Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Sensitive Methicillin-Resistant Staphylococcus Aureus (MRSA) Detection Using Gold Nanoparticle-Based Satellite Network With Potential For Early Diagnosis of Diabetes-Related Infection

Author(s): Xinlu Bai, Liyi Hu, Dongze Wang and Yuan Hu*

Volume 18, Issue 8, 2022

Published on: 10 August, 2022

Page: [892 - 898] Pages: 7

DOI: 10.2174/1573411018666220603092116

Price: $65

conference banner
Abstract

Background: As pathogenic bacteria account for the leading cause of diabetes-related infections, sensitive detection of bacteria from clinical samples has attracted abundant attention.

Methods: We propose an innovative DNA-AuNP-based sensing system that integrates low-speed centrifugal bacteria isolation, detection and protein analysis. In the method, RCA (rolling circle amplification) is utilized to produce a long-ssDNA (single-strand DNA), which can form a hairpin structure comprising repeats of functional domains, such as PBP2a aptamer. When aptamers bind to target bacteria, the hairpin structure in the RCA product changes its conformation, exposing the AuNP binding sequence. As a result, the probe on the surface of AuNP hybridizes with AuNP binding sequence in RCA product by strand displacement reaction, releasing the fluorescent-labeled complementary probe as the detection signal. The simultaneous formation of the bacteria-DNAAuNP satellite network enables the isolation of target bacteria by low-speed centrifugation.

Results: Eventually, we applied the method for MRSA (methicillin-resistant Staphylococcus aureus) detection and obtained a favorable detection performance with a limit of detection of 275 cfu/μL.

Conclusion: We believe the method has potential application in the early diagnosis of diabetesrelated infections.

Keywords: RCA, satellite network, bacteria, diabetes, staphylococcus aureus, SPR.

Graphical Abstract

[1]
Alberti, K.G.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med., 1998, 15(7), 539-553.
[http://dx.doi.org/10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S] [PMID: 9686693]
[2]
Kerner, W.; Brückel, J. Definition, classification and diagnosis of diabetes mellitus. Exp. Clin. Endocrinol. Diabetes, 2014, 122(7), 384-386.
[http://dx.doi.org/10.1055/s-0034-1366278] [PMID: 25014088]
[3]
Wilson, D.; Materón, E.M.; Ibáñez-Redín, G.; Faria, R.C.; Correa, D.S.; Oliveira, O.N., Jr Electrical detection of pathogenic bacteria in food samples using information visualization methods with a sensor based on magnetic nanoparticles functionalized with antimicrobial peptides. Talanta, 2019, 194, 611-618.
[http://dx.doi.org/10.1016/j.talanta.2018.10.089] [PMID: 30609580]
[4]
Hunt, D.L. Diabetes: Foot ulcers and amputations. Clin. Evid., 2011, 2011, 789-790.
[PMID: 21871137]
[5]
Ramsey, S.D.; Newton, K.; Blough, D.; McCulloch, D.K.; Sandhu, N.; Reiber, G.E.; Wagner, E.H. Incidence, outcomes, and cost of foot ulcers in patients with diabetes. Diabetes Care, 1999, 22(3), 382-387.
[http://dx.doi.org/10.2337/diacare.22.3.382] [PMID: 10097914]
[6]
Gershater, M.A.; Apelqvist, J. Elderly individuals with diabetes and foot ulcer have a probability for healing despite extensive comorbidity and dependency. Expert Rev. Pharmacoecon. Outcomes Res., 2021, 21(2), 277-284.
[PMID: 32448021]
[7]
Meza-Torres, B.; Carinci, F.; Heiss, C.; Joy, M.; De, L.S. Managed care for reducing lower extremity amputations in Type 2 diabetes: A systematic review. Eur. J. Pub. Health, 2020, 30(5), 165-1142.(Supplement_5)
[8]
Louie, T.J.; Bartlett, J.G.; Tally, F.P.; Gorbach, S.L. Aerobic and anaerobic bacteria in diabetic foot ulcers. Ann. Intern. Med., 1976, 85(4), 461-463.
[http://dx.doi.org/10.7326/0003-4819-85-4-461] [PMID: 970773]
[9]
Smith, K.; Collier, A.; Townsend, E.M.; O’Donnell, L.E.; Bal, A.M.; Butcher, J.; Mackay, W.G.; Ramage, G.; Williams, C. One step closer to understanding the role of bacteria in diabetic foot ulcers: Characterising the microbiome of ulcers. BMC Microbiol., 2016, 16(1), 54.
[http://dx.doi.org/10.1186/s12866-016-0665-z] [PMID: 27005417]
[10]
Richard, J.L.; Sotto, A.; Jourdan, N.; Combescure, C.; Vannereau, D.; Rodier, M.; Lavigne, J.P. Risk factors and healing impact of multi-drug-resistant bacteria in diabetic foot ulcers. Diabetes Metab., 2008, 34(4 Pt 1), 363-369.
[http://dx.doi.org/10.1016/j.diabet.2008.02.005] [PMID: 18632297]
[11]
Wang, G.; Tian, J.; Zhu, L.Y.; Yang, S.; Ding, Y.; Kang, Y.; Wang, F.; Wang, Y.; Dong, Y.; Li, Y.; Xu, X. Changes in bacterial profiles and antibiotic sensitivity before and after wound bed preparation for diabetic foot ulcers. Int. J. Low. Extrem. Wounds, 2015, 14(2), 160-167.
[http://dx.doi.org/10.1177/1534734615574940] [PMID: 25759414]
[12]
Rajapaksha, ; Elbourne, ; Gangadoo, ; Brown, ; Cozzolino, A review of methods for the detection of pathogenic microorganisms. Analyst (Lond.), 2018.
[13]
Chen, J.; Xu, Y.; Yan, H.; Zhu, Y.; Wang, L.; Zhang, Y.; Lu, Y.; Xing, W. Sensitive and rapid detection of pathogenic bacteria from urine samples using multiplex recombinase polymerase amplification. Lab Chip, 2018, 18(16), 2441-2452.
[http://dx.doi.org/10.1039/C8LC00399H] [PMID: 30014076]
[14]
Mannoor, M.S.; Tao, H.; Clayton, J.D.; Sengupta, A.; Kaplan, D.L.; Naik, R.R.; Verma, N.; Omenetto, F.G.; McAlpine, M.C. Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun., 2012, 3(1), 763.
[http://dx.doi.org/10.1038/ncomms1767] [PMID: 22453836]
[15]
Sengupta, A.; Mujacic, M.; Davis, E.J. Detection of bacteria by surface-enhanced Raman spectroscopy. Anal. Bioanal. Chem., 2006, 386(5), 1379-1386.
[http://dx.doi.org/10.1007/s00216-006-0711-z] [PMID: 16933128]
[16]
Huang, T.; Shi, Y.; Zhang, J.; Han, Q.; Xia, X.S.; Zhang, A.M.; Song, Y. Rapid and simultaneous detection of five, viable, foodborne path-ogenic bacteria by photoinduced pmaxx-coupled multiplex PCR in fresh juice. Foodborne Pathog. Dis., 2021, 18(9), 640-646.
[http://dx.doi.org/10.1089/fpd.2020.2909] [PMID: 34292761]
[17]
Iseri, E.; Biggel, M.; Goossens, H.; Moons, P.; van der Wijngaart, W. Digital dipstick: Miniaturized bacteria detection and digital quantification for the point-of-care. Lab Chip, 2020, 20(23), 4349-4356.
[http://dx.doi.org/10.1039/D0LC00793E] [PMID: 33169747]
[18]
Guilini, C.; Baehr, C.; Schaeffer, E.; Gizzi, P.; Rufi, F.; Haiech, J.; Weiss, E.; Bonnet, D.; Galzi, J.L. New fluorescein precursors for live bacteria detection. Anal. Chem., 2015, 87(17), 8858-8866.
[http://dx.doi.org/10.1021/acs.analchem.5b02100] [PMID: 26260548]
[19]
Kumar, S.; Sharma, G.; Singh, V. Sensitivity of tapered optical fiber surface plasmon resonance sensors. Opt. Fiber Technol., 2014, 20(4), 333-335.
[http://dx.doi.org/10.1016/j.yofte.2014.03.004]
[20]
Fratamico, P.M.; Strobaugh, T.P.; Medina, M.B.; Gehring, A.G. Detection of Escherichia coli O157:H7 using a surface plasmon resonance biosensor. Biotechnol. Tech., 1998, 12(7), 571-576.
[http://dx.doi.org/10.1023/A:1008872002336]
[21]
Bunyakul, N.; Promptmas, C.; Baeumner, A.J. Microfluidic biosensor for cholera toxin detection in fecal samples. Anal. Bioanal. Chem., 2015, 407(3), 727-736.
[http://dx.doi.org/10.1007/s00216-014-7947-9] [PMID: 24958345]
[22]
Xu, L.; Dai, Q.; Shi, Z.; Liu, X.; Gao, L.; Wang, Z.; Zhu, X.; Li, Z. Accurate MRSA identification through dual-functional aptamer and CRISPR-Cas12a assisted rolling circle amplification. J. Microbiol. Methods, 2020, 173, 105917.
[http://dx.doi.org/10.1016/j.mimet.2020.105917] [PMID: 32289369]
[23]
Qiao, J.; Meng, X.; Sun, Y.; Li, Q.; Zhao, R.; Zhang, Y.; Wang, J.; Yi, Z. Aptamer-based fluorometric assay for direct identification of methicillin-resistant Staphylococcus aureus from clinical samples. J. Microbiol. Methods, 2018, 153, 92-98.
[http://dx.doi.org/10.1016/j.mimet.2018.09.011] [PMID: 30243766]
[24]
Fan, Y.; Cui, M.; Liu, Y.; Jin, M.; Zhao, H. Selection and characterization of DNA aptamers for constructing colorimetric biosensor for detection of PBP2a. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 228, 117735.
[http://dx.doi.org/10.1016/j.saa.2019.117735] [PMID: 31757698]
[25]
Li, Y.; Xu, F.; Zhang, J.; Huang, J.; Shen, D.; Ma, Y.; Wang, X.; Bian, Y.; Chen, Q. Sensitive and Label-free Detection of Bacteria in Osteomyelitis through Exo III-Assisted Cascade Signal Amplification. ACS Omega, 2021, 6(18), 12223-12228.
[http://dx.doi.org/10.1021/acsomega.1c01107] [PMID: 34056376]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy