Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Glucose and Ethanol Checked by Flow Direct Catalytic Fuel Cell (DCFC) and Energetic Considerations

Author(s): Mauro Tomassetti*, Mauro Castrucci, Emanuele Dell’Aglio, Luigi Campanella, Riccardo Pezzilli and Corrado Di Natale

Volume 18, Issue 8, 2022

Published on: 22 August, 2022

Page: [899 - 906] Pages: 8

DOI: 10.2174/1573411018666220606121625

Price: $65

conference banner
Abstract

Aims: A new basic research was conducted concerning the possibility of using a flow DCFC (Direct Catalytic Fuel Cell) for analytical purposes, checking ethanol and glucose. Also making considerations on the energy conversion aspect of these fuels.

Background: There are a large number of studies concerning catalytic or microbial fuel cells, which allow to obtain electricity, both using liquid fuels, such as ethanol and methanol, or solid fuels, such as carbohydrates, biomass and so on. These systems are frequently characterized by high conversion efficiency but also high complexity and considerable costs.

Objective: In the present research we investigated the possibility of using a very simple flow system to carry out measurement of ethanol concentration, or glucose analysis, using the same flow system associated with a small reactor containing yeast (Saccharomyces cerevisiae).

Methods: The main operating conditions have been optimized and the concentration range where the flow system response shows a linear correlation with the fuel concentration was also identified.

Results: The current delivered by the catalytic system operating in flow was determined and the calibration sensitivity values are higher than the sensitivity found in batch mode. It has also been shown that it is possible to realize a very simple system, which can be used to study and evaluate the conversion of chemical energy into electrical energy, using ethanol or glucose as fuel and the theoretical importance and analytical advantages have been emphasized, so that the use of carbohydrates, such as solid fuels, could represent.

Conclusion: Present research has shown how, by operating in flow mode, rather than in batch, it is possible to have advantages from an analytical point of view, since a considerable increase in the sensitivity of the method can be obtained, probably attributable to a reduction in the effects of poisoning. Moreover, how it is possible to study and optimize the energy conversion conditions by means of a simple and inexpensive apparatus.

Keywords: Direct catalytic ethanol fuel cell, direct glucose-DCFC-system, glucose or ethanol flow analytical measurements, yeast saccharomyces cerevisiae, energy conversion possibility study, reverse osmosis membranes.

Graphical Abstract

[1]
Rabaey, K.; Lissens, G.; Siciliano, S.D.; Verstraete, W. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett., 2003, 25, 1531-1536.
[2]
Rousseau, S.; Coutanceau, C.; Lamy, C.; Léger, J-M. Direct Ethanol Fuel Cell (DEFC): Electrical performances and reaction products distribution under operating conditions with different platinum-based anodes. J. Power Sources, 2006, 158(1), 18-24.
[http://dx.doi.org/10.1016/j.jpowsour.2005.08.027]
[3]
Akhairi, M.A.F.; Kamarudin, S.K. catalysts in direct ethanol fuel cell (DEFC): An overview. Int. J. Hydrogen Energy, 2016, 41(7), 4214-4228.
[http://dx.doi.org/10.1016/j.ijhydene.2015.12.145]
[4]
Ivanov, I.; Vidaković-Koch, T.; Sundmacher, K. Recent advances in enzymatic fuel cells: Experiments and modeling. Energies, 2010, 3(4), 803-846.
[http://dx.doi.org/10.3390/en3040803]
[5]
Kim, B.H.; Chang, I.S.; Gadd, G.M. Challenges in microbial fuel cell development and operation. Appl. Microbiol. Biotechnol., 2007, 76(3), 485-494.
[http://dx.doi.org/10.1007/s00253-007-1027-4] [PMID: 17593364]
[6]
Rahimnejad, M.; Adhami, A.; Darvari, S.; Zirepour, A.; Oh, S-E. Microbial fuel cell as new technology for bioelectricity generation: A review. Alex. Eng. J., 2015, 54(3), 745-756.
[http://dx.doi.org/10.1016/j.aej.2015.03.031]
[7]
Xuan, J.; Leung, M.K.H.; Leung, D.Y.C.; Ni, M. A review of biomass-derived fuel processors for fuel cell systems. Renew. Sustain. Energy Rev., 2009, 13(6-7), 1301-1313.
[http://dx.doi.org/10.1016/j.rser.2008.09.027]
[8]
Villano, M.; Aulenta, F.; Majone, M. Perspectives of biofuels production from renewable resources with bioelectrochemical systems: Biofuels production with bioelectrochemical systems. Asia-Pac. J. Chem. Eng., 2012, 7, S263-S274.
[http://dx.doi.org/10.1002/apj.1643]
[9]
Sciarria, T.P.; Tenca, A.; D’Epifanio, A.; Mecheri, B.; Merlino, G.; Barbato, M.; Borin, S.; Licoccia, S.; Garavaglia, V.; Adani, F. Using olive mill wastewater to improve performance in producing electricity from domestic wastewater by using single-chamber microbial fuel cell. Bioresour. Technol., 2013, 147, 246-253.
[http://dx.doi.org/10.1016/j.biortech.2013.08.033] [PMID: 23999258]
[10]
Logan, B.E.; Wallack, M.J.; Kim, K-Y.; He, W.; Feng, Y.; Saikaly, P.E. Assessment of microbial fuel cell configurations and power densities. Environ. Sci. Technol. Lett., 2015, 2(8), 206-214.
[http://dx.doi.org/10.1021/acs.estlett.5b00180]
[11]
Andriukonis, E.; Celiesiute-Germaniene, R.; Ramanavicius, S.; Viter, R.; Ramanavicius, A. From Microorganism-based amperometric biosensors towards microbial fuel cells. Sensors (Basel), 2021, 21(7), 2442.
[http://dx.doi.org/10.3390/s21072442] [PMID: 33916302]
[12]
Ieropoulos, I.A.; Greenman, J.; Melhuish, C.; Hart, J. Comparative study of three types of microbial fuel cell. Enzyme Microb. Technol., 2005, 37(2), 238-245.
[http://dx.doi.org/10.1016/j.enzmictec.2005.03.006]
[13]
Singh, S. Environmental energy harvesting techniques to power standalone iot-equipped sensor and its application in 5G communication. Emerg. Sci. J., 2021, 4, 116-126.
[http://dx.doi.org/10.28991/esj-2021-SP1-08]
[14]
Gunawardena, A.; Fernando, S.; To, F. Performance of a yeast-mediated biological fuel cell. Int. J. Mol. Sci., 2008, 9(10), 1893-1907.
[http://dx.doi.org/10.3390/ijms9101893] [PMID: 19325724]
[15]
Ramanavicius, S.; Ramanavicius, A. Conducting polymers in the design of biosensors and biofuel cells. Polymers (Basel), 2020, 13(1), 49.
[http://dx.doi.org/10.3390/polym13010049] [PMID: 33375584]
[16]
Ramanavicius, S.; Ramanavicius, A. Charge transfer and biocompatibility aspects in conducting polymer-based enzymatic biosensors and biofuel cells. Nanomaterials (Basel), 2021, 11(2), 371.
[http://dx.doi.org/10.3390/nano11020371] [PMID: 33540587]
[17]
Kisieliute, A.; Popov, A.; Apetrei, R-M.; Cârâc, G.; Morkvenaite-Vilkonciene, I.; Ramanaviciene, A.; Ramanavicius, A. Towards microbial biofuel cells: Improvement of charge transfer by self-modification of microoganisms with conducting polymer-polypyrrole. Chem. Eng. J., 2019, 356, 1014-1021.
[http://dx.doi.org/10.1016/j.cej.2018.09.026]
[18]
Bruzaite, I.; Rozene, J.; Morkvenaite-Vilkonciene, I.; Ramanavicius, A. Towards microorganism-based biofuel cells: The viability of saccharomyces cerevisiae modified by multiwalled carbon nanotubes. Nanomaterials (Basel), 2020, 10(5), 954.
[http://dx.doi.org/10.3390/nano10050954] [PMID: 32429594]
[19]
Jimenez Rodríguez, A.; Serrano, A.; Benjumea, T.; Borja, R.; El Kaoutit, M.; Fermoso, F.G. Decreasing microbial fuel cell start-up time using multi-walled carbon nanotubes. Emerg. Sci. J., 2019, 3(2), 109.
[http://dx.doi.org/10.28991/esj-2019-01174]
[20]
Ramanavicius, S.; Ramanavicius, A. Progress and insights in the application of MXenes as new 2D Nano-materials suitable for biosensors and biofuel cell design. Int. J. Mol. Sci., 2020, 21(23), 9224.
[http://dx.doi.org/10.3390/ijms21239224] [PMID: 33287304]
[21]
Kausaite-Minkstimiene, A.; Kaminskas, A.; Popov, A.; Ramanavicius, A.; Ramanaviciene, A. Development of a new biocathode for a single enzyme biofuel cell fuelled by glucose. Sci. Rep., 2021, 11(1), 18568.
[http://dx.doi.org/10.1038/s41598-021-97488-w] [PMID: 34535709]
[22]
Rozene, J.; Morkvenaite-Vilkonciene, I.; Bruzaite, I.; Zinovicius, A.; Ramanavicius, A. Baker’s yeast-based microbial fuel cell mediated by 2-Methyl-1,4-Naphthoquinone. Membranes (Basel), 2021, 11(3), 182.
[http://dx.doi.org/10.3390/membranes11030182] [PMID: 33800926]
[23]
Rozene, J.; Morkvenaite-Vilkonciene, I.; Bruzaite, I.; Dzedzickis, A.; Ramanavicius, A. Yeast-based microbial biofuel cell mediated by 9,10-Phenantrenequinone. Electrochim. Acta, 2021, 373, 137918.
[http://dx.doi.org/10.1016/j.electacta.2021.137918]
[24]
Jahnke, J.P.; Mackie, D.M.; Benyamin, M.; Ganguli, R.; Sumner, J.J. Performance Study of Sugar-Yeast-Ethanol Bio-Hybrid Fuel Cells; Dhar, N.K.; Dutta, A.K., Eds.; Baltimore, Maryland, United States, 2015, p. 949303.
[25]
Jahnke, J.P.; Benyamin, M.S.; Sumner, J.J.; Mackie, D.M. Using reverse osmosis membranes to couple direct ethanol fuel cells with ongoing fermentations. Ind. Eng. Chem. Res., 2016, 55(46), 12091-12098.
[http://dx.doi.org/10.1021/acs.iecr.6b02915]
[26]
Tomassetti, M.; Angeloni, R.; Merola, G.; Castrucci, M.; Campanella, L. Catalytic fuel cell used as an analytical tool for methanol and ethanol determination. Application to ethanol determination in alcoholic beverages. Electrochim. Acta, 2016, 191, 1001-1009.
[http://dx.doi.org/10.1016/j.electacta.2015.12.171]
[27]
Tomassetti, M.; Merola, G.; Angeloni, R.; Marchiandi, S.; Campanella, L. Further development on DMFC device used for analytical purpose: Real applications in the pharmaceutical field and possible in biological fluids. Anal. Bioanal. Chem., 2016, 408(26), 7311-7319.
[http://dx.doi.org/10.1007/s00216-016-9795-2] [PMID: 27510282]
[28]
Tomassetti, M.; Angeloni, R.; Marchiandi, S.; Castrucci, M.; Sammartino, M.P.; Campanella, L. Direct Methanol (or Ethanol) fuel cell as enzymatic or non-enzymatic device, used to check ethanol in several pharmaceutical and forensic samples. Sensors (Basel), 2018, 18(11), 3596.
[http://dx.doi.org/10.3390/s18113596] [PMID: 30360499]
[29]
Tomassetti, M.; Angeloni, R.; Castrucci, M.; Martini, E.; Campanella, L. Ethanol content determination in hard liquor drinks, beers, and wines, using a catalytic fuel cell. Comparison with other two conventional enzymatic biosensors: Correlation and statistical data. Acta IMEKO, 2018, 7(2), 91.
[http://dx.doi.org/10.21014/acta_imeko.v7i2.444]
[30]
Tomassetti, M.; Angeloni, R.; Marchiandi, S.; Castrucci, M.; Martini, E.; Campanella, L. Direct methanol catalytic fuel cell, for measuring ethanol contents in pharmaceutical tinctures. Curr. Anal. Chem., 2020, 16(2), 184-194.
[http://dx.doi.org/10.2174/1573411014666180418160300]
[31]
Tomassetti, M.; Marini, F.; Angeloni, R.; Castrucci, M.; Campanella, L.; Di Natale, C. Direct catalytic fuel cell device coupled to chemometric methods to detect organic compounds of pharmaceutical and biomedical interest. Sensors (Basel), 2020, 20(13), 3615.
[http://dx.doi.org/10.3390/s20133615] [PMID: 32605007]
[32]
Tomassetti, M.; Dell’Aglio, E.; Castrucci, M.; Sammartino, M.P.; Campanella, L.; Di Natale, C. Simple yeast-direct catalytic fuel cell bio-device: Analytical results and energetic properties. Biosensors (Basel), 2021, 11(2), 45.
[http://dx.doi.org/10.3390/bios11020045] [PMID: 33670116]
[33]
Smil, V. Oil: A beginner’s guide; , 2013, p. 217.
[34]
Zhang, Y-H.P. What is vital (and not vital) to advance economically-competitive biofuels production. Process Biochem., 2011, 46(11), 2091-2110.
[http://dx.doi.org/10.1016/j.procbio.2011.08.005]
[35]
Percival Zhang, Y-H.; Xu, J-H.; Zhong, J-J. A new high-energy density hydrogen carrier-carbohydrate-might be better than methanol: Car-bohydrate vs. Methanol. Int. J. Energy Res., 2013, 37(7), 769-779.
[http://dx.doi.org/10.1002/er.2897]
[36]
Ekwurzel, B.; Boneham, J.; Dalton, M.W.; Heede, R.; Mera, R.J.; Allen, M.R.; Frumhoff, P.C. The rise in global atmospheric CO2, Surface temperature, and sea level from emissions traced to major carbon producers. Clim. Change, 2017, 144(4), 579-590.
[http://dx.doi.org/10.1007/s10584-017-1978-0]
[37]
Bhatia, S.C. Advanced Renewable Energy Sources, 1st Ed.; WPI Publishing: New York, 2014.
[38]
Zhang, Y-H.P. Renewable carbohydrates are a potential high-density hydrogen carrier. Int. J. Hydrogen Energy, 2010, 35(19), 10334-10342.
[http://dx.doi.org/10.1016/j.ijhydene.2010.07.132]
[39]
Appleby, A.J.; Foulkes, F.R. Fuel Cell Handbook; Krieger: Malabar, Fla., 1993.
[40]
Kordesch, K.; Simader, G. Fuel cells and their applications; VCH: Weinheim, New York, 1996.
[http://dx.doi.org/10.1002/352760653X]
[41]
Tharali, A.D.; Sain, N.; Osborne, W.J. Microbial fuel cells in bioelectricity production. Front. Life Sci., 2016, 9(4), 252-266.
[http://dx.doi.org/10.1080/21553769.2016.1230787]
[42]
Gao, Y.; Mohammadifar, M.; Choi, S. From microbial fuel cells to biobatteries: Moving toward On‐demand micropower generation for small‐scale single‐use applications. Adv. Mater. Technol., 2019, 4(7), 1900079.
[http://dx.doi.org/10.1002/admt.201900079]
[43]
Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Microbial fuel cells: From fundamentals to applications. A review. J. Power Sources, 2017, 356, 225-244.
[http://dx.doi.org/10.1016/j.jpowsour.2017.03.109] [PMID: 28717261]
[44]
Pandey, G. Biomass based bio-electro fuel cells based on carbon electrodes: An alternative source of renewable energy. SN Appl. Sci., 2019, 1(5), 408.
[http://dx.doi.org/10.1007/s42452-019-0409-4]
[45]
Akinyele, D.; Olabode, E.; Amole, A. Review of fuel cell technologies and applications for sustainable microgrid systems. Inventions (Basel), 2020, 5(3), 42.
[http://dx.doi.org/10.3390/inventions5030042]
[46]
Liu, W.; Mu, W.; Deng, Y. High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion. Angew. Chem. Int. Ed. Engl., 2014, 53(49), 13558-13562.
[http://dx.doi.org/10.1002/anie.201408226] [PMID: 25283435]
[47]
Singh, S.; Verma, N. Fabrication of Ni Nanoparticles-dispersed carbon micro-nanofibers as the electrodes of a microbial fuel cell for bio-energy production. Int. J. Hydrogen Energy, 2015, 40(2), 1145-1153.
[http://dx.doi.org/10.1016/j.ijhydene.2014.11.073]
[48]
Watt, G.D. A new future for carbohydrate fuel cells. Renew. Energy, 2014, 72, 99-104.
[http://dx.doi.org/10.1016/j.renene.2014.06.025]
[49]
Kizling, M.; Dzwonek, M.; Nowak, A.; Tymecki, Ł.; Stolarczyk, K.; Więckowska, A.; Bilewicz, R. Multi-substrate biofuel cell utilizing glucose, fructose and sucrose as the anode fuels. Nanomaterials (Basel), 2020, 10(8), 1534.
[http://dx.doi.org/10.3390/nano10081534] [PMID: 32764356]
[50]
Zhao, H.; Shen, J.; Zhang, J.; Wang, H.; Wilkinson, D.P.; Gu, C.E. Liquid methanol concentration sensors for direct methanol fuel cells. J. Power Sources, 2006, 159(1), 626-636.
[http://dx.doi.org/10.1016/j.jpowsour.2005.09.067]
[51]
Kumagai, T.; Horiba, T.; Kamo, T.; Takeuchi, S.; Iwamoto, K.; Kitami, K.; Tamura, K. Google Patents, US4810597A, 1989.
[52]
Manoharan, R.; Prabhuram, J. Possibilities of prevention of formation of poisoning species on direct methanol fuel cell anodes. J. Power Sources, 2001, 96(1), 220-225.
[http://dx.doi.org/10.1016/S0378-7753(00)00683-2]
[53]
Wagner, N.; Schulze, M. Change of electrochemical impedance spectra during CO poisoning of the Pt and Pt–Ru Anodes in a Membrane Fuel Cell (PEFC). Electrochim. Acta, 2003, 48(25-26), 3899-3907.
[http://dx.doi.org/10.1016/S0013-4686(03)00528-0]
[54]
Wagner, N.; Gülzow, E. Change of Electrochemical Impedance Spectra (EIS) with Time during CO-Poisoning of the Pt-Anode in a membrane fuel cell. J. Power Sources, 2004, 127(1-2), 341-347.
[http://dx.doi.org/10.1016/j.jpowsour.2003.09.031]
[55]
Seiler, T.; Savinova, E.R.; Friedrich, K.A.; Stimming, U. Poisoning of PtRu/C catalysts in the anode of a direct methanol fuel cell: A DEMS study. Electrochim. Acta, 2004, 49(22-23), 3927-3936.
[http://dx.doi.org/10.1016/j.electacta.2004.01.081]
[56]
Wang, L.; Lavacchi, A.; Bevilacqua, M.; Bellini, M.; Fornasiero, P.; Filippi, J.; Innocenti, M.; Marchionni, A.; Miller, H.A.; Vizza, F. Energy efficiency of alkaline direct ethanol fuel cells employing nanostructured palladium electrocatalysts. ChemCatChem, 2015, 7(14), 2214-2221.
[http://dx.doi.org/10.1002/cctc.201500189]
[57]
Sun, X.; Li, Y.; Li, M-J. Highly dispersed palladium nanoparticles on carbon-decorated porous nickel electrode: An effective strategy to boost direct ethanol fuel cell up to 202 MW cm –2. ACS Sustain. Chem.& Eng., 2019, 7(13), 11186-11193.
[http://dx.doi.org/10.1021/acssuschemeng.9b00355]
[58]
Torigoe, K.; Takahashi, M.; Tsuchiya, K.; Iwabata, K.; Ichihashi, T.; Sakaguchi, K.; Sugawara, F.; Abe, M. High-Power abiotic direct glucose fuel cell using a gold-platinum bimetallic anode catalyst. ACS Omega, 2018, 3(12), 18323-18333.
[http://dx.doi.org/10.1021/acsomega.8b02739] [PMID: 31458409]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy