: 32104482]
[49]
Li Z, Zhang W, Gao Y, et al. Development of self-nanoemulsifying drug delivery system for oral bioavailability enhancement of valsartan in beagle dogs. Drug Deliv Transl Res 2017; 7(1): 100-10.
[http://dx.doi.org/10.1007/s13346-016-0342-7] [PMID: 27812915]
[50]
Dangre P, Gilhotra R, Dhole S. Formulation and statistical optimization of self-microemulsifying drug delivery system of eprosartan mesylate for improvement of oral bioavailability. Drug Deliv Transl Res 2016; 6(5): 610-21.
[http://dx.doi.org/10.1007/s13346-016-0318-7] [PMID: 27465619]
[51]
Beg S, Swain S, Singh HP, Patra ChN, Rao ME. Development, optimization, and characterization of solid self-nanoemulsifying drug delivery systems of valsartan using porous carriers. AAPS PharmSciTech 2012; 13(4): 1416-27.
[http://dx.doi.org/10.1208/s12249-012-9865-5] [PMID: 23070560]
[52]
Bandyopadhyay S, Katare OP, Singh B. Optimized self nano-emulsifying systems of ezetimibe with enhanced bioavailability potential using long chain and medium chain triglycerides. Colloids Surf B Biointerfaces 2012; 100: 50-61.
[http://dx.doi.org/10.1016/j.colsurfb.2012.05.019] [PMID: 22766282]
[53]
Yu JN, Zhu Y, Wang L, et al. Enhancement of oral bioavailability of the poorly water-soluble drug silybin by sodium cholate/] phospholipid-mixed micelles. Acta Pharmacol Sin 2010; 31(6): 759-64.
[http://dx.doi.org/10.1038/aps.2010.55] [PMID: 20523347]
[54]
Ojima I, Lichtenthal B, Lee S, Wang C, Wang X. Taxane anticancer agents: A patent perspective. Expert Opin Ther Pat 2016; 26(1): 1-20.
[http://dx.doi.org/10.1517/13543776.2016.1111872] [PMID: 26651178]
[55]
Ganellin CR. Analogue-based drug discovery. Chem Int Newsmag IUPAC 2010; 32(4): 12-5.
[56]
Sohail MF, Rehman M, Sarwar HS, et al. Advancements in the oral delivery of Docetaxel: Challenges, current state-of-the-art and future trends. Int J Nanomedicine 2018; 13: 3145-61.
[http://dx.doi.org/10.2147/IJN.S164518] [PMID: 29922053]
[57]
Naguib YW, Rodriguez BL, Li X, Hursting SD, Williams RO III, Cui Z. Solid lipid nanoparticle formulations of docetaxel prepared with high melting point triglycerides: in vitro and in vivo evaluation. Mol Pharm 2014; 11(4): 1239-49.
[http://dx.doi.org/10.1021/mp4006968] [PMID: 24621456]
[58]
Guo Y, Zhang P, Zhao Q, Wang K, Luan Y. Reduction-sensitive polymeric micelles based on docetaxel-polymer conjugates via disulfide linker for efficient cancer therapy. Macromol Biosci 2016; 16(3): 420-31.
[http://dx.doi.org/10.1002/mabi.201500317] [PMID: 26647779]
[59]
Li B, Zhang XX, Huang HY, et al. Effective deactivation of A549 tumor cells in vitro and in vivo by RGD-decorated chitosan-functionalized single-walled carbon nanotube loading docetaxel. Int J Pharm 2018; 543(1-2): 8-20.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.017] [PMID: 29535039]
[60]
Seo YG, Kim DH, Ramasamy T, et al. Development of docetaxel-loaded solid self-nanoemulsifying drug delivery system (SNEDDS) for enhanced chemotherapeutic effect. Int J Pharm 2013; 452(1-2): 412-20.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.034] [PMID: 23707964]
[61]
Chang RS, Suh MS, Kim S, et al. Cationic drug-derived nanoparticles for multifunctional delivery of anticancer siRNA. Biomaterials 2011; 32(36): 9785-95.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.017] [PMID: 21937102]
[62]
Akhtartavan S, Karimi M, Karimian K, Azarpira N, Khatami M, Heli H. Evaluation of a self-nanoemulsifying docetaxel delivery system. Biomed Pharmacother 2019; 109: 2427-33.
[http://dx.doi.org/10.1016/j.biopha.2018.11.110]
[63]
Hande KR. Etoposide: Four decades of development of a topoisomerase II inhibitor. Eur J Cancer 1998; 34(10): 1514-21.
[http://dx.doi.org/10.1016/S0959-8049(98)00228-7] [PMID: 9893622]
[64]
Fuchs M. The clinical pharmacology of hydrochlorothiazide. Chemotherapia (Basel) 1960; 1(4-5): 231-8.
[http://dx.doi.org/10.1159/000219422] [PMID: 13825526]
[65]
McCaig LF, Besser RE, Hughes JM. Antimicrobial drug prescription in ambulatory care settings, United States, 1992-2000. Emerg Infect Dis 2003; 9(4): 432-7.
[http://dx.doi.org/10.3201/eid0904.020268] [PMID: 12702222]
[66]
Toffoli G, Corona G, Basso B, Boiocchi M. Pharmacokinetic optimisation of treatment with oral etoposide. Clin Pharmacokinet 2004; 43(7): 441-66.
[http://dx.doi.org/10.2165/00003088-200443070-00002] [PMID: 15139794]
[67]
Alfei S, Marengo B, Domenicotti C. Polyester-based dendrimer nanoparticles combined with etoposide have an improved cytotoxic and pro-oxidant effect on human neuroblastoma cells. Antioxidants 2020; 9(1): 1-23.
[http://dx.doi.org/10.3390/antiox9010050] [PMID: 31935872]
[68]
Thiyagarajan A, Saravanabhavan S, Thangarasu V. Preparation and biopharmaceutical evaluation of novel polymeric nanoparticles containing etoposide for targeting cancer cells. Turkish J Pharm Sci 2019; 16(2): 132-40.
[http://dx.doi.org/10.4274/tjps.galenos.2018.21043] [PMID: 32454706]
[69]
Le Roux G, Moche H, Nieto A, Benoit JP, Nesslany F, Lagarce F. Cytotoxicity and genotoxicity of lipid nanocapsules. Toxicol Vitr 2017; 41: 189-99.
[http://dx.doi.org/10.1016/j.tiv.2017.03.007] [PMID: 28323104]
[70]
Ali MM, Rajab NA, Abdulrasool AA. Etoposide-loaded gold nanoparticles: Preparation, characterization, optimization and cytotoxicity assay. Syst Rev Pharm 2020; 11(2): 372-81.
[http://dx.doi.org/10.5530/srp.2020.2.55]
[71]
Wu B, Zhu R, Wang M, Liang P, Qian Y, Wang S. Fluorescent carbon dots from antineoplastic drug etoposide for bioimaging in vitro and in vivo. J Mater Chem B Mater Biol Med 2017; 5(38): 7796-800.
[http://dx.doi.org/10.1039/C7TB01628J] [PMID: 32264380]
[72]
Akhtar N, Talegaonkar S, Khar RK, Jaggi M. Self-nanoemulsifying lipid carrier system for enhancement of oral bioavailability of etoposide by P-glycoprotein modulation: In vitro cell line and in vivo pharmacokinetic investigation. J Biomed Nanotechnol 2013; 9(7): 1216-29.
[http://dx.doi.org/10.1166/jbn.2013.1613] [PMID: 23909136]
[73]
Akhtar N, Ahad A, Khar RK, et al. The emerging role of P-glycoprotein inhibitors in drug delivery: A patent review. Expert Opin Ther Pat 2011; 21(4): 561-76.
[http://dx.doi.org/10.1517/13543776.2011.561784] [PMID: 21413912]
[74]
Griffin BT, O’Driscoll CM. Opportunities and challenges for oral delivery of hydrophobic versus hydrophilic peptide and protein-like drugs using lipid-based technologies. Ther Deliv 2011; 2(12): 1633-53.
[http://dx.doi.org/10.4155/tde.11.128] [PMID: 22833986]
[75]
Ishikawa T, Utoh M, Sawada N, et al. Tumor selective delivery of 5-fluorouracil by capecitabine, a new oral fluoropyrimidine carbamate, in human cancer xenografts. Biochem Pharmacol 1998; 55(7): 1091-7.
[http://dx.doi.org/10.1016/S0006-2952(97)00682-5] [PMID: 9605432]
[76]
Simon N, Vasseur M, Pinturaud M, et al. Effectiveness of a closed-system transfer device in reducing surface contamination in a new antineoplastic drug-compounding unit: A prospective, controlled, parallel study. PLoS One 2016; 11(7): e0159052.
[http://dx.doi.org/10.1371/journal.pone.0159052] [PMID: 27391697]
[77]
Buur A, Bundgaard H, Falch E. Prodrugs of 5-fluorouracil. IV. Hydrolysis kinetics, bioactivation and physicochemical properties of various N-acyloxymethyl derivatives of 5-fluorouracil. Int J Pharm 1985; 24(1): 43-60.
[http://dx.doi.org/10.1016/0378-5173(85)90143-7]
[78]
Abd-Rabou AA, Bharali DJ, Mousa SA. Taribavirin and 5-Fluorouracil-Loaded pegylated-lipid nanoparticle synthesis, p38 docking, and antiproliferative effects on MCF-7 breast Cancer. Pharm Res 2018; 35(4): 76.
[http://dx.doi.org/10.1007/s11095-017-2283-3] [PMID: 29488022]
[79]
Tummala S, Satish Kumar MN, Prakash A. Formulation and characterization of 5-Fluorouracil enteric coated nanoparticles for sustained and localized release in treating colorectal cancer. Saudi Pharm J 2015; 23(3): 308-14.
[http://dx.doi.org/10.1016/j.jsps.2014.11.010] [PMID: 26106279]
[80]
Rață DM, Cadinoiu AN, Atanase LI, et al. “In vitro” behaviour of aptamer-functionalized polymeric nanocapsules loaded with 5-fluorouracil for targeted therapy. Mater Sci Eng C 2019; 103: 109828.
[http://dx.doi.org/10.1016/j.msec.2019.109828] [PMID: 31349496]
[81]
Sauraj SU, Kumar SU, Gopinath P, Negi YS. Synthesis and bio-evaluation of xylan-5-fluorouracil-1-acetic acid conjugates as prodrugs for colon cancer treatment. Carbohydr Polym 2017; 157: 1442-50.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.096] [PMID: 27987854]
[82]
Lima D, Calaça GN, Viana AG, Pessôa CA. Porphyran-capped gold nanoparticles modified carbon paste electrode: A simple and efficient electrochemical sensor for the sensitive determination of 5-fluorouracil. Appl Surf Sci 2018; 427: 742-53.
[http://dx.doi.org/10.1016/j.apsusc.2017.08.228]
[83]
Satyanarayana M, Goud KY, Reddy KK, Gobi KV. Biopolymer stabilized nanogold particles on carbon nanotube support as sensing platform for electrochemical detection of 5-Fluorouracil in-vitro. Electrochim Acta 2015; 178: 608-16.
[http://dx.doi.org/10.1016/j.electacta.2015.08.036]
[84]
Shakeel F, Haq N, Al-Dhfyan A, Alanazi FK, Alsarra IA. Double w/o/w nanoemulsion of 5-fluorouracil for self-nanoemulsifying drug delivery system. J Mol Liq 2014; 200: 183-90.
[http://dx.doi.org/10.1016/j.molliq.2014.10.013]
[85]
Steinhagen H. The evolution of drug discovery: From traditional medicines to modern drugs. By Enrique Raviña. ChemMedChem 2011; 6(9): 1746-7.
[http://dx.doi.org/10.1002/cmdc.201100321]
[86]
Tacar O, Sriamornsak P, Dass CR. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 2013; 65(2): 157-70.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01567.x] [PMID: 23278683]
[87]
Mansy M, Soliman M, Mubarak R, Shamel M. The effect of EGF on VEGF expression on submandibular salivary gland of albino rats receiving doxorubicin. Egypt J Histol 2021; 44(2): 418-24.
[http://dx.doi.org/10.21608/ejh.2020.31011.1299]
[88]
Chatterjee K, Zhang J, Honbo N, Karliner JS. Doxorubicin cardiomyopathy. Cardiology 2010; 115(2): 155-62.
[http://dx.doi.org/10.1159/000265166] [PMID: 20016174]
[89]
Moraes S, Marinho A, Lima S, et al. Targeted nanostructured lipid carriers for doxorubicin oral delivery. Int J Pharm 2021; 592: 120029.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120029] [PMID: 33130218]
[90]
Usmani A, Mishra A, Arshad M, Jafri A. Development and evaluation of doxorubicin self nanoemulsifying drug delivery system with Nigella Sativa oil against human hepatocellular carcinoma. Artif Cells Nanomed Biotechnol 2019; 47(1): 933-44.
[http://dx.doi.org/10.1080/21691401.2019.1581791] [PMID: 30888204]
[91]
Tang TY, Li FZ, Afseth J. Review of the regulations for clinical research in herbal medicines in USA. Chin J Integr Med 2014; 20(12): 883-93.
[http://dx.doi.org/10.1007/s11655-014-2024-y] [PMID: 25428336]
[92]
Gopireddy RR, Maruthapillai A, Arockia Selvi J, Mahapatra S. Determination of potential genotoxic impurity hydrazine hydrate in ibrutinib by RP-liquid chromatography. Mater Today Proc 2021; 34: 430-6.
[http://dx.doi.org/10.1016/j.matpr.2020.02.659]
[93]
de Vries R, Smit JW, Hellemans P, et al. Stable isotope-labelled intravenous microdose for absolute bioavailability and effect of grapefruit juice on ibrutinib in healthy adults. Br J Clin Pharmacol 2016; 81(2): 235-45.
[http://dx.doi.org/10.1111/bcp.12787] [PMID: 26382728]
[94]
Alshetaili AS, Ansari MJ, Anwer MK, et al. Enhanced oral bioavailability of ibrutinib encapsulated poly (Lactic-co-Glycolic Acid) nanoparticles: Pharmacokinetic evaluation in rats. Curr Pharm Anal 2019; 15(6): 661-8.
[http://dx.doi.org/10.2174/1573412915666190314124932]
[95]
Rangaraj N, Pailla SR, Shah S, Prajapati S, Sampathi S. QbD aided development of ibrutinib-loaded nanostructured lipid carriers aimed for lymphatic targeting: Evaluation using chylomicron flow blocking approach. Drug Deliv Transl Res 2020; 10(5): 1476-94.
[http://dx.doi.org/10.1007/s13346-020-00803-7] [PMID: 32519202]
[96]
Sánchez-Coronilla A, Martín EI, Fernández-de-Cordova FJ, Prado-Gotor R, Hidalgo J. Theoretical study on the interactions between ibrutinib and gold nanoparticles for being used as drug delivery in the chronic lymphocytic leukemia. J Mol Liq 2020; 316: 113878.
[http://dx.doi.org/10.1016/j.molliq.2020.113878]
[97]
Shakeel F, Iqbal M, Ezzeldin E. Bioavailability enhancement and pharmacokinetic profile of an anticancer drug ibrutinib by self-nanoemulsifying drug delivery system. J Pharm Pharmacol 2016; 68(6): 772-80.
[http://dx.doi.org/10.1111/jphp.12550] [PMID: 27018771]
[98]
Thapa RK, Kim JH, Jeong JH, et al. Silver nanoparticle-embedded graphene oxide-methotrexate for targeted cancer treatment. Colloids Surf B Biointerfaces 2017; 153: 95-103.
[http://dx.doi.org/10.1016/j.colsurfb.2017.02.012] [PMID: 28231500]
[99]
Weinblatt ME. Methotrexate in rheumatoid arthritis: A quarter century of development. Trans Am Clin Climatol Assoc 2013; 124: 16-25.
[PMID: 23874006]
[100]
Musmade KP, Deshpande PB, Musmade PB, et al. Methotrexate-loaded biodegradable nanoparticles: Preparation, characterization and evaluation of its cytotoxic potential against U-343 MGa human neuronal glioblastoma cells. Bull Mater Sci 2014; 37(4): 945-51.
[http://dx.doi.org/10.1007/s12034-014-0030-5]
[101]
Ray S, Joy M, Sa B, Ghosh S, Chakraborty J. pH dependent chemical stability and release of methotrexate from a novel nanoceramic carrier. RSC Advances 2015; 5(49): 39482-94.
[http://dx.doi.org/10.1039/C5RA03546E]
[102]
Muntoni E, Martina K, Marini E, et al. Methotrexate-loaded solid lipid nanoparticles: Protein functionalization to improve brain biodistribution. Pharmaceutics 2019; 11(2): E65.
[http://dx.doi.org/10.3390/pharmaceutics11020065] [PMID: 30717376]
[103]
Rostamizadeh K, Manafi M, Nosrati H, Kheiri Manjili H, Danafar H. Methotrexate-conjugated mPEG-PCL copolymers: A novel approach for dual triggered drug delivery. New J Chem 2018; 42(8): 5937-45.
[http://dx.doi.org/10.1039/C7NJ04864E]
[104]
Gharebaghi F, Dalali N, Ahmadi E, Danafar H. Preparation of wormlike polymeric nanoparticles coated with silica for delivery of methotrexate and evaluation of anticancer activity against MCF7 cells. J Biomater Appl 2017; 31(9): 1305-16.
[http://dx.doi.org/10.1177/0885328217698063] [PMID: 28447548]
[105]
Pereira NRC, Loiola RA, Rodrigues SF, et al. Mechanisms of the effectiveness of poly(ε-caprolactone) lipid-core nanocapsules loaded with methotrexate on glioblastoma multiforme treatment. Int J Nanomedicine 2018; 13: 4563-73.
[http://dx.doi.org/10.2147/IJN.S168400] [PMID: 30154652]
[106]
Fratoddi I, Benassi L, Botti E, et al. Effects of topical methotrexate loaded gold nanoparticle in cutaneous inflammatory mouse model. Nanomedicine 2019; 17: 276-86.
[http://dx.doi.org/10.1016/j.nano.2019.01.006] [PMID: 30708054]
[107]
Saeednia L, Yao L, Cluff K, Asmatulu R. Sustained releasing of methotrexate from injectable and thermosensitive chitosan-carbon nanotube hybrid hydrogels effectively controls tumor cell growth. ACS Omega 2019; 4(2): 4040-8.
[http://dx.doi.org/10.1021/acsomega.8b03212] [PMID: 30842986]
[108]
Kim DS, Cho JH, Park JH, et al. Self-microemulsifying drug delivery system (SMEDDS) for improved oral delivery and photostability of methotrexate. Int J Nanomedicine 2019; 14: 4949-60.
[http://dx.doi.org/10.2147/IJN.S211014] [PMID: 31308665]
[109]
Preisz Z, Kunsági-Máté S. Effect of methotrexate and its photodegradation products on the temperature induced denaturation of human serum albumin. Spectrochim Acta A Mol Biomol Spectrosc 2021; 245: 118905.
[http://dx.doi.org/10.1016/j.saa.2020.118905] [PMID: 32927299]
[110]
Park H, Ha ES, Kim MS. Current status of supersaturable self-emulsifying drug delivery systems. Pharmaceutics 2020; 12(4): E365.
[http://dx.doi.org/10.3390/pharmaceutics12040365] [PMID: 32316199]
[111]
Gao P, Morozowich W. Development of supersaturatable self-emulsifying drug delivery system formulations for improving the oral absorption of. Expert Opin Drug Deliv 2006; 3: 97-110.
[112]
Suys EJA, Chalmers DK, Pouton CW, Porter CJH. Polymeric precipitation inhibitors promote fenofibrate supersaturation and enhance drug absorption from a type IV lipid-based formulation polymeric precipitation inhibitors promote fenofibrate supersaturation and enhance drug absorption from a type IV lip. Mol Pharm 2018; 15(6): 2355-71.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00206]
[113]
Joyce P, Dening TJ, Meola TR, et al. Solidification to improve the biopharmaceutical performance of SEDDS: Opportunities and challenges. Adv Drug Deliv Rev 2019; 142: 102-17.
[http://dx.doi.org/10.1016/j.addr.2018.11.006] [PMID: 30529138]
[114]
Ma X, Williams RO. Polymeric nanomedicines for poorly soluble drugs in oral delivery systems : An update. J Pharm Investig 2017; 48: 61-75.
[115]
Cho HY, Choi JH, Oh IJ, Lee YB. Self-emulsifying drug delivery system for enhancing bioavailability and lymphatic delivery of tacrolimus. J Nanosci Nanotechnol 2015; 15(2): 1831-41.
[http://dx.doi.org/10.1166/jnn.2015.9248] [PMID: 26353739]
[116]
Seo YG, Kim DW, Yousaf AM, et al. Solid self-nanoemulsifying drug delivery system (SNEDDS) for enhanced oral bioavailability of poorly water-soluble tacrolimus: Physicochemical characterisation and pharmacokinetics. J Microencapsul 2015; 32(5): 503-10.
[http://dx.doi.org/10.3109/02652048.2015.1057252] [PMID: 26079598]
[117]
Shah Sanket P, Shah Mansi D, Agrawal Yadvendra K. Self emulsifying drug delivery: A novel approach for enhancement of oral bioavailability of poorly soluble drugs. Int J Curr Pharm Res 2012; 4(2): 18-23.
[118]
Thomas N, Holm R, Garmer M, Karlsson JJ, Müllertz A, Rades T. Supersaturated self-nanoemulsifying drug delivery systems (Super-SNEDDS) enhance the bioavailability of the poorly water-soluble drug simvastatin in dogs. AAPS J 2013; 15(1): 219-27.
[http://dx.doi.org/10.1208/s12248-012-9433-7] [PMID: 23180162]
[119]
Nokhodchi A, Hentzschel CM, Leopold CS. Drug release from liquisolid systems : Speed it up, slow it down. Expert Opin Drug Deliv 2011; 8(2): 191-205.
[120]
Reddy MR, Gubbiyappa KS. A comprehensive review on supersaturable self-nanoemulsifying drug delivery system. Asian J Pharm Clin Res 2021; 14(8): 40-4.
[http://dx.doi.org/10.22159/ajpcr.2021.v14i8.41987]
[121]
Trevaskis NL, Charman WN, Porter CJH. Lipid-based delivery systems and intestinal lymphatic drug transport: A mechanistic update. Adv Drug Deliv Rev 2008; 60(6): 702-16.
[http://dx.doi.org/10.1016/j.addr.2007.09.007] [PMID: 18155316]
[122]
Sun M, Han J, Guo X, et al. Design, preparation and in vitro evaluation of paclitaxel-loaded self-nanoemulsifying drug delivery system. Asian J Pharm Sci 2011; 6(1): 18-25.
[123]
Taha EI, Al-Saidan S, Samy AM, Khan MA. Preparation and in vitro characterization of self-nanoemulsified drug delivery system (SNEDDS) of all-trans-retinol acetate. Int J Pharm 2004; 285(1-2): 109-19.
[http://dx.doi.org/10.1016/j.ijpharm.2004.03.034] [PMID: 15488684]
[124]
Beg S, Kaur R, Khurana RK, Rana V, Sharma T, Singh B. QbD-Based development of cationic self-nanoemulsifying drug delivery systems of paclitaxel with improved biopharmaceutical attributes. AAPS PharmSciTech 2019; 20(3): 118.
[http://dx.doi.org/10.1208/s12249-019-1319-x] [PMID: 30790136]
[125]
Al-Kandari BM, Al-Soraj MH, Hedaya MA. Dual formulation and interaction strategies to enhance the oral bioavailability of paclitaxel. J Pharm Sci 2020; 109(11): 3386-93.
[http://dx.doi.org/10.1016/j.xphs.2020.07.027] [PMID: 32745564]
[126]
Khalid N, Sarfraz M, Arafat M, Akhtar M, Löbenberg R, Ur Rehman N. Nano-sized droplets of self-emulsifying system for enhancing oral bioavailability of chemotherapeutic agent VP-16 in Rats: A nano lipid carrier for BCS class IV drugs. J Pharm Pharm Sci 2018; 21(1): 398-408.
[http://dx.doi.org/10.18433/jpps30097] [PMID: 30365396]
[127]
Quan Q, Kim DW, Marasini N, et al. Physicochemical characterization and in vivo evaluation of solid self-nanoemulsifying drug delivery system for oral administration of docetaxel. J Microencapsul 2013; 30(4): 307-14.
[http://dx.doi.org/10.3109/02652048.2012.726280] [PMID: 23101936]
[128]
Rao BC, Vidyadhara S, Sasidhar RL, Chowdary YA. Formulation and evaluation of liquid loaded tablets containing docetaxel-self nano emulsifying drug delivery systems. Trop J Pharm Res 2015; 14(4): 567-73.
[http://dx.doi.org/10.4314/tjpr.v14i4.2]
[129]
Bourkaib N, Zhou J, Yao J, Fang Z, Mezghrani O. Combination of β-cyclodextrin inclusion complex and self-microemulsifying drug delivery system for photostability and enhanced oral bioavailability of methotrexate: novel technique. Drug Dev Ind Pharm 2013; 39(6): 918-27.
[http://dx.doi.org/10.3109/03639045.2012.718785] [PMID: 22998295]
[130]
Prasad D, Mohanta G, Sudhakar M. development and optimization of self-nanoemulsifying drug delivery system of ibrutinib. Asian J Pharm 2020; 14(1): 91-104.
[131]
Tran TH, Guo Y, Song D, Bruno RS, Lu X. Quercetin-containing self-nanoemulsifying drug delivery system for improving oral bioavailability. J Pharm Sci 2014; 103(3): 840-52.
[http://dx.doi.org/10.1002/jps.23858] [PMID: 24464737]
[132]
Jain AK, Thanki K, Jain S. Novel self-nanoemulsifying formulation of quercetin: Implications of pro-oxidant activity on the anticancer efficacy. Nanomedicine 2014; 10(5): 959-69.
[http://dx.doi.org/10.1016/j.nano.2013.12.010] [PMID: 24407148]
[133]
Shukla M, Jaiswal S, Sharma A, et al. A combination of complexation and self-nanoemulsifying drug delivery system for enhancing oral bioavailability and anticancer efficacy of curcumin. Drug Dev Ind Pharm 2017; 43(5): 847-61.
[http://dx.doi.org/10.1080/03639045.2016.1239732] [PMID: 27648633]
[134]
Kazi M, Shahba AA, Alrashoud S, Alwadei M, Sherif AY, Alanazi FK. Bioactive self-nanoemulsifying drug delivery systems (Bio-SNEDDS) for combined oral delivery of curcumin and piperine. Molecules 2020; 25(7): 1-24.
[http://dx.doi.org/10.3390/molecules25071703] [PMID: 32276393]
[135]
Gong T, Peng Q, Shi S, et al. Preparation, characterization, and in vivo evaluation of a self-nanoemulsifying drug delivery system (SNEDDS) loaded with morin-phospholipid complex. Int J Nanomedicine 2011; 3405-14.
[http://dx.doi.org/10.2147/IJN.S25824]
[136]
Khan AW, Kotta S, Ansari SH, Sharma RK, Ali J. Self-nanoemulsifying drug delivery system (SNEDDS) of the poorly water-soluble grapefruit flavonoid Naringenin: Design, characterization, in vitro and in vivo evaluation. Drug Deliv 2015; 22(4): 552-61.
[http://dx.doi.org/10.3109/10717544.2013.878003] [PMID: 24512268]
[137]
Batool A, Arshad R, Razzaq S, Nousheen K, Kiani MH, Shahnaz G. Formulation and evaluation of hyaluronic acid-based mucoadhesive self nanoemulsifying drug delivery system (SNEDDS) of tamoxifen for targeting breast cancer. Int J Biol Macromol 2020; 152: 503-15.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.275] [PMID: 32112841]
[138]
Pangeni R, Choi SW, Jeon OC, Byun Y, Park JW. Multiple nanoemulsion system for an oral combinational delivery of oxaliplatin and 5-fluorouracil: Preparation and in vivo evaluation. Int J Nanomedicine 2016; 11: 6379-99.
[http://dx.doi.org/10.2147/IJN.S121114] [PMID: 27942212]
[139]
Nazari-Vanani R, Azarpira N, Heli H, Karimian K, Sattarahmady N. A novel self-nanoemulsifying formulation for sunitinib: Evaluation of anticancer efficacy. Colloids Surf B Biointerfaces 2017; 160: 65-72.
[http://dx.doi.org/10.1016/j.colsurfb.2017.09.008] [PMID: 28917151]
[140]
Nottingham E, Sekar V, Mondal A, Safe S, Rishi AK, Singh M. The role of self-nanoemulsifying drug delivery systems of CDODA-Me in sensitizing erlotinib-resistant non-small cell lung cancer. J Pharm Sci 2020; 109(6): 1867-82.
[http://dx.doi.org/10.1016/j.xphs.2020.01.010] [PMID: 31954111]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy